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Abstract 

Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is 
common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh 
dependence, and local minima. This research demonstrates the generalized finite-volume theory's checkerboard-free 
property by performing topology optimization algorithms without filtering techniques. The formation of checkerboard 
regions is associated with the finite element method's displacement field assumptions, where the equilibrium and 
continuity conditions are satisfied through the element nodes. On the other hand, the generalized finite-volume theory 
satisfies the continuity conditions between common faces of adjacent subvolumes, which is more likely from the 
continuum mechanics point of view. Also, the topology optimization algorithms based on the generalized finite-volume 
theory are performed using a mesh independent filter that regularizes the subvolume sensitivities, providing optimum 
topologies that avoid the mesh dependence and length scale issues. 
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1 INTRODUCTION 

In structural design, engineers seek to find the best project that attends all the design restrictions and optimizes 
structural performance. Currently, the best project is accomplished based on the engineer experience, causing 
dependence on their work. Therefore, structural optimization techniques have been developed to help engineers find 
the optimal configuration for structural designs, without the need to base their designs on past experiences. In general, 
structural optimization problems are divided into two main categories: material optimization and material distribution 
optimization. The first category intends to establish the best material properties to a design, while the second seeks to 
find the best material distribution inside an analysis domain. 

The material distribution-based optimization problems include sizing optimization, which seeks to find the optimal 
size in terms of length, thickness, and highness; shape optimization, which introduces shape changes on the design to 
find the optimal solution; and topology optimization, which seeks to find the best material distribution inside the analysis 
domain for the given objective function and constraints. The structural topology optimization is one of the most 
important structural optimization problems, becoming one of the fastest-growing research fields in the structural 
analysis due to its applications in different areas, such as solid mechanics, physics, multi-material modeling, and 
computer sciences. 

The topology optimization problem was proposed initially by Michell (1904), who derived the Optimality Criteria 
(OC) method for the least weight layout of trusses. However, this method is typically used for compliance minimization 
or stiffness maximization problems, usually combined with the so-called SIMP (Solid Isotropic Material with Penalization) 
approach. In this approach, the interest is in determining the best solid isotropic material distribution on the analysis 
domain (Bendsøe and Sigmund, 2003). Therefore, the material properties are modeled by the relative material density 
raised to a given power to penalize the intermediate values. In topology optimization, the SIMP method has been 
extensively used due to its versatility, convergence, and ease implementation (Rozvany, 2009). 

Topology optimization has raised as a powerful technique for structural design, although there are some problems 
related to numerical instabilities. The main numerical problems are the checkerboard pattern effect, which refers to the 
formation of regions alternating solid and void elements in a checkerboard shape; mesh dependence, which refers to 
the problem of not having qualitatively the same solution for different discretizations; and local minima, which refers to 
the problem of having different solutions for the same discretizations when different input parameters are employed. It 
is undesirable to have any of these instabilities in the optimal solution. 

Since the pioneering work of Bendsøe and Kikuchi (1988) in the homogenization method, the finite element-based 
strategy for structural topology optimization has received full attention and experienced considerable progress (Wang 
and Wang, 2006). Therefore, the advantages and disadvantages are well-known. For instance, according to Díaz and 
Sigmund (1995), the checkerboard pattern is directly associated with the finite element method numerical assumptions, 
which leads to some artificial stiffness. Different approaches lead efficiently with this problem, as the adoption of higher-
order finite elements (Díaz and Sigmund, 1995; Sigmund and Petersson, 1998), filtering techniques based on image 
processing or perimeter control (Sigmund, 2007; Haber et al., 1996) and the employment of modified finite elements 
(Rozvany et al., 2003; Pomezanski et al., 2005; Poulsen, 2002). 

An alternative technique to the finite element method is the finite-volume theory, which employs the volume-
average of the different fields that define the material behavior and imposes the boundary and continuity conditions in 
an averaged sense. This technique has shown to be a well suitable method for elastic stress analysis in solid mechanics, 
investigations of its numerical efficiency can be found in Cavalcante et al. (2007a, b and 2008) and Cavalcante and Pindera 
(2012a, b). The satisfaction of equilibrium equations at the subvolume level, concomitant to kinematic and static 
continuities established in a surface-averaged sense between common faces of adjacent subvolumes, are features that 
distinguish the finite-volume theory from the finite element method. More recently, Araujo et al. (2020) have employed 
a topology optimization technique for compliance minimization based on the standard finite-volume theory to obtain 
checkerboard free topologies in the absence of filtering techniques, also providing more efficient topologies when a 
mesh-independent filter is employed. 

The checkerboard instability mentioned later is related to the finite element method's assumptions, such as the 
satisfaction of equilibrium and continuity conditions at the element nodes. Also, the equilibrium equations are not 
satisfied at the element level, only when a sufficiently refined mesh is employed. Differently, the finite-volume theory 
satisfies the equilibrium equations at the subvolume level, and the compatibility conditions are established through the 
subvolume interfaces. Thus, in the finite-volume theory, the connections between adjacent subvolumes occur through 
subvolumes' faces, which is more likely from the continuum mechanics point of view. In the finite element method, the 
connections between neighboring elements occur through the nodes, leading to optimum topologies with checkerboard 
regions in the absence of regularization techniques for trilateral or quadrilateral elements. 
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This paper addresses a new approach for topology optimization based on the generalized finite-volume theory for 
continuum elastic structures in the context of compliance minimization problems, showing that the checkerboard 
pattern is a problem related to the conventional finite element analysis. Two different ways to evaluate the objective 
function in the context of the higher-order versions of the finite-volume theory are investigated as essential guidance for 
this technique's employment. Comparison results between the three versions of the generalized finite-volume theory 
and similar approaches based on the finite element method are provided, demonstrating the efficiency of the new 
topology optimization technique, with competitive processing time, even when the higher-order versions of the theory 
are employed. 

2 GENERALIZED FINITE-VOLUME THEORY 

The finite-volume method is a well-suited numerical technique for boundary-value problems in fluid mechanics 
governed by parabolic and hyperbolic equations (Versteeg and Malalasekera, 2007). The formulations of this method in 
solid mechanics are characterized by differences in the subvolume displacement representation and the domain 
discretization and the local satisfaction of differential equilibrium equations (Cavalcante and Pindera, 2012a). 

The structural finite-volume theory has its origins in the so-called higher-order theory for functionally graded 
materials, developed in a sequence of papers in the 1990s, and summarized in Aboudi et al. (1999). A reconstruction of 
this theory is firstly suggested by Bansal and Pindera (2003 and 2005) and Zhong et al. (2004). They have simplified the 
design domain discretization and implemented an efficient local/global stiffness matrix approach. Therefore, this 
reconstruction has revealed the new higher-order approach as, in fact, a finite-volume method, motivating the 
nomenclature changing to reflect the aspects of the reconstructed theory fundamentally. After that, Cavalcante et al. 
(2007a, b) introduced a parametric mapping in the elasticity-based version of the finite-volume theory, enabling the 
modeling of curved structures. Following Cavalcante et al. (2007a, b), Gattu et al. (2008) and Khatam and Pindera (2009 
and 2010) suggested a parametric mapping of the homogenized version of the finite-volume theory, known as FVDAM 
(Finite-Volume Direct Averaging Micromechanics). 

However, the second-order displacement field representation inside the subvolumes and the enforcement of 
tractions and displacements in a surface-averaged sense leads to interpenetrations between common faces of adjacent 
subvolumes (Cavalcante and Pindera, 2012a). As a result, Cavalcante and Pindera (2012a) suggested a generalization of 
the finite-volume theory, based on a higher-order displacement field representation. They have introduced new surface-
averaged kinematic and static variables, inspired on the linear elasticity theory assumptions, preserving the finite-volume 
framework, as the local satisfaction of equilibrium equations and the establishment of continuity conditions in a surface-
averaged sense. Thus, the additional coefficients of the displacement field can be expressed in terms of the new surface-
averaged kinematic variables, which enforces continuity across adjacent subvolumes, avoiding undesirable interfacial 
interpenetrations. 

The generalization proposed by Cavalcante and Pindera (2012a, b) is applicable for rectangular analysis domains 
discretized in rectangular subvolumes. This generalization is accomplished by adding systematically different orders to 
the zeroth-order (standard) finite-volume theory, which corresponds to the original version presented by Bansal and 
Pindera (2003). Each order corresponds to an increase in the displacement field complexity, followed by the addition of 
kinematic quantities evaluated in an average sense at the subvolume faces. Thus, the first order finite-volume theory 
incorporates rotations to the original version, while the second-order finite-volume theory includes rotations and 
curvatures. Cavalcante and Pindera (2014a, b) proposed a generalization of the homogenized version of the finite-volume 
theory for periodic materials under finite deformations. 

Recently, Chen et al. (2018) proposed a three-dimensional parametric formulation of the FVDAM theory for 
multiphase heterogeneous materials with periodic microstructure. Similarly, Vieira and Marques (2019) have proposed 
a parametric three-dimensional extension of the finite-volume theory to evaluate the thermal conductivity of periodic 
multiphase composites. Summarily, the finite-volume theory is quite a new numerical approach, mainly employed for 
heterogeneous materials with periodic microstructures, which is an excellent solution for the checkerboard pattern issue 
usually presented in topology optimization for compliance minimization based on the finite element method. 

Different versions of the finite-volume method can be found in the literature, as the cell-centered and vertex-
centered approaches (Cavalcante and Pindera, 2012a). They can share similar features with the finite-volume theory, as 
the satisfaction of the equilibrium equations locally, and the continuity conditions imposed through the faces, as 
expected from a continuum mechanics point of view. These features can also be found in the Discrete Element Method 
(DEM) for continuous medium. See, for example, one of the most recent applications of the DEM approach to the multi-
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scale modeling of heterogeneous materials with periodic microstructure (Ferretti, 2020). These approaches can also be 
explored to solve the checkerboard pattern of topology optimization. 

2.1 Theoretical framework 

The presented formulation has its roots in the second-order version of the generalized finite-volume theory 
presented in Cavalcante and Pindera (2012a). This technique approximates the displacement field by second-order 
Legendre polynomials expressed as a function of the local coordinates inside each subvolume (Cavalcante et al., 2007a). 
Besides, the boundary and continuity conditions are imposed in a surface-averaged sense, and the equilibrium equations 
are satisfied at the subvolume level. 

Figure 1 shows the adopted rectangular domain in 𝑥𝑥1 − 𝑥𝑥2 plane with 0 ≤ 𝑥𝑥1 ≤ 𝐿𝐿 and 0 ≤ 𝑥𝑥2 ≤ 𝐻𝐻, which is 
discretized in 𝑁𝑁𝛽𝛽 horizontal subvolumes and 𝑁𝑁𝛾𝛾 vertical subvolumes. The subvolume dimensions are 𝑙𝑙𝑞𝑞 and ℎ𝑞𝑞 for 𝑞𝑞 =
1, … ,𝑁𝑁𝑞𝑞, where 𝑁𝑁𝑞𝑞 = 𝑁𝑁𝛽𝛽 ∙ 𝑁𝑁𝛾𝛾 is the total number of subvolumes. In this cartesian formulation of the generalized finite-
volume theory, the components of the displacement field can be approximated by the Legendre polynomial expansion 
in the local coordinate system, shown in Figure 1, Cavalcante and Pindera (2012a): 
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where 𝑖𝑖 = 1,2 and 𝑊𝑊𝑖𝑖(𝑚𝑚𝑚𝑚)
(𝑞𝑞)  are the unknown coefficients of the displacement field. These coefficients are expressed as a 

function of the following kinematic quantities: surface-averaged displacements, rotations, and curvatures, which are 
responsible for determining the generalized stiffness matrices (Cavalcante and Pindera, 2012a). 

 
Figure 1: Discretized analysis domain and local coordinate system of a generic subvolume 𝑞𝑞. 

 
Figure 2: Surface-averaged quantities: (a) surface-averaged kinematic quantities and (b) surface-averaged static quantities. 
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Figure 2a illustrates the kinematic quantities associated with each face of a generic subvolume 𝑞𝑞. Therefore, these 
quantities in terms of surface-averaged displacements, rotations, and curvatures can be defined, respectively, as follows 

𝑢𝑢�𝑖𝑖
(1,3) = 1

𝑙𝑙𝑞𝑞
∫ 𝑢𝑢𝑖𝑖 �𝑥𝑥1

(𝑞𝑞),∓ℎ𝑞𝑞
2
� 𝑑𝑑𝑥𝑥1

(𝑞𝑞)
𝑙𝑙𝑞𝑞
2

−
𝑙𝑙𝑞𝑞
2

 

𝑢𝑢�𝑖𝑖
(2,4) = 1

ℎ𝑞𝑞
∫ 𝑢𝑢𝑖𝑖 �± 𝑙𝑙𝑞𝑞

2
,𝑥𝑥2

(𝑞𝑞)�𝑑𝑑𝑥𝑥2
(𝑞𝑞)

ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

�̅�𝜃21
(1,3) = 1

𝑙𝑙𝑞𝑞
∫

𝜕𝜕𝑢𝑢2�𝑥𝑥1
(𝑞𝑞),∓

ℎ𝑞𝑞
2 �

𝜕𝜕𝑥𝑥1
(𝑞𝑞) 𝑑𝑑𝑥𝑥1

(𝑞𝑞)
𝑙𝑙𝑞𝑞
2

−
𝑙𝑙𝑞𝑞
2

 

�̅�𝜃12
(2,4) = − 1

ℎ𝑞𝑞
∫

𝜕𝜕𝑢𝑢1�±
𝑙𝑙𝑞𝑞
2 ,𝑥𝑥2

(𝑞𝑞)�

𝜕𝜕𝑥𝑥2
(𝑞𝑞) 𝑑𝑑𝑥𝑥2

(𝑞𝑞)
ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

 

�̅�𝜅21
(1,3) = 1

𝑙𝑙𝑞𝑞
∫

𝜕𝜕2𝑢𝑢2�𝑥𝑥1
(𝑞𝑞),∓

ℎ𝑞𝑞
2 �

𝜕𝜕𝑥𝑥1
2(𝑞𝑞) 𝑑𝑑𝑥𝑥1

(𝑞𝑞)
𝑙𝑙𝑞𝑞
2

−
𝑙𝑙𝑞𝑞
2

 

�̅�𝜅12
(2,4) = − 1

ℎ𝑞𝑞
∫

𝜕𝜕2𝑢𝑢1�±
𝑙𝑙𝑞𝑞
2 ,𝑥𝑥2

(𝑞𝑞)�

𝜕𝜕𝑥𝑥2
2(𝑞𝑞) 𝑑𝑑𝑥𝑥2

(𝑞𝑞)
ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

  (2) 

where the superscript indicates the subvolume face number, indexed as illustrated in Figure 2a. 

Thereafter, the compatibility conditions are established in terms of the surface-averaged variables, which is 
motivated by the satisfaction of point-wise continuity conditions between adjacent subvolumes (Cavalcante and Pindera, 
2012a). Thus, the kinematic compatibilization between the third and first faces of adjacent subvolumes is established as 
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Similarly, the kinematic variables must be also compatibilized between the second and fourth faces of adjacent 
subvolumes. Substituting the polynomial representation of the displacement field, Eq. (1), in Eq. (2), 16 expressions are 
obtained for the surface-averaged displacements, rotations, and curvatures, which can be represented in matrix notation 
as follows 
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where 𝒖𝒖�(𝑞𝑞) is the local surface-averaged displacement vector, 𝜽𝜽�(𝑞𝑞) is the local surface-averaged rotation vector, 𝜿𝜿�(𝑞𝑞) is 
the local surface-averaged curvature vector, 𝑾𝑾(𝑞𝑞) is the vector containing the unknown coefficients related to the zeroth-
order finite-volume theory, 𝑾𝑾𝛻𝛻

(𝑞𝑞) is the vector formed by the unknown coefficients related to the first-order finite-volume 
theory, 𝑾𝑾𝛻𝛻2

(𝑞𝑞) is the vector composed by the unknown coefficients related exclusively to the second-order finite-volume 
theory and 𝑾𝑾(00)

(𝑞𝑞)  is the vector containing the zeroth-order unknown coefficients. 𝑨𝑨(16×16)
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(𝑞𝑞)  are matrices that 
depend only on the dimensions of the subvolume 𝑞𝑞. 

Similarly, the surface-averaged static quantities, shown in Figure 2b, can be defined in terms of averaged tractions, 
first and second derivative of normal tractions acting on the faces of a generic subvolume. Thus, these surface-averaged 
static quantities are respectively defined as 
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2

−
ℎ𝑞𝑞
2

 

  (5) 

In the static analysis, the continuity conditions between the third and first faces of adjacent subvolumes are imposed 
as follows 

𝑡𝑡�̅�𝑖
(3)�

(𝑞𝑞)
− 𝑡𝑡�̅�𝑖

(1)�
(𝑞𝑞+1)

= 0 

𝑡𝑡2̅ 1⁄
(3) �

(𝑞𝑞)
− 𝑡𝑡1̅ 2⁄

(1) �
(𝑞𝑞+1)

= 0 

𝑡𝑡2̅ 11⁄
(3) �

(𝑞𝑞)
− 𝑡𝑡2̅ 11⁄

(1) �
(𝑞𝑞+1)

= 0

  (6) 

These continuities must also be established between the fourth and second faces of adjacent subvolumes. 
Considering linear elastic isotropic materials, where the generalized Hooke’s law is valid, 16 expressions are 

obtained for the surface-averaged static variables in terms of the unknown coefficients. These expressions can be 
arranged in matrix notation as follows 

�
�̅�𝒕(𝑞𝑞)

�̅�𝒕𝛻𝛻
(𝑞𝑞)

�̅�𝒕𝛻𝛻2
(𝑞𝑞)
� = 𝑩𝑩(16×16)

(𝑞𝑞) �
𝑾𝑾(𝑞𝑞)

𝑾𝑾𝛻𝛻
(𝑞𝑞)

𝑾𝑾𝛻𝛻2
(𝑞𝑞)
�  (7) 

where �̅�𝒕(𝑞𝑞) is the local surface-averaged traction vector, �̅�𝒕𝛻𝛻
(𝑞𝑞) is the local surface-averaged normal traction first derivative 

vector and �̅�𝒕𝛻𝛻2
(𝑞𝑞) is the local surface-averaged normal traction second derivative vector. 𝑩𝑩(16×16)

(𝑞𝑞)  is a matrix that depends 
on the subvolume dimensions and the material elastic properties. 

In the absence of body forces, the equilibrium conditions at the subvolume level are established as 

∑ �̅�𝒕(𝑝𝑝)
(𝑞𝑞)𝐿𝐿𝑝𝑝

(𝑞𝑞)4
𝑝𝑝=1 = 𝟎𝟎  (8) 

where 𝐿𝐿1
(𝑞𝑞) = 𝑙𝑙𝑞𝑞, 𝐿𝐿2

(𝑞𝑞) = ℎ𝑞𝑞, 𝐿𝐿3
(𝑞𝑞) = 𝑙𝑙𝑞𝑞 and 𝐿𝐿4

(𝑞𝑞) = ℎ𝑞𝑞 are the subvolume edges lengths and �̅�𝒕(𝑝𝑝)
(𝑞𝑞) is taken from Eq. (7) and 

can be expressed as 

�̅�𝒕(𝑝𝑝)
(𝑞𝑞) = 𝑩𝑩(2×16)

(𝑞𝑞,𝑝𝑝) �𝑨𝑨(16×16)
(𝑞𝑞) �

−1
�𝒖𝒖�(𝑞𝑞) − 𝒂𝒂(16×2)

(𝑞𝑞) 𝑾𝑾(00)
(𝑞𝑞) �  (9) 

where 𝑩𝑩(2×16)
(𝑞𝑞,𝑝𝑝)  are submatrices of selected components of the matrix 𝑩𝑩(16×16)

(𝑞𝑞)  related to the surface-averaged tractions 
acting on a face 𝑝𝑝 of the subvolume 𝑞𝑞. Replacing Eqs. (4) and (7) in Eqs. (9) and (8), the following expression is obtained 
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�∑ 𝑩𝑩(2×16)
(𝑞𝑞,𝑝𝑝) 𝐿𝐿𝑝𝑝

(𝑞𝑞)4
𝑝𝑝=1 � �𝑨𝑨(16×16)

(𝑞𝑞) �
−1
�
𝒖𝒖�(𝑞𝑞)

𝜽𝜽�(𝑞𝑞)

𝜿𝜿�(𝑞𝑞)
� = �∑ 𝑩𝑩(2×16)

(𝑞𝑞,𝑝𝑝) 𝐿𝐿𝑝𝑝
(𝑞𝑞)4

𝑝𝑝=1 � �𝑨𝑨(16×16)
(𝑞𝑞) �

−1
𝒂𝒂(16×2)

(𝑞𝑞) 𝑾𝑾(00)
(𝑞𝑞)   (10) 

The vector 𝑾𝑾(00)
(𝑞𝑞)  can be obtained from Eq. (10), which is given by 

𝑾𝑾(00)
(𝑞𝑞) = 𝒂𝒂�(2×16)

(𝑞𝑞) �
𝒖𝒖�(𝑞𝑞)

𝜽𝜽�(𝑞𝑞)

𝜿𝜿�(𝑞𝑞)
�  (11) 

where 𝒂𝒂�(2×16)
(𝑞𝑞) = ��∑ 𝑩𝑩(2×16)

(𝑞𝑞,𝑝𝑝) 𝐿𝐿𝑝𝑝
(𝑞𝑞)4

𝑝𝑝=1 � �𝑨𝑨(16×16)
(𝑞𝑞) �

−1
𝒂𝒂(16×2)

(𝑞𝑞) �
−1
�∑ 𝑩𝑩(2×16)

(𝑞𝑞,𝑝𝑝) 𝐿𝐿𝑝𝑝
(𝑞𝑞)4

𝑝𝑝=1 � �𝑨𝑨(16×16)
(𝑞𝑞) �

−1
. 

Replacing Eq. (11) in Eq. (4), the following expression can be obtained: 

�
𝑾𝑾(𝑞𝑞)

𝑾𝑾𝛻𝛻
(𝑞𝑞)

𝑾𝑾𝛻𝛻2
(𝑞𝑞)
� = 𝑨𝑨�(16×16)

(𝑞𝑞) �
𝒖𝒖�(𝑞𝑞)

𝜽𝜽�(𝑞𝑞)

𝜿𝜿�(𝑞𝑞)
�  (12) 

where 𝑨𝑨�(16×16)
(𝑞𝑞) = �𝑨𝑨(16×16)

(𝑞𝑞) �
−1
− �𝑨𝑨(16×16)

(𝑞𝑞) �
−1
𝒂𝒂(16×2)

(𝑞𝑞) 𝒂𝒂�(2×16)
(𝑞𝑞) . Thus, the local system of equations for a generic 

subvolume can be obtained by replacing Eq. (12) in Eq. (7), which gives 

�
�̅�𝒕(𝑞𝑞)

�̅�𝒕𝛻𝛻
(𝑞𝑞)

�̅�𝒕𝛻𝛻2
(𝑞𝑞)
� = 𝑲𝑲(16×16)

(𝑞𝑞) �
𝒖𝒖�(𝑞𝑞)

𝜽𝜽�(𝑞𝑞)

𝜿𝜿�(𝑞𝑞)
�  (13) 

where 𝑲𝑲(16×16)
(𝑞𝑞) = 𝑩𝑩(16×16)

(𝑞𝑞) 𝑨𝑨�(16×16)
(𝑞𝑞)  is the local stiffness matrix. 

For the global stiffness matrix assemblage, it is considered the individual contribution of each subvolume on the 
discretized structure. Therefore, the global system of equations can be defined as 

𝑻𝑻(𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛×1) = 𝑲𝑲(𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛×𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛)𝑼𝑼(𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛×1)  (14) 

where 𝑛𝑛𝑑𝑑𝑛𝑛𝑛𝑛 is the total number of degrees of freedom, 𝑻𝑻(𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛×1) and 𝑼𝑼(𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛×1) are the global surface-averaged static 
and kinematic vectors, respectively, and 𝑲𝑲(𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛×𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛) is the global stiffness matrix evaluated by 

𝑲𝑲(𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛×𝑁𝑁𝑛𝑛𝑛𝑛) = ∑ ��𝑳𝑳(16×𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛)
(𝑞𝑞) �

𝑇𝑇
𝑲𝑲(16×16)

(𝑞𝑞) 𝑳𝑳(16×𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛)
(𝑞𝑞) �𝑁𝑁𝑞𝑞

𝑞𝑞=1   (15) 

where 𝑳𝑳(16×𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛)
(𝑞𝑞)  is the kinematic and static incidence matrix. 

The previous theoretical development corresponds to the formulation of the second-order version of the 
generalized finite-volume theory for continuum elastic structures. For the lower order versions of the generalized finite-
volume theory, the framework can be obtained by uncoupling curvatures, in the case of the first-order version, and 
curvatures and rotations, in the case of the zeroth-order version. The vectors composed by the unknown coefficients 
must also be uncoupled following the corresponding version of the generalized finite-volume theory. 

3 TOPOLOGY OPTIMIZATION PROBLEM 

In general, the topology optimization problem is formulated as an algorithm that seeks to find the best material 
distribution inside a reference domain. Since Bendsøe and Kikuchi (1988), a significant part of the advances in topology 
optimization has been obtained through methodologies based on the compliance minimization problem, whose concepts 
are well-established (Collet et al., 2017). Some examples of applications using this type of optimization problem are 
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presented in Rozvany (2009), Lopes et al. (2015), Shobeiri (2016), and Wang et al. (2017). Here, it is used the topology 
optimization problem for compliance minimization, where the design domain is assumed to be rectangular and 
discretized in rectangular elements or subvolumes. 

The topology optimization problem based on the power-law approach applied in the context of the finite element 
method, where the objective is to minimize the compliance structural function under volume constraint, can be 
described as 

⎩
⎪
⎨

⎪
⎧min 𝑐𝑐(𝜌𝜌) = ∑ (𝜌𝜌𝑒𝑒)𝑝𝑝𝒅𝒅𝑒𝑒𝑇𝑇𝑲𝑲𝑒𝑒

0𝒅𝒅𝑒𝑒𝑁𝑁
𝑒𝑒=1

subject to: 
𝑉𝑉(𝝆𝝆)
𝑉𝑉�

= 𝑛𝑛
0 < 𝜌𝜌𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝜌𝜌𝑒𝑒 ≤ 1

  (16) 

where 𝑉𝑉(𝝆𝝆) and 𝑉𝑉�  are the material and the reference domain volumes, respectively, 𝒅𝒅𝑒𝑒 is the local displacement vector, 
𝑲𝑲𝑒𝑒
0 is the local stiffness matrix for a unitary relative density, 𝝆𝝆 is the relative density vector, 𝑝𝑝 is the penalty factor, 𝑛𝑛 is 

the prescribed volume fraction, 𝜌𝜌𝑚𝑚𝑖𝑖𝑚𝑚 is the minimum relative density, 𝜌𝜌𝑒𝑒 is the relative density associated with each 
element and 𝑁𝑁 is the total number of elements. 

The optimization problem presented in Eq. (16) is solved using the classical approach denoted by optimality criteria 
(OC) method. Therefore, following the procedure suggested by Bendsøe and Sigmund (2003), a heuristic update for the 
design variables is established as 

𝜌𝜌𝑒𝑒𝑘𝑘+1 =

⎩
⎪⎪
⎨

⎪⎪
⎧

max(𝜌𝜌𝑚𝑚𝑖𝑖𝑚𝑚,𝜌𝜌𝑒𝑒 − 𝑚𝑚) ,
𝑖𝑖𝑛𝑛 𝜌𝜌𝑒𝑒𝑘𝑘𝐵𝐵𝑒𝑒

𝜂𝜂 ≤ max(𝜌𝜌𝑚𝑚𝑖𝑖𝑚𝑚,𝜌𝜌𝑒𝑒 − 𝑚𝑚) ,
𝜌𝜌𝑒𝑒𝑘𝑘𝐵𝐵𝑒𝑒

𝜂𝜂 ,
𝑖𝑖𝑛𝑛 max(𝜌𝜌𝑚𝑚𝑖𝑖𝑚𝑚,𝜌𝜌𝑒𝑒 −𝑚𝑚) < 𝜌𝜌𝑒𝑒𝑘𝑘𝐵𝐵𝑒𝑒

𝜂𝜂 ≤ min(1,𝜌𝜌𝑒𝑒 +𝑚𝑚) ,
min(1,𝜌𝜌𝑒𝑒 +𝑚𝑚) ,

𝑖𝑖𝑛𝑛 min(1,𝜌𝜌𝑒𝑒 +𝑚𝑚) ≤ 𝜌𝜌𝑒𝑒𝑘𝑘𝐵𝐵𝑒𝑒
𝜂𝜂 

  (17) 

where 𝑘𝑘 is the current iteration, 𝑚𝑚 is the move-limit, 𝜂𝜂 is the damping factor and 𝐵𝐵𝑒𝑒 is given by 

𝐵𝐵𝑒𝑒 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌𝑒𝑒

𝜆𝜆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌𝑒𝑒

  (18) 

where 𝜆𝜆 is the Lagrangian multiplier for the constrained volume, which is determined by a bisection method. 
The damping factor can be used to regularize possible oscillations during the optimization, mainly when no filtering 

techniques are employed. The parameter 𝜂𝜂 is directly related to the method performance, once this affects the speed 
variation of 𝐵𝐵𝑒𝑒

𝜂𝜂 (Montes, 2016). A high value for 𝜂𝜂 can accelerate the optimization convergence process, which may cause 
oscillations in the displacement field for the low-density regions (Ma et al., 1993). Also, the adoption of minor values of 
𝜂𝜂 can prevent divergence in the topology optimization algorithm; however, this results in small changes in the design 
variables, which leads to a slower convergence process (Ma et al., 1993). The value of 𝜂𝜂 that provides the faster 
convergence for the overall process is 1/2, so it is recommended to maintain the damping factor as close as possible of 
this value. 

3.1 Mesh-independency filter 

To avoid the occurrence of mesh dependency, it is suggested the modification of the elements’ sensitivities by the 
following expression: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌𝑒𝑒

= 1
𝜌𝜌𝑒𝑒 ∑ 𝐻𝐻�𝜕𝜕𝑁𝑁

𝜕𝜕=1
∑ 𝐻𝐻�𝑛𝑛𝜌𝜌𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌𝜕𝜕

𝑁𝑁
𝑛𝑛=1   (19) 

where 𝐻𝐻�𝑛𝑛 is the convolution operator (weighting function) given as 

𝐻𝐻�𝑛𝑛 = 𝑅𝑅 − dist(𝑒𝑒,𝑛𝑛)  for dist(𝑒𝑒, 𝑛𝑛) ≤ 𝑅𝑅 and 𝐻𝐻�𝑛𝑛 = 0 otherwise,  (20) 
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where dist(𝑒𝑒,𝑛𝑛) is the distance between the element center of 𝑒𝑒 and the element center of 𝑛𝑛 (Sigmund, 2001). 
To consider the contribution only of the neighbor elements (with shared nodes), it is adopted a filter radius of 
𝑅𝑅 = 1.01�(𝑙𝑙𝑒𝑒)2 + (ℎ𝑒𝑒)2. 

4 COMPLIANCE FUNCTION FOR THE GENERALIZED FINITE-VOLUME THEORY 

In general, the total strain energy of a deforming material and the work done by external loadings are equivalent to 
a conservative internal force system in a quasi-static analysis. Therefore, in structural analysis, this principle is mostly 
observed on energy-based numerical methods, as the finite element method. However, in the finite-volume theory, this 
feature is observed only for the zeroth-order version of the generalized finite-volume theory, since the local equilibrium 
are established only in terms of the surface-averaged tractions. As a result, for the first and second-order versions, the 
equivalence between the total strain energy and the work done by external forces is observed only when a sufficiently 
refined mesh is employed. One of the main objectives of this contribution is to define whether the total strain energy or 
the total work done by external forces produce the best results for the proposed optimization problem. 

The compliance function can be defined as twice the total strain energy produced by a displacement field 𝒖𝒖; thus, 
this function can be expressed as 

𝑐𝑐(𝒖𝒖,𝝆𝝆) = 2𝑈𝑈(𝒖𝒖,𝝆𝝆) = ∭ 2𝑈𝑈�(𝒖𝒖,𝝆𝝆)𝑑𝑑𝑑𝑑𝛺𝛺 =  ∭ 𝜎𝜎𝑖𝑖𝑖𝑖(𝒖𝒖,𝝆𝝆)𝜀𝜀𝑖𝑖𝑖𝑖(𝒖𝒖)𝑑𝑑𝑑𝑑𝛺𝛺 = ∭ 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑙𝑙(𝝆𝝆)𝜀𝜀𝑘𝑘𝑙𝑙(𝒖𝒖)𝜀𝜀𝑖𝑖𝑖𝑖(𝒖𝒖)𝑑𝑑𝑑𝑑𝛺𝛺   (21) 

where 𝑈𝑈(𝒖𝒖,𝝆𝝆) is the total strain energy, 𝑈𝑈�(𝒖𝒖,𝝆𝝆) is the specific strain energy, 𝜎𝜎𝑖𝑖𝑖𝑖(𝒖𝒖,𝝆𝝆) is the stress tensor, 𝜀𝜀𝑖𝑖𝑖𝑖(𝒖𝒖) is the 
strain tensor, 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑙𝑙(𝝆𝝆) is the stiffness tensor and 𝑑𝑑 is the reference domain. 

In the absence of body forces and considering 𝑢𝑢𝑖𝑖 = 0 in 𝑆𝑆𝑢𝑢, the work done by external loadings can be defined as 

𝑊𝑊 = 1
2∬ 𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖 𝑑𝑑𝑆𝑆𝑆𝑆𝜎𝜎

  (22) 

where 𝑡𝑡𝑖𝑖 are the traction components, 𝑢𝑢𝑖𝑖 are the displacement components, 𝑆𝑆𝜎𝜎 is the external surface subjected to 
external loadings, 𝑆𝑆𝑢𝑢 is the external surface with predicted displacements and 𝑆𝑆 = 𝑆𝑆𝑢𝑢 ∪ 𝑆𝑆𝜎𝜎. 

Applying Cauchy’s law and the divergence theorem to Eq. (22), it follows 

2𝑊𝑊 = ∭
𝜕𝜕𝜎𝜎𝑗𝑗𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

𝑢𝑢𝑖𝑖 𝑑𝑑𝑑𝑑𝛺𝛺 + ∭ 𝜎𝜎𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝛺𝛺 +∭ 𝜎𝜎𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝛺𝛺   (23) 

where 𝜔𝜔𝑖𝑖𝑖𝑖 is the asymmetric rotation tensor. Considering the symmetry of 𝜎𝜎𝑖𝑖𝑖𝑖, Eq. (23) can be written as 

2𝑊𝑊 = ∭
𝜕𝜕𝜎𝜎𝑗𝑗𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

𝑢𝑢𝑖𝑖 𝑑𝑑𝑑𝑑𝛺𝛺 + 2𝑈𝑈(𝒖𝒖)  (24) 

As a result, the equivalence between the total work done by external forces and the total strain energy is observed 
only if 𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖⁄ = 0. However, this is valid only for the zeroth-order finite-volume theory. Consequently, for the higher-
order versions of the generalized finite-volume theory, it is verified the need to investigate the different aspects that 
involve mechanical energy evaluation. 

4.1 Total strain energy for the generalized finite-volume theory 

For linearly elastic materials, the total strain energy can be defined as 

𝑈𝑈 = ∭ 1
2
𝝈𝝈𝑇𝑇𝜺𝜺𝛺𝛺 𝑑𝑑𝑑𝑑 = ∭ 1

2
𝜺𝜺𝑇𝑇𝑪𝑪𝜺𝜺𝛺𝛺 𝑑𝑑𝑑𝑑  (25) 

where 𝝈𝝈 is the stress tensor, 𝜺𝜺 is the strain tensor and 𝑪𝑪 is the material stiffness tensor. Considering the displacement 
approximation presented in Eq. (1), the strain tensor of a subvolume can be described as 

𝜺𝜺(𝑞𝑞) �𝑥𝑥1
(𝑞𝑞),𝑥𝑥2

(𝑞𝑞)� = 𝑬𝑬0
(𝑞𝑞) �𝑥𝑥1

(𝑞𝑞),𝑥𝑥2
(𝑞𝑞)�𝑾𝑾(𝑞𝑞) + 𝑬𝑬1

(𝑞𝑞) �𝑥𝑥1
(𝑞𝑞),𝑥𝑥2

(𝑞𝑞)�𝑾𝑾𝛻𝛻
(𝑞𝑞) + 𝑬𝑬2

(𝑞𝑞) �𝑥𝑥1
(𝑞𝑞),𝑥𝑥2

(𝑞𝑞)�𝑾𝑾𝛻𝛻2
(𝑞𝑞)  (26) 
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where 𝑬𝑬𝑚𝑚
(𝑞𝑞) �𝑥𝑥1

(𝑞𝑞),𝑥𝑥2
(𝑞𝑞)� are matrices written as functions of the local coordinates and relate the strain tensor components 

to the unknown coefficients of the displacement field. 
The strain energy at the subvolume level can be evaluated as 

𝑈𝑈(𝑞𝑞) = ∫ ∫ 1
2
𝜺𝜺(𝑞𝑞)𝑇𝑇𝑪𝑪(𝑞𝑞)𝜺𝜺(𝑞𝑞) 𝑑𝑑𝑥𝑥1

(𝑞𝑞)
𝑙𝑙𝑞𝑞
2

−
𝑙𝑙𝑞𝑞
2

𝑑𝑑𝑥𝑥2
(𝑞𝑞)

ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

  (27) 

Substituting Eq. (26) in Eq. (27) and integrating in terms of the local coordinates, the local strain energy, considering 
the second-order version of the generalized finite-volume theory, can be defined as 

𝑈𝑈(𝑞𝑞) = 1
2
�𝑾𝑾(𝑞𝑞)𝑫𝑫00

(𝑞𝑞)𝑾𝑾(𝑞𝑞) + 𝑾𝑾(𝑞𝑞)𝑫𝑫01
(𝑞𝑞)𝑾𝑾𝛻𝛻

(𝑞𝑞) +𝑾𝑾𝛻𝛻
(𝑞𝑞)𝑫𝑫10

(𝑞𝑞)𝑾𝑾(𝑞𝑞) + 𝑾𝑾𝛻𝛻
(𝑞𝑞)𝑫𝑫11

(𝑞𝑞)𝑾𝑾𝛻𝛻
(𝑞𝑞) +𝑾𝑾𝛻𝛻2

(𝑞𝑞)𝑫𝑫22
(𝑞𝑞)𝑾𝑾𝛻𝛻2

(𝑞𝑞)�  (28) 

where 

𝑫𝑫𝑚𝑚𝑚𝑚
(𝑞𝑞) = ∫ ∫ 1

2
𝑬𝑬𝑚𝑚

(𝑞𝑞)𝑇𝑇𝑪𝑪(𝑞𝑞)𝑬𝑬𝑚𝑚
(𝑞𝑞) 𝑑𝑑𝑥𝑥1

(𝑞𝑞)
𝑙𝑙𝑞𝑞
2

−
𝑙𝑙𝑞𝑞
2

𝑑𝑑𝑥𝑥2
(𝑞𝑞)

ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

  (29) 

Besides, 𝑫𝑫02
(𝑞𝑞), 𝑫𝑫12

(𝑞𝑞), 𝑫𝑫20
(𝑞𝑞) and 𝑫𝑫21

(𝑞𝑞) are found to be null matrices. The total strain energy is obtained by considering 
the individual contribution of each subvolume; thus, it can be written as 

𝑈𝑈 = ∭ 𝑈𝑈�𝑑𝑑𝑑𝑑𝛺𝛺 = ∑ 𝑈𝑈(𝑞𝑞)𝑁𝑁𝑞𝑞
𝑞𝑞=1   (30) 

The strain energy for the lower order versions of the generalized finite-volume theory can be obtained by uncoupling 
the vector 𝑾𝑾𝛻𝛻2

(𝑞𝑞), in the case of the first-order version, and 𝑾𝑾𝛻𝛻2
(𝑞𝑞) and 𝑾𝑾𝛻𝛻

(𝑞𝑞), in the case of the zeroth-order version. 

4.2 Total work done by external loadings based on the generalized finite-volume theory 

The horizontal displacement at the subvolume vertical faces can be expressed by three Legendre polynomials as 
follows 

𝑢𝑢1
(2,4) �𝑥𝑥2

(𝑞𝑞)� = 𝜇𝜇1(0)
(2,4) + 𝑥𝑥2

(𝑞𝑞)𝜇𝜇1(1)
(2,4) + 1

2
�3𝑥𝑥2

(𝑞𝑞)2 − ℎ𝑞𝑞2

4
� 𝜇𝜇1(2)

(2,4)  (31) 

where 𝜇𝜇1(𝑚𝑚)
(2,4)  are unknown coefficients of the horizontal displacement at the subvolume vertical faces. From Eq. (31), the 

surface-averaged kinematic quantities can be evaluated as 

𝑢𝑢�1
(2,4) = 1

ℎ𝑞𝑞
∫ 𝑢𝑢1

(2,4) �𝑥𝑥2
(𝑞𝑞)�𝑑𝑑𝑥𝑥2

(𝑞𝑞)
ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= 𝜇𝜇1(0)
(2,4) 

�̅�𝜃12
(2,4) = − 1

ℎ𝑞𝑞
∫ 𝑛𝑛𝑢𝑢1

(2,4)

𝑛𝑛𝑥𝑥2
(𝑞𝑞) �𝑥𝑥2

(𝑞𝑞)�𝑑𝑑𝑥𝑥2
(𝑞𝑞)

ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= −𝜇𝜇1(1)
(2,4) 

�̅�𝜅12
(2,4) = − 1

ℎ𝑞𝑞
∫ 𝑛𝑛2𝑢𝑢1

(2,4)

𝑛𝑛𝑥𝑥2
2(𝑞𝑞) �𝑥𝑥2

(𝑞𝑞)�𝑑𝑑𝑥𝑥2
(𝑞𝑞)

ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= −3𝜇𝜇1(2)
(2,4)

  (32) 

Similarly, for linearly elastic materials, the normal traction acting on the subvolume vertical faces can be expressed 
by three Legendre polynomials as follows 

𝑡𝑡1
(2,4) �𝑥𝑥2

(𝑞𝑞)� = 𝜏𝜏1(0)
(2,4) + 𝑥𝑥2

(𝑞𝑞)𝜏𝜏1(1)
(2,4) + 1

2
�3𝑥𝑥2

(𝑞𝑞)2 − ℎ𝑞𝑞2

4
� 𝜏𝜏1(2)

(2,4)  (33) 
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where 𝜏𝜏1(𝑚𝑚)
(2,4)  are unknown coefficients of the normal tractions acting on the vertical faces. From Eq. (33), the surface-

averaged static quantities can be evaluated by 

𝑡𝑡1̅
(2,4) = 1

ℎ𝑞𝑞
∫ 𝑡𝑡1

(2,4) �𝑥𝑥2
(𝑞𝑞)�𝑑𝑑𝑥𝑥2

(𝑞𝑞)
ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= 𝜏𝜏1(0)
(2,4) 

𝑡𝑡1̅ 2⁄
(2,4) = − 1

ℎ𝑞𝑞
∫ 𝑛𝑛𝑡𝑡1

(2,4)

𝑛𝑛𝑥𝑥2
(𝑞𝑞) �𝑥𝑥2

(𝑞𝑞)�𝑑𝑑𝑥𝑥2
(𝑞𝑞)

ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= −𝜏𝜏1(1)
(2,4) 

𝑡𝑡1̅ 22⁄
(2,4) = − 1

ℎ𝑞𝑞
∫ 𝑛𝑛2𝑡𝑡1

(2,4)

𝑛𝑛𝑥𝑥2
2(𝑞𝑞) �𝑥𝑥2

(𝑞𝑞)�𝑑𝑑𝑥𝑥2
(𝑞𝑞)

ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= −3𝜏𝜏1(2)
(2,4)

  (34) 

Using Eqs. (33) and (34), the resultant static quantities associated to the subvolume vertical faces are determined 
as follows 

𝑅𝑅1
(2,4) = ∫ 𝑡𝑡1

(2,4) �𝑥𝑥2
(𝑞𝑞)�𝑑𝑑𝑥𝑥2

(𝑞𝑞)
ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= 𝑡𝑡1̅
(2,4)ℎ𝑞𝑞 

𝑅𝑅2
(2,4) = ∫ 𝑡𝑡2

(2,4) �𝑥𝑥2
(𝑞𝑞)�𝑑𝑑𝑥𝑥2

(𝑞𝑞)
ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= 𝑡𝑡2̅
(2,4)ℎ𝑞𝑞 

𝑀𝑀𝑅𝑅
(2,4) = −∫ 𝑡𝑡1

(2,4) �𝑥𝑥2
(𝑞𝑞)� 𝑥𝑥2

(𝑞𝑞) 𝑑𝑑𝑥𝑥2
(𝑞𝑞)

ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= 𝑡𝑡1̅ 2⁄
(2,4) ℎ𝑞𝑞3

12
 

𝑆𝑆𝑅𝑅
(2,4) = ∫ 𝑡𝑡1

(2,4) �𝑥𝑥2
(𝑞𝑞)� 1

6
�3𝑥𝑥2

(𝑞𝑞)2 − ℎ𝑞𝑞2

4
� 𝑑𝑑𝑥𝑥2

(𝑞𝑞)
ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= 𝑡𝑡1̅ 22⁄
(2,4) ℎ𝑞𝑞5

720

  (35) 

where 𝑅𝑅𝑖𝑖
(2,4) are the resultant forces, 𝑀𝑀𝑅𝑅

(2,4) is the resultant bending moment and 𝑆𝑆𝑅𝑅
(2,4) is the second-order bending 

moment acting on the subvolume vertical faces. Using Eqs. (31), (32), (33) and (34), the total work done on a vertical face 
can be evaluated by 

𝑊𝑊(2,4) = 1
2 ∫ 𝑡𝑡𝑖𝑖

(2,4) �𝑥𝑥2
(𝑞𝑞)�𝑢𝑢𝑖𝑖

(2,4) �𝑥𝑥2
(𝑞𝑞)�𝑑𝑑𝑥𝑥2

(𝑞𝑞)
ℎ𝑞𝑞
2

−
ℎ𝑞𝑞
2

= 1
2
�𝑢𝑢�1

(2,4)𝑡𝑡1̅
(2,4)ℎ𝑞𝑞 + 𝑢𝑢�2

(2,4)𝑡𝑡2̅
(2,4)ℎ𝑞𝑞 + �̅�𝜃12

(2,4)𝑡𝑡1̅ 2⁄
(2,4) ℎ𝑞𝑞3

12
+ �̅�𝜅12

(2,4)𝑡𝑡1̅ 22⁄
(2,4) ℎ𝑞𝑞5

720
� (36) 

Extending the results presented on Eq. (36) to all subvolume faces and using Eq. (35), the work done by external 
loadings for the second-order version of the generalized finite-volume theory can be determined as follows 

𝑊𝑊(𝑞𝑞) = 1
2
�𝑹𝑹(𝑞𝑞)𝒖𝒖�(𝑞𝑞) + 𝑴𝑴𝑹𝑹

(𝑞𝑞)𝜽𝜽�(𝑞𝑞) + 𝑺𝑺𝑹𝑹
(𝑞𝑞)𝜿𝜿�(𝑞𝑞)�  (37) 

where 𝑹𝑹(𝑞𝑞) is the local resultant force vector, 𝑴𝑴𝑹𝑹
(𝑞𝑞) is the local resultant bending moment vector and 𝑺𝑺𝑹𝑹

(𝑞𝑞) is the local 
resultant second-order bending moment vector acting on the subvolume faces. The total work done by external loadings 
is given by the sum of each subvolume contribution, which can be expressed as 

𝑊𝑊 = ∑ 𝑊𝑊(𝑞𝑞)𝑁𝑁𝑞𝑞
𝑞𝑞=1   (38) 

For the lower-order versions of the generalized finite-volume theory, the expressions for the work done by external 
loadings can be obtained by uncoupling the surface-averaged curvatures, in the case of the first-order version, and 
rotations and curvatures, in the case of the zeroth-order version. 

5 NUMERICAL RESULTS 

On this contribution, two different examples are analyzed, employing the three versions of the generalized finite-
volume theory and Q4 and Q8 elements of the finite element method. The studied examples are a cantilever beam 
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subjected to a concentrated load and a Messerschmitt-Bölkow-Blohm (MBB) beam. To confirm the checkerboard-free 
property of the approaches based on the finite-volume theory, the examples are firstly analyzed without employing 
filtering or image processing techniques. After that, the same examples are analyzed employing a filter that modifies the 
elements or subvolumes sensitivities, as presented in Eq. (19), for mesh-independency. 

Some numerical aspects are investigated during the analysis, such as the number of iterations, processing time, 
convergence, and relative compliance. The continued penalization scheme is adopted, where the penalty factor increases 
gradually (∆𝑝𝑝 = 0.5) from 1 to 4, as suggested by Talischi et al. (2012). As a convergence criterion, the tolerance for the 
maximum change between relative densities of successive steps is assumed to be 1%. In the absence of filtering 
techniques, each approach's damping factor is adjusted to avoid any divergence during the optimization process. The 
damping factor is set up as close as possible to 1/2, since no oscillation in the displacement field is verified when the 
algorithm is performed. The adopted damping factor for each simulation is shown in the following Tables and was 
obtained by varying increments of 0.1 as follows: 1/2, 1/2.1, 1/2.2, …, until its findings convergence in the optimization 
process. 

5.1 Cantilever beam 

A classical problem in the topology optimization of bidimensional structures is the cantilever beam, whose analysis 
domain and boundary conditions are presented in Figure 3. The proposed optimization problem consists of minimizing 
the structural compliance function, defined as twice the total strain energy, with a volume constraint of 40% of the total 
volume. The computational environment, in terms of programming language and machine, can be described as MatLab 
R2016a (64-bits)/Intel® CoreTM i7 CPU 2.93 GHz/16.0 GB RAM/64-bits. Consistent units are employed for the physical 
and geometrical parameters. 

 

Figure 3: Cantilever beam. 

Figure 4 shows the optimum topologies obtained for each studied mesh size and employing the zeroth, first and 
second-order finite-volume theory (FVT0th, FVT1st, and FVT2nd, respectively) and the Q4 and Q8 elements. Additionally, 
Table 1 presents the investigated numerical aspects. From Figure 4, the optimum topologies obtained employing the 
finite-volume theory approaches have shown to be checkerboard-free. However, the approaches based on the finite 
element method have generated optimum topologies with the checkerboard pattern issue. The checkerboard pattern 
problem in optimum topologies is directly related to the displacement assumptions of the finite element method, leading 
to structures artificially rigid (Díaz and Sigmund, 1995). On the other hand, the satisfaction of equilibrium equations and 
continuity conditions through the faces of adjacent subvolumes guarantees the checkerboard-free property for the 
different versions of the finite-volume theory, even when no filtering technique is employed. 

Table 1 presents the total number of iterations, the processing time, the number of degrees of freedom (NDOF), 
and the adopted damping factor, set up to avoid divergence in the optimization process. In general, the number of 
iterations has varied from one approach to another, presenting higher values when the first-order finite-volume theory 
and Q4 approaches are employed, and the lowest value was obtained for the second-order finite-volume theory followed 
by the Q8 and FVT0th approaches. The zeroth-order finite-volume theory has been approximately 1.08 times slower than 
the Q4 approach for the finest mesh in terms of computational cost. The Q8 approach has presented the highest 
computational cost: 1.20 times slower than the first-order finite-volume theory and 1.04 times slower than the second-
order finite-volume theory, for the finest mesh. The number of degrees of freedom explains these differences in the 
computational cost partially since it defines the size of the global system of equations. 
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Figure 4: Optimum topologies for the cantilever beam analysis evaluating the compliance using the strain energy (No filtering). 

Table 1: Convergence analysis for the cantilever beam evaluating the compliance using the strain energy (No filtering). 

Analysis Mesh NDOF Number of Iterations Processing Time (s) Damping factor 

Q4 42x21 1892 270 36.95 1/2.5 
82x41 6972 360 635.26 1/2.5 

162x81 26732 710 19495.87 1/2.6 
Q8 42x21 5546 266 157.18 1/2.3 

82x41 20666 397 3138.15 1/2.4 
162x81 79706 485 54375.84 1/2.6 

FVT0th 42x21 3654 252 51.10 1/2.6 
82x41 13694 306 764.33 1/2.6 

162x81 52974 488 21133.43 1/2.6 
FVT1st 42x21 5481 394 141.96 1/2.8 

82x41 20541 376 1500.75 1/2.8 
162x81 79461 599 45207.53 1/3.6 

FVT2nd 42x21 7308 287 85.42 1/3.0 
82x41 27388 326 2933.66 1/3.0 

162x81 105948 453 52327.55 1/3.2 
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Figure 5: Optimum topologies for the cantilever beam analysis evaluating the compliance using the work done by external loadings 

(No filtering). 

Similarly, the proposed optimization problem can also be solved by defining the structural compliance as twice the 
work done by external loadings. The obtained optimum topologies are shown in Figure 5 for the first and second-order 
finite-volume theory since the total strain energy and the work done by external forces are equivalent to the approaches 
based on the finite element method and the zeroth-order finite-volume theory. The numerical aspects investigated for 
convergence analysis can be found in Table 2. 

Table 2: Convergence analysis for the cantilever beam evaluating the compliance using the work done by external loadings (No 
filtering). 

Analysis Mesh NDOF Number of Iterations Processing Time (s) Damping factor 

FVT1st 

42x21 5481 374 64.51 1/6.2 

82x41 20541 401 1297.19 1/8.0 

162x81 79461 696 49691.47 1/10.0 

FVT2nd 

42x21 7308 287 84.94 1/3.0 

82x41 27388 514 3414.41 1/8.3 

162x81 105948 641 72673.70 1/10.2 

When the compliance function is estimated using the external work done by external loadings, the optimum 
topologies tend to show more bars and length scale issues, as illustrated on the optimum topologies presented in 
Figure 5. The damping factors for these approaches have shown to be much lower when compared to the same 
approaches employing the strain energy, which turns the convergence process slower and increases the 
computational cost. The number of iterations tends to be higher, making the approaches employing the external 
work done by external loadings more computational costly, as shown in Table 2. In fact, for the current example, 
the objective function is better estimated when the compliance function is defined as twice the total strain energy. 

As shown in Figures 4 and 5, although the checkerboard pattern issue can be overcome by the topology optimization 
approach based on the finite-volume theory, the mesh dependence between successive meshes persists. Therefore, in 
this contribution, the mesh-independency filter, presented in section 3.1, is employed to avoid mesh dependence, in the 
approaches based on the finite-volume theory, and checkerboard pattern and mesh dependence, in the approaches 
based on the finite element method. The optimum topologies for the same problem employing the sensitivity filtering 
are presented in Figure 6. In this case, the compliance function is evaluated as twice the structural strain energy, and the 
damping factor is adjusted as 1/2 for all investigated approaches. 

The optimum topologies presented in Figure 6 are checkerboard-free, and the mesh dependence is better controlled 
in this scenario. There are some differences between the optimum topologies obtained by the finite-volume theory and 
the approaches based on the finite element method. The optimum topologies obtained by the zeroth-order finite-volume 
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theory have dramatically reduced the mesh dependence between successive meshes, providing topologies with fewer 
bars and reducing the length scale issue, which are desirable features for manufacturing. 

 
Figure 6: Optimum topologies for the cantilever beam analysis evaluating the compliance using the strain energy (filtering). 

The most critical topologies are obtained for the Q4 element approach; in this case, the optimum topologies present 
slender bars with length scale issues, undesirable features for manufacturing. The approaches based on the Q8 element, 
first and second-order finite-volume theories have presented similar optimum topologies with more bars when 
compared to the zeroth-order finite-volume theory approach, and fewer bars and length scale issues when compared to 
the Q4 element approach. In general, the optimum topologies obtained by the zeroth-order finite-volume theory 
approach are well behaved and more indicated for the design of optimum structures. 

Table 3 presents the results obtained for the overall convergence of the different topology optimization approaches, 
considering the application of a mesh independent filter that regularizes the element or subvolume sensitivities. In 
general, the number of iterations has changed from one approach to another, where the minimum values are observed 
for the second-order finite-volume theory and the Q4 approaches. In terms of computational cost, the Q8 approach has 
presented the highest processing time, while the Q4 approach has presented the lowest computational cost. The 
approach based on the zeroth-order finite-volume theory is 1.8 times slower than the same approach based on the Q4 
element, for the finest mesh. The number of degrees of freedom explains the computational efficiency of the Q4 
approach partially since it defines the size of the global system of equations. 

In Table 3, it is presented a numerical parameter, denoted as relative compliance, permitting the comparison 
between the different approaches in terms of the lowest compliant structure. This value is obtained by recalculating each 
optimum topology's structural compliance employing a Q8 element; after that, this result is divided by the compliance 
obtained for the Q8 optimum topologies for the same mesh sizes. The relative compliance values show that the stiffest 
structures are obtained when the zeroth-order finite-volume theory is employed, especially for the finest mesh. The 
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approaches based on the Q4 element and the second-order finite-volume theory have shown to be more flexible and 
less indicated to optimize the analyzed structure. 

Table 3: Convergence analysis for the cantilever beam evaluating the compliance using the strain energy (filtering). 

Analysis Mesh NDOF Number of Iterations Processing Time (s) Relative compliance 

Q4 70x35 5112 230 306.37 1.00053 
150x75 22952 293 5270.43 1.00056 

230x115 53592 485 52254.96 1.00364 
Q8 70x35 15122 153 645.97 1.00000 

150x75 68402 320 25743.90 1.00000 
230x115 160082 543 248635.27 1.00000 

FVT0th 70x35 10010 156 195.15 1.01019 
150x75 45450 329 8341.55 0.99068 

230x115 106490 630 94014.33 0.99536 
FVT1st 70x35 15015 156 403.17 0.99833 

150x75 68175 285 15400.58 0.99952 
230x115 159735 526 156290.92 0.99731 

FVT2nd 70x35 20020 152 667.21 1.00309 
150x75 90900 254 20218.72 1.00419 

230x115 212980 441 199348.83 1.00246 

5.2 Messerschmitt-Bölkow-Blohm (MBB) beam 

Another classical problem in topology optimization is known as Messerschmitt-Bölkow-Blohm (MBB) beam, whose 
analysis domain and boundary conditions are shown in Figure 7. The optimization problem consists of finding the stiffest 
structure with a given volume fraction of 50%. Taking advantage of the structure symmetry, only half of the structure is 
analyzed, employing boundary conditions that reflect this symmetry. Additionally, in the model conception, consistent 
units for the physical and geometric parameters are employed. The computational environment for this example, in 
terms of programming language and machine, can be described as MatLab R2018a (64-bits)/Intel® CoreTM i7-8550U 
CPU @ 1.80 GHz 1.99 GHz/16.0 GB RAM/64-bits. 

 
Figure 7: Messerschmitt-Bölkow-Blohm (MBB) beam. 

 
Figure 8: Optimum topologies for the MBB beam analysis evaluating the compliance using the strain energy (No filtering). 
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Figure 8 shows the optimum topologies for the approaches based on the finite-volume theory and Q4 and Q8 
elements in the absence of filtering or image processing techniques, where the compliance function is evaluated as twice 
the total strain energy. As presented in the previous example, the checkerboard pattern is an issue for the finite element-
based approaches, mainly when the Q4 element is employed. Even for the finest mesh of the Q8 element, the 
checkerboard pattern appears very locally, which is an issue for manufacturing. On the other hand, for the three versions 
of the generalized finite-volume theory, it is not verified the presence of any checkerboard regions. The damping factor 
for each simulation was adjusted to avoid any divergence during the optimization process. The adopted damping factors 
are shown in Table 4. 

Table 4: Convergence analysis for the MBB beam evaluating the compliance using the strain energy (No filtering). 

Analysis Mesh NDOF Number of Iterations Processing Time (s) Damping factor 

Q4 

45x15 1472 248 9.96 1/2.5 

90x30 5642 717 429.20 1/2.5 

180x60 22082 763 12306.13 1/2.6 

Q8 

45x15 4292 322 42.81 1/2.5 

90x30 16682 422 1889.06 1/2.5 

180x60 65762 545 41312.91 1/2.5 

FVT0th 

45x15 2820 253 13.44 1/2.6 

90x30 11040 422 315.81 1/2.6 

180x60 43680 584 14110.88 1/2.6 

FVT1st 

45x15 4230 401 47.84 1/3.2 

90x30 16560 458 1116.78 1/3.0 

180x60 65520 665 32551.37 1/2.7 

FVT2nd 

45x15 5640 285 39.70 1/3.0 

90x30 22080 362 1220.22 1/3.0 

180x60 87360 606 43860.14 1/3.4 

Table 4 presents the obtained results for the overall convergence analysis employing the different versions 
of the generalized finite-volume theory, and Q4 and Q8 elements of the finite element method, where the 
structural compliance is defined as twice the total strain energy. The number of iterations has varied from one 
approach to another, mainly when the Q4 element is employed. The adopted damping factor explains the high 
number of iterations partially for the finite-volume theory approaches since it provides a slow convergence for 
the optimization process. In terms of computational cost, the second-order finite-volume theory has presented 
the highest processing time, while the Q4 approach has presented the lowest computational cost. As a result, 
the zeroth-order finite-volume theory is 1.15 slower than the Q4 approach and 2.93 times faster than the Q8 
approach. The second-order finite-volume theory is 1.06 times slower than the Q8 approach and 3.56 slower 
than the Q4 approach. The first-order finite-volume theory is 2.65 times slower than the Q4 approach and 1.27 
times faster than the Q8 approach. 
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Figure 9: Optimum topologies for the MBB beam analysis evaluating the compliance using the work done by external loadings (No 

filtering). 

Table 5: Convergence analysis for the MBB beam evaluating the compliance using the work done by external loadings (No filtering). 

Analysis Mesh NDOF Number of Iterations Processing Time (s) Damping factor 

FVT1st 

45x15 4230 368 54.40 1/9.8 
90x30 16560 643 1393.07 1/8.9 

180x60 65520 795 41768.21 1/11.8 

FVT2nd 

45x15 5640 404 102.53 1/9.6 
90x30 22080 571 2747.20 1/9.8 

180x60 87360 1077 87893.58 1/10.9 

As mentioned before, the objective function can also be defined as twice the work done by external loadings, since 
the external work is equivalent to the strain energy for a conservative mechanical system. However, for the first and 
second-order versions of the finite-volume theory, there is a residual difference when a not sufficiently refined mesh is 
employed. Figure 9 shows the optimum topologies obtained when the structural compliance function is defined as twice 
the work done by external loadings. Table 5 presents the investigated numerical aspects during the optimization process. 

The obtained optimum topologies are similar from one approach to another, although the obtained numerical 
aspects are worst when the external work is employed, presenting an increase in the number of iterations occasioned 
by a reduction in the damping factor. Consequently, it is also registered an increase in the computational cost. Thus, the 
objective function is better estimated when the structural compliance function is defined as twice the total strain energy. 

 
Figure 10: Optimum topologies for the MBB beam analysis by evaluating the compliance using the strain energy (filtering). 

The topology optimization process is also performed, employing a sensitivity filter for mesh-independency. 
Figure 10 shows the obtained optimum topologies when the filtering technique is employed, which controls the 
mesh dependence, in the case of the finite-volume theory approaches, and the checkerboard effect and mesh 
dependence, in the case of the finite element method. Also, the optimum topologies presented in Figure 10 are 
practically the same for the different approaches. 

Table 6 presents the numerical results obtained for the convergence analysis of the different employed approaches, 
considering the application of the mesh-independency filter. In general, the numbers of iterations are similar for the 
different approaches, with the Q4 approach showing more substantial differences in comparison to the other ones. In 
terms of computational cost, the Q8 approach has presented the highest processing time, followed by the second-order 
finite-volume theory. The Q4 approach has presented the lowest computational cost, followed by the zeroth-order finite-
volume theory. For the current example, the stiffest structure was obtained for the Q8 approach, presenting the smallest 
compliance, where the values shown in Table 6 are relative to the optimum topology obtained by the Q8 element 
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approach. In the relative compliance calculation, the compliance is evaluated employing the Q8 finite element for the 
optimum topologies obtained by the different approaches, for a fair comparison. 

Table 6: Convergence analysis for the MBB beam by evaluating the compliance using the strain energy (filtering). 

Analysis Mesh NDOF Number of Iterations Processing Time (s) Relative compliance 

Q4 90x30 5642 603 363.85 1.00082 
180x60 22082 367 5109.44 1.00068 
270x90 49322 590 55524.63 1.00057 

Q8 90x30 16682 447 2145.40 1.00000 
180x60 65762 650 51972.51 1.00000 
270x90 147242 745 324878.83 1.00000 

FVT0th 90x30 11040 482 746.57 1.00333 
180x60 43680 664 19848.28 1.00089 
270x90 97920 761 110059.62 1.00063 

FVT1st 90x30 16560 472 1278.69 1.00252 
180x60 65520 684 31081.14 1.00051 
270x90 146880 754 202667.73 1.00033 

FVT2nd 90x30 22080 428 2464.42 1.00459 
180x60 87360 672 56573.36 1.00262 
270x90 195840 711 286714.04 1.00175 

6 CONCLUSIONS 

The topology optimization for compliance minimization algorithms based on the three versions of the generalized 
finite-volume theory has shown to be efficient, especially in the absence of filtering technique, where the algorithms 
have demonstrated the checkerboard-free property. This efficiency has its origins in the satisfaction of continuity 
conditions in a surface-averaged sense between adjacent subvolumes, which provides interfacial connections among the 
subvolumes. On the other hand, the checkerboard pattern effect is definitively a problem for the Q4 and Q8 elements. 
In those cases, this issue appears due to the finite element method's assumptions, such as the satisfaction of equilibrium 
and continuity conditions through the nodes, which provides nodal connections, resulting in checkerboard regions. In 
the case of the higher-order versions of the finite-volume theory, the evaluation of the compliance function using the 
strain energy shows to be more efficient than using the work done by external loadings. 

The continued penalization scheme is adopted during the optimization, guaranteeing a gradual convergence for the overall 
process. In the absence of filtering techniques, the OC method's damping factor is adjusted to avoid divergence during the 
optimization process, since a non-maximum number of iterations is established. The damping factor was set up to be as close as 
possible to the value of 1/2 and avoid the oscillatory phenomenon during the optimization process. For the approaches that 
employ the mesh-independency filter, the damping factor was set up as 1/2, providing a faster convergence. 

The sensitivity filter is employed to solve the mesh dependence and length scale problems. In the case of the finite 
element method, this filtering technique is employed to avoid the formation of checkerboard regions additionally. In 
terms of processing time, the approach based on the Q4 element is the most efficient, while the approach based on the 
Q8 element is usually the less efficient, with the finite-volume theory exhibiting the intermediates values, with higher 
processing times for the higher-order versions. For the cantilever beam example, the optimum topologies obtained by 
the standard (or zeroth-order) finite-volume theory present fewer bars and most with lower slenderness when compared 
with the topologies obtained by the approaches based on the Q4 and Q8 elements, which are desired features for 
manufacturing. Even though the Q4 approach shows the fastest convergence for this example, the obtained optimum 
topologies are less desirable, presenting more bars and most with higher slenderness when compared with the 
topologies obtained by the other approaches. 

It is adopted a unique expression to evaluate the filter radius for all analyzes, considering only the neighbor 
elements/subvolumes (with shared nodes). Different values for the filter radius can affect the obtained topologies, but 
this investigation can be conducted in future works. 

Based on the obtained results, the continuation of this investigation is justified by exploring the different aspects 
that evolve the finite-volume theory, especially in the case of heterogeneous materials with periodic microstructure, 
where the finite-volume theory has shown to be also efficient. 
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