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Abstract 
The evaluation of the effective properties of nonhomogeneous solids using analytical methods is, in general, 
based on the assumption that these solids have infinite dimensions. Here, we investigate the influence of 
both the number of holes and the boundary layer of a solid with finite dimensions on the determination of 
these properties. We use the Asymptotic Homogenization Method (AHM) to determine the effective shear 
modulus of an elastic solid with infinite dimensions containing a uniform and periodic distribution of circular 
cylindrical holes arranged on a hexagonal lattice. We also use the Finite Element Method (FEM) to determine 
this modulus in the case of a solid with finite dimensions containing the same uniform distribution of 
cylindrical holes away from its boundary. Near the boundary, we consider a layer of material with no holes, 
which is usually left in the fabrication process of samples. Both solids have the same elastic properties and 
are subjected to similar anti-plane shear loadings. For the finite medium, we study two sequences of domains 
discretized by the FEM, which are called the Fixed Layer Sequence (FLS) and the Fixed Domain Sequence (FDS). 
For the FLS, the layer thickness is kept fixed and both the dimensions of the domain and the number of holes 
vary. For the FDS, the dimensions of the domain are kept fixed and both the number of holes and the layer 
thickness vary. Results obtained from numerical simulations are then used to generate graphs of the effective 
shear modulus versus void volume fraction. It is observed that, in the FLS case, the shear modulus obtained 
from the numerical simulations converges to the analytical solution obtained via AHM. It is also observed that, 
in the FDS case, the shear modulus obtained from the numerical simulations converges to a limit function, 
which is close to the analytical solution obtained via AHM. For comparison purposes, we have also calculated 
the effective shear modulus of porous elastic solids containing a square array of circular cylindrical holes. We 
then show graphs of this modulus versus void volume fraction for both hexagonal and square arrangements 
that are very close to each other up to void volume fraction of 0.5. 
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1 INTRODUCTION 

The study of the behavior of nonhomogeneous solids, such as biological tissues, requires the determination of their 
effective properties via analytical methods, computational methods, or a combination of both. Generally, in the case of 
analytical methods, we assume that the solid has infinite dimensions. Since the samples used in laboratory experiments 
have finite dimensions, it is of interest to verify whether such expressions provide accurate values for the constants 
obtained via these experiments. A step towards this goal is to simulate these experiments numerically. 

Several numerical approaches have been proposed to predict the overall constitutive behavior of nonhomogeneous 
solids, among which we cite Ramakrishnan and Arunachalam (1990), Said et al. (2016), Pingaro et al. (2019), Ghosh et al. 
(1996), Ghosh et al. (2001), Marino et al. (2019), and Lo Cascio et al. (2020), who have considered random distributions 
of heterogeneities. These authors study how spatial distributions of heterogeneities and volume fraction influence the 
effective elastic properties of nonhomogeneous solids by identifying a Representative Volume Element (RVE) and 
determining the proper boundary conditions that should be applied on the boundary of the RVE. Different from these 
works, here, we apply conditions on the boundary of the whole domain. 

Some works related to the evaluation of effective properties in cortical bones are discussed below. Swan et al. 
(2003) neglect the lamellar structure of cortical bone matrix and model the resulting Haversian bone matrix as a 
homogeneous and isotropic linearly elastic medium. They consider a unit cell model of Haversian bone with square-
packed non-overlapping osteons. The cell has either  or  Haversian porosity and is submitted to periodic boundary 
conditions. They use the Finite Element Method (FEM) to compute all the effective poroelastic moduli of this cell. In this 
work, we also neglect the lamellar structure of the cortical bone matrix but, differently from these authors, we use a 
hexagonal array of cells containing unidirectional circular cylindrical holes to model non-overlapping osteons and we 
employ finite element discretization of the whole domain, instead of the unit cell model, to compute the shear effective 
modulus. 

Grimal et al. (2008) introduce a method to obtain the elastic tensor of a cortical bone sample at the mesoscale from 
a mapping of its microscale elasticity. The mesoscale properties are estimated based on a finite element homogenization 
procedure and the results are compared with available experimental data. The authors observe, however, that, although 
experimental data indicate that  always hold, their computed effective elastic coefficients do not obey these 
expressions, prompting them to question the validity of their computations for the case of effective  We have verified 

that  by using both analytical and computational methods. 
Parnell and Grimal (2009) use the asymptotic homogenization method (AHM) to predict the influence of porosity 

on the induced anisotropy of cortical bone. For this, they assume that the matrix phase of the bone is made of a 
homogeneous and isotropic linearly elastic material. For the case of circular pores, the authors show that the results 
obtained via AHM are in good quantitative and qualitative agreement with finite element results from simulations of 
problems using real two-dimensional microstructures obtained from images of cortical bone. Later, Parnell et al. (2012) 
compare theoretical predictions of the effective elastic moduli of cortical bone at both the meso- and macroscales. They 
consider the efficacy of three alternative homogenization approaches: the AHM, the Mori–Tanaka scheme and the 
Hashin–Rosen bounds. The authors point out that, although the mesoscale behavior of bone is widely accepted as 
important, models incorporating its effect have started to appear only recently. Except for the work of Swan et al. (2003), 
the authors above working on cortical bones have considered circular cylindrical holes arranged on a hexagonal lattice. 

In addition to the above works on homogenization schemes to evaluate effective properties of cortical bone, the 
impact of the elastic symmetry, assumed for the bone matrix, on the mesoscopic behavior was discussed by Sevostianov 
and Kachanov (2000), among others. These authors have proposed a micromechanics model to study the influence of 
porosity on the anisotropy of cortical bone. They have concluded that the differences between the cases of empty pores 
and pores filled with soft material were insignificant. Grimal et al. (2008) have quantified this influence and concluded 
that, on the contrary, it is significant. In the face of these disagreements and lack of methodologies in the literature to 
associate the complex interaction between bones’ structural and mechanical properties, we decided to model only solids 
containing empty holes on the application of our numerical and analytical results. 

The aim of this research is then to develop a reliable and computationally efficient method of analysis suitable for 
predicting the response of elastic solids containing empty holes and the influence of their boundaries on the 
determination of their material properties. Specifically, we employ the Asymptotic Homogenization Method (AHM) and 
the Finite Element Method (FEM) to determine the effective properties of an elastic solid that has a uniform and periodic 
distribution of circular cylindrical holes in an isotropic linearly elastic medium. The cylinders are centered in unit cells of 
hexagonal cross sections. In order to apply the AHM, we consider that the microstructure of the solid consists of two 
phases distributed periodically over a domain that has infinite dimensions. A cross section of the solid is shown in Fig. 1. 
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This distribution of phases allows us to expand the solution of the related equilibrium problem in terms of an asymptotic 
series and obtain local problems. The solutions of these local problems can be calculated analytically for solids with 
simple microstructures, such as the one considered in this work, or, more generally, numerically to include solids with 
complex microstructures, such as bone. These local solutions are then used in the calculation of the effective modulus 
of the elastic solid, which depends upon the physical and geometrical properties of its phases. 

Specifically, we use closed form expressions obtained by Bravo-Castillero et al. (2009) and Aguiar et al. (2013) to 
calculate analytically the effective shear elastic modulus of the solid. The procedure used in this calculation can be used 
to evaluate the other effective elastic moduli of the solid. The procedure may also be used to evaluate the elastic moduli 
of a solid with different microstructures, such as the one with unit cells having square cross sections, which is also used 
in this work for comparison purposes. Other more general approaches can also be found in the literature. In particular, 
López-Realpozo et al., (2011), Otero et al., (2013), López-Realpozo et al. (2014), and Otero J. A. et al. (2016) have used 
the AHM to formulate local problems on unit cells with periodic boundary conditions and solved these problems either 
analytically or computationally using FEM. These solutions were used to calculate the effective properties of two-phase 
fibrous periodic composites with imperfect contact conditions at the interface for simple geometries, such as circular 
fibers distributed in a rhombic array. This approach is different from ours, mainly because we formulate our problem on 
the whole domain, and not on a unit cell. 

Next, we simulate numerically laboratory experiments using FEM and we use the results of these simulations to 
evaluate the effective elastic modulus . For this, we consider two sequences of computational domains, which are 
called the Fixed Layer Sequence (FLS) and the Fixed Domain Sequence (FDS). For the FLS, the layer thickness is kept fixed 
and both the dimensions of the domain and the number of holes vary. For the FDS, the dimensions of the domain are 
kept fixed and both the number of holes and the layer thickness varies. To the best of our knowledge, this is the first 
study using the FDS. We then compare the numerical evaluation of  with the corresponding analytical evaluation 
obtained through AHM. Recall from above that the solid has infinite dimensions in the AHM analysis and finite 
dimensions in the numerical simulation. The numerical experiment consists of the anti-plane shear of a cylindrical sample 
with rectangular cross section containing the same uniform distribution of unit cells of the infinite solid away from the 
boundary of the solid. Near the boundary, we consider a layer of material and investigate the influence of this layer on 
the evaluation of the effective modulus. The cross section of the solid is illustrated in Fig. 2. The material of this sample 
is the same isotropic linearly elastic material considered in the analytical approach. 

This investigation represents an ongoing effort of the research group to obtain the effective moduli of elastic solids 
analytically and numerically, and it will be useful to evaluate the influence of the boundary layer in 3D printed samples 
for laboratory testing. One of the most important 3D printing techniques is Additive Manufacturing (AM). Recently 
developed, AM is an emerging technological advancement in the field of engineering. See, for instance, Yap et al. (2019) 
and Wohlers (2012), due to its highly adaptable manufacturing capabilities and ease of use, for instance, for rapid 
prototyping of intricate geometries with metals, polymers, and fiber-reinforced composite materials. In AM, the sample 
boundary layer is comprised of several shell perimeters, which are among the main control factors on the mechanical 
properties of samples fabricated in, for instance, polylactic acid (PLA). According to Lanzotti et al. (2015), other important 
control factors are the layer thickness of deposition and the infill orientation of each layer. The high variability of results 
observed by these authors together with a shortage of existing literature concerning the impact of these factors on the 
mechanical properties of samples made by additive manufacturing has motivated this work. They investigated the main 
impact of three process parameters – layer thickness, infill orientation and the number of shell perimeters – on the 
mechanical properties of parts fabricated in PLA and the effects of interactions. They use a response surface methodology 
to propose an empirical model, which connects process parameters and mechanical properties. 

In another work, Ćwikła et al. (2017) study the selected mechanical strength properties of 3D printed elements 
carried out on a set of standardized samples. In their work, Ćwikła et al. (2017) show that the shell thickness has a key 
influence on the tensile strength of the samples; for example, if the maximum strength is the priority, shell thickness 
should be increased. These authors observe that for increasing values of shell thickness over , the infill of relatively 
small samples is practically replaced by the solid, closely extruded filament threads. These threads have a much higher 
tensile strength than the standard infill pattern, resulting in overall tensile strength similar to  infill specimens. 
Ćwikła et al. (2017) mention also that the results indicate the need for further research concerning, e.g., simultaneous 
changes in many parameters and rigidity of obtained elements, which requires the development of specimens 
appropriate for the specific study of 3D printed objects, as well as methods of measurement. 

Provaggi et al. (2019) investigate the use of Fused Filament Fabrication (FFF) together with FEM to the 
understanding of manufacturing parameters in the design process of a lumbar fusion cage. The following parameters 
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were considered: material, infill density, infill pattern, and outer vertical shell. The authors test three FFF distinct 
materials (polycarbonate (PC), acrylonitrile butadiene styrene (ABS), and polylactic acid (PLA)) and they investigate three 
infill densities ( , , ) along with two different infill patterns (rectangular and honeycomb). These authors 
also investigate printing accuracy, repeatability and mechanical behavior of porous 3D printed structures. Results 
obtained via FEM by them indicate that both PC and ABS can be safely used to fabricate a porous lumbar cage with a 

 honeycomb infill density and a honeycomb infill pattern, concluding that the 3D printing assisted FEM can be used 
to predict the performance design with varying manufacturing parameters and potentially reduce product design and 
development time. In this respect, our work contributes to explain how shell thickness influences the effective elastic 
modulus  and will be useful in experimental applications, such as, the one presented in Provaggi et al. (2019). 

The paper is organized as follows. In Section 2 we present the statement of the anti-plane shear problem for an 
isotropic linearly elastic medium containing uniform and periodic distributions of circular cylindrical holes with infinite 
dimensions arranged on a hexagonal array. In Section 3 we apply this formulation together with the AHM in the 
calculation of the effective elastic constant . In Section 4 we consider finite dimensions for the elastic medium and we 
use the analogy between the associated elastic problem and the linear steady state heat conduction problem to 
formulate the problem that we solve numerically by using a finite element commercial package. In Section 5 we then 
compare the results obtained via AHM and via FEM by taking into account the number of holes, concentration of holes 
and the boundary layer thickness of the solid with finite dimensions. In Section 6 we present the conclusions of this work. 

2 PROBLEM STATEMENT 

Consider an isotropic linearly elastic medium with infinite dimensions containing a uniform and periodic distribution 
of circular cylindrical holes centered in unit cells with hexagonal cross sections. With respect to a Cartesian coordinate 
system with origin at  the axes of the holes are parallel to the coordinate axis  and the cross section of the region 
occupied by the medium in a stress-free undeformed configuration is parallel to the plane . This cross section 
together with the cross section of the hexagonal unit cell are shown in Fig. 1, where  and  correspond to the solid 
portions of the medium, without holes, and  and  correspond, respectively, to the radius and the boundary of the 
hole in the cell. 

 
Figure 1 Cross section of a 3–1 longitudinally porous elastic medium of infinite dimensions (left) and the corresponding periodic cell 

for a hexagonal array. Adapted from Bravo-Castillero et al. (2009). 

The medium is in equilibrium in the absence of body force and it is subject to loading that is orthogonal to the plane 
 at infinity, yielding a linear shear antiplane problem. In this problem, we use Voigt notation for the components of 

the elasticity tensor, in which we employ the usual simplification on the notation of the moduli  taking the subscript 
indices  to . In this work, the components of 

interest are  and . 

We consider that the only nonzero component of the displacement field is parallel to the -direction 

and depends on the coordinates  only, i.e., . Substituting these components in the strain-
displacement relations 
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  (1) 

and the resulting expressions into the generalized Hooke's law for isotropic materials, we obtain that the only nonzero 
components of the stress tensor are given by 

  (2) 

in which we recall from above that  are the elastic moduli. On the other hand, the only nonzero equilibrium 
equation with no body force is given by 

  (3) 

Substituting the constitutive relations in Eq. (2) into the equilibrium equation given by Eq. (3) yields the differential 
governing equation 

  (4) 

where  is the two-dimensional Laplace operator with respect to the global variable  

Next, the stress-free condition on the walls of the holes, which we denote by , is given by 

  (5) 

where are the components of the normal  to a cylindrical surface. 
Substituting the constitutive relations in Eq. (2) into the boundary conditions in Eq. (5), we obtain 

  (6) 

where  is the gradient operator with respect to the variable  

The first boundary-value problem of interest in this work consists of finding the displacement field  that 
satisfies the differential equation in Eq. (4), the boundary condition in Eq. (6), and periodic conditions on  at infinity. 

3 THE HOMOGENIZATION PROCEDURE 

In this section, we review basic aspects of the AHM, which are used to obtain a closed-form expression for the 
effective elastic modulus  of the elastic medium with infinite dimensions. Further details can be found in Aguiar et al. 

(2013). This expression is used in Section 5 for comparison purposes with numerical approximations of obtained for 
a medium with finite dimensions. 

Let  be a small geometric parameter defined as the ratio between a characteristic length of the cell, such as the 
length of a side of the cell, and a characteristic length of the region occupied by the two-phase composite. 

For a refined microstructure,  and we employ a two-scale expansion method to expand the displacement 
field as a power series of  in the form 
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  (7) 

in which  is a local variable depicted in Fig. 1.b, as opposed to the global variable ,  are twice-

differentiable functions of  and represents the displacement of a homogenized body. Moreover, 
are twice-differentiable functions of both  and  are highly oscillating, and represent correction terms to the zeroth-

order approximation . 

Substituting Eq. (7) into Eq. (2) and noting that  is a function of the local variable  which vanishes inside 
the holes and is constant outside, we obtain 

  (8) 

 where 

  (9) 

. Substituting the expressions in Eq. (8) together with Eq. (9) into Eq. (3), adopting the Einstein summation 
convention, and applying the chain rule yields 

  (10) 

  (11) 

The governing equations in the homogenized medium can be obtained by employing the averaging operation 
 to the equations Eq. (11) and using the periodicity of  in  Thus, it yields 

  (12) 

in which  Next, we substitute the equations Eq. (9) into Eq.(10), yielding 

  (13) 

Recalling from Eq. (7) that  depends on only the variable   and integrating both sides of the 
Eq. (13) with respect to , we proceed using the separation of variables taking 

  (14) 

where  are twice-differentiable functions of  and satisfy periodic conditions on the external boundary 
of  Substituting the expressions in Eq. (14) into Eq. (13) yields 

( ) ( ) ( )(0) (1) 2 (2)( ) , , , u u u uε ε ε= + + +x x x y x y 

( )1 2,y y y= x ( ) , 0,1, 2...nu n =

,x (0)u ( ) , 1, 2,3,...nu n =
x ,y

(0)u

44 55c c= ,y

( ) (0) (1) 2 (2)
3 3 3 3( ) ( ) ( ) ,i i i iσ σ εσ ε σ= + +x x, y x,y x,y 

1,2,i =

(n) (n 1)
( )
3 44

( ) ( )( ) ( ) ,x,y x,yx,y yn
i

i i

u uc
x x

σ
+ ∂ ∂

= + ∂ ∂ 

0,1,2,3,...n =

(0)
3 ( )

0,i

iy
σ∂

=
∂

x,y

(0) (1)
3 3 .

( ) ( )
0i i

i ix y
σ σ∂ ∂

+ =
∂ ∂

x,y x, y

( )... ... y
Y

d Y∫ ( )(1)
ijσ x,y .y

( )(0)
3 0,

xi

ix
σ∂

=
∂

( ) ( )(0) (0)
3 3 .x x,yi iσ σ=

(1) (0)
44

44
( ) ( ) ( )( ) , 1, 2, ( ).x,y y x,yy

i i i i

u c uc i i
y y y x
 ∂ ∂ ∂∂

= − = ∂ ∂ ∂ ∂ 
nosumover

(0)u ,x (0) (0)( ) ( ),x,y xu u=

iy

( )
(0)

(1)
3

( )( ) : ,l
l

uu U
x

∂
=

∂
xx,y y

( )3 , 1, 2,l U l =y y
.Y



Analysis of Boundary Layer Influence on Effective Shear Modulus of 3-1 Longitudinally Porous Elastic 
Solid 

Adair Roberto Aguiar et al. 

Latin American Journal of Solids and Structures, 2020, 17(8 Thematic Section), e313 7/19 

  (15) 

where 

  (16) 

The differential equations in Eq. (15) are used to determinate the Y-periodic functions , below. 
Substituting the expressions in Eq. (14) into Eq. (9), we obtain 

  (17) 

Applying the average operator, defined below Eq. (11), onto Eq. (17), we obtain 

  (18) 

where 

  (19) 

is the general expression of the effective elastic constant of the homogenized medium. 
Now, to calculate the effective properties using Eq. (19), we need to find the functions introduced in 

Eq. (14). These functions are solutions of the equations Eq. (15)-(16). Using the expressions Eq. (15)-(16) and Eq. (17), we 
obtain 

  (20) 

where  is the two-dimensional Laplace operator with respect to the local variable  

Substituting Eq. (8) in Eq. (5) yields and letting we obtain the zeroth-order 
term . On the other hand, substituting expansions (7) into the constitutive relations (2) and substituting 
the resulting expressions together with the general forms (14) into the boundary conditions (5), we obtain 
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For the problem at hand, which is to calculate analytically the effective shear elastic modulus in the longitudinal 
direction, of the elastic solid, only the Local Problem  over the local domain,  illustrated on the right-hand side 
of Fig. 1, will be specified at the outset and solved. This problem consists of finding a function  from 
Eq. (20)-(22), harmonic and of zero average in that satisfies the system of equations 

  (23) 

  (24) 

  (25) 

where  is the two-dimensional Laplacian in   corresponds to the boundary of the hole in the cell,  
and with  being the volume of . Nevertheless, by solving Local Problem , we verify that the 

effective shear elastic modulus  is equal to . 

The solution of Eq. (23)-Eq. (25) is sought in the class of doubly periodic harmonic functions, , which depends 
on the complex variable , in the form of a series with undetermined real coefficients , given by 

  (26) 

where  is the angle of the unit cell, which is  for the hexagonal cell, and  and are, respectively, the 

quasi-periodic Weierstrass zeta function and its kth derivatives of periods  and . Observe from Eq. (23)-
Eq. (25) that the local solution is not dependent of the physical properties of the material; it depends on the geometry 
and the arrangement of the holes. 

Once the local problem is solved, the effective modulus is given by 

  (27) 

where  is the shear modulus of the solid part of the elastic medium and it can be shown (Bravo-Castillero et al., 2009) 
that 

  (28) 

where  is the solution of the infinite system 

  (29) 

where  is the Kronecker delta and 
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The star, , in the summation sign indicates that the double sum excludes . For the hexagonal array of 
holes considered in this work, the series and  are not null if  for . The solution of the 
infinite system in Eq. (29) is given by 

  (30) 

in which  and we recall from above that for a hexagonal cell. Also, for the case of the distribution 
of hexagonal cells considered in this work, 

 

are vectors and matrices of infinite dimensions and 

f  

Upon substituting Eq. (30) in Eq. (28) and the resulting expression in Eq. (26), we obtain the analytical expression 

  (31) 

where 

  (32) 

4 COMPUTATIONAL METHOD 

Let  be a rectangular region containing a part of the periodic distribution of hexagonal unit cells considered in 
Section 2 and let  be a thin layer of thickness  surrounding , as illustrated by the blue frame in Fig. 2. The layer 
has the same material properties of the solid part occupying . The whole region  has dimensions . Let 
also  be the whole region excluding the holes, in analogy to the region  of Section 2. The region  is occupied 
by the same homogeneous, isotropic, and linearly elastic material considered in Section 3. On the external boundary of 
the sample, we impose zero displacement on the left-hand side, , zero tractions on the lower, , and upper, 

, sides, and displacement  on the right-hand side, , which has magnitude  and is applied normal to the 
- plane. Also,  is the outward normal vector to the external boundary. 

 
Figure 2 Cross section of the cylindrical sample together with boundary conditions and the unit cell of hexagonal shape. 
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To solve numerically the equilibrium problem described at the end of in Section 2 in the domain , we observe 
that this problem is analogous to a linear steady state heat conduction problem, which consists of finding the 
temperature field  that satisfies 

  (33) 

  (34) 

  (35) 

where and  are, respectively, the Laplacian and the gradient operators defined in ,  is the union of all 

the contours of the holes, and  is the external boundary of . We use the finite element commercial package 
COMSOL 4.4® to obtain approximate solutions of Eq. (33)-Eq. (35). The temperature field is approximated by second-
order triangular Lagrange elements using free mesh generation automatic triangulation, and a direct finite element 
solver. 

Once an approximate solution of the thermal problem is obtained for a given discretization, we associate the 
temperature  with the displacement  and the conductivity  with the elastic modulus . The effective elastic 

modulus  can then be determined from the expression 

  (36) 

where  is the heat flux on . 

In order to investigate the influence of both the dimensions of the domain and the number of holes on the 
convergence of the numerical solutions obtained via FEM to analytical solutions obtained via AHM, we create two 
sequences of discretized domains. In the first sequence we vary the dimensions of the domain and the number of holes 
and keep fixed the thickness  of the layer represented by the blue frame in Fig. 2. This approach we call Fixed Layer 
Sequence (FLS). This approach is based on a similar approach used by Hollister and Kikuchi (1992), who have fixed the 
dimensions of a cell, understood as the basic repeating unit of a periodic material structure, and piled them up to build 
samples. The authors compare results obtained from a homogenization theory to results obtained from a finite element 
implementation of standard mechanics of materials approaches for the analysis of periodic porous composites. The 
authors analyze two-dimensional cellular structures with solid volume fractions of 30%, 50%, 70%, and 90%. For the 
standard mechanics approach, RVEs containing 1, 4, 9, 16, and 25 cells were analyzed for each solid volume fraction. In 
the second sequence we keep the dimensions of the domain fixed and vary both the number of holes and the thickness 

. We call this approach Fixed Domain Sequence (FDS). We have not found a similar approach in the literature. 
In Figs. 3 and 4 we show computational domains belonging to FLS and FDS, respectively. To construct Fig. 3, first, 

observe from the right-hand side of Fig. 2 that the unit cell of hexagonal shape having area of 10-4 m2 yields h = 0.0062 
m. We then consider both a volume fraction of the holes  and a layer thickness a = h/2 = 0.0031 m. A sample is 
then constructed by repeating this unit cell. In this work we vary the dimensions  of  in Fig. 2 according to the 

cases (a) , (b) , (c) , (d) . In Fig. 4 the 

dimensions of  are fixed and given by , the layer thickness is , the volume fraction of 
the holes is , and we vary the dimension  of the hexagon according to the cases (a) h = L/4, (b) h = L/8, (c) 
h = L/16, (d) h = L/32. Because of the way the samples were constructed, which reflects limitations experienced during 
the generation of the geometry, the computational domain  has a rectangular shape in the FLS approach and a square 
shape in the FDS approach. Below, we show computational results indicating that the shape of the geometry of  has 
no influence on the convergence analysis. 
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Figure 3 Cross sections of the cylindrical holes according to the FLS approach for , , and  with values in (a)

, (b) , (c) , (d) . 

 
Figure 4. Cross sections of the cylindrical holes according to the FDS approach for , , , and  

with value in (a) h = L/4, (b) h = L/8, (c) h = L/16, (d) h = L/32. 

In Section 5 we present results for the effective modulus  obtained from these discretizations. In the first two 
cases, corresponding to the values , we compare our results with results obtained by Swan et al. 
(2003). For these two cases, observe from Fig. 5 that the walls of the holes do not intersect the boundary layer . 

Intersections occur for  near . The case of  is then introduced as an intermediate case to show these 
intersections. Finally,  represents the limit case where the walls of the holes are nearly touching each other. 
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Figure 5 FEM discretizations of the domain  on the left side and a zoom in of the top left side of these discretizations on the right 

side. (a) and (b) , (c) and (d) . 

 
Figure 6 FEM discretizations of the domain  on the left side and a zoom in of the top left side of these discretizations on the right 

side. (a) and (b) , (c) and (d) . 
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5 RESULTS AND DISCUSSION 

Here, we present and discuss some analytical and computational results concerning the determination of the 
effective elastic modulus . Specifically, we use the FDS and FLS approaches discussed in Section 4 to investigate 
convergence of computational results obtained via FEM to analytical results obtained via AHM. For this, we consider 

 as the elastic modulus of the solid occupying either the region , which has infinite dimensions, or , 
which has finite dimensions. 

First, we use the FDS approach, with fixed dimensions of  given by  and fixed layer thickness 
given by , and consider a sequence of decreasing values of the hexagon dimension  in the set 

 Except for h = L/2, the other values of  correspond to the cross sections in Fig. 4. In Fig. 7 

we show graphs of the effective modulus  versus the void volume  for this sequence. In the figures below, the label 

 stands for a Finite element result obtained with a layer thickness  having +1 significant digits and using the FDS 
approach. Thus, F3# in Fig. 7 means that we have used the FDS approach together with . Recall from Section 
4 that these graphs were obtained via FEM together with Eq. (36). We also show a curve obtained via AHM by using 
Eq. (31) together with Eq. (32). Note that the curves obtained via FEM converge non monotonically to the curve obtained 
by AHM as , even at a high void volume fraction . These results show the fact that the numerical result for this 
constant is influenced by the decreasing values of the hexagon side dimension  in the samples. This convergence is 
expected from the AHM theory summarized in Section 3, according to which the displacement field is expanded in power 
series of the small parameter  in Eq. (7), which, here, can be taken as either  or . 

 

Figure 7 Effective elastic modulus  versus void volume fraction using the FDS approach depicted in Fig. 4. 

Next, we compare the best numerical curve presented in the Fig. 7, corresponding to , with the curve 
obtained via AHM and the best curve by using FLS approach, corresponding to  obtained by Aguiar et al. (2018). In 
the figures below, the label , without the superscript #, stands for a Finite element result obtained with the FLS 
approach together with the ith cross section in Fig. 3. Thus, F4 means that the cross section (d) in Fig. 3 was used. For 
this case, the authors considered elastic samples with rectangular cross sections having the fixed dimensions 

 and the thickness of the boundary layer . This figure shows that for a thin 
boundary layer  fixed we obtain good agreement with the analytical solution, obtained via AHM, for two independent 
methods. 
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Thus, in Fig. 8 we show again the curves obtained via AHM and via FEM with . These curves were obtained 
numerically via FEM by using two independent methods, the FDS and FLS approaches, and compared with that one 
obtained analytically by AHM. Observe from this figure that all curves are very close to each other. This result allows us 
to choose  as a representative parameter of number of holes in a fixed domain and below we will vary the 
boundary layer thickness  

 

Figure 8 Effective elastic modulus  versus void volume fraction  using results of Fig. 2 to compare with the corresponding 
curve  from Aguiar et al. (2018). 

Next, we compare results obtained from both approaches FDS and FLS. In the FDS approach, we still take 
, but hold the side of the hexagon fixed at and consider a sequence of decreasing values of 

the layer thickness  in the set . For the FLS approach, we consider the data and the 

corresponding discretizations shown in Fig. 3. In Fig. 9 we show graphs of the effective modulus versus the void 
volume  for both sequences. In Fig. 9(a) we consider the whole interval  and in Fig. 9(b) we show a zoom in of the 

graphs for the interval . Again, these graphs were obtained via FEM together with Eq. (36). Also, the graphs 
obtained from the FLS approach were originally obtained by Aguiar et al. (2018) and are reproduced here for comparison 
purposes. 

Observe from Fig. 9(a) that the numerical results obtained from the FDS approach, which are represented by 

, converge to limit values that are close to the analytical results obtained from AHM as  decreases. In the 
case of the FLS approach, there is convergence to the analytical results, which means that the bigger the rectangular 
cross sectional area the closer the numerical solution is to the analytical solution. This convergence behavior is also 
expected from the AHM theory, because the parameter  in Eq. (7), which, again, can be taken as either  or , 
decreases as both  and increase for a fixed . In particular, good convergence is observed at all values of void 
volume fraction shown in Fig. 9 (b). In addition, near the limit point where the walls of the holes touch each other, which 
we recall from Section 4 is approximately given by  and corresponds to the cases (c) and (d) of Fig. 6, no 
convergence was obtained. 

In Fig. 10 we show magnifications of the upper left corners of the FEM discretizations of  having void volume 
fraction  in the case of the FDS approach. The figure shows how the mesh is modified as the layer thickness  
decreases, with values in the set . 
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Figure 9 Effective elastic modulus  versus void volume fraction  considering both approaches FDS ( ) and FLS ( ) and the 

AHM solution. (a) , (b) . 

 
Figure 10 Magnification of the upper left regions of FEM discretizations of  for  considering the FDS approach: (a) 

, (b) , (c) , (d) . 
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In addition to the calculation of the effective modulus  for solids containing a hexagonal array of holes, we also 
calculated the effective properties of solids containing a square array of holes. In Fig. 11 we show graphs of  versus 

 obtained from AHM and both FLS and FDS approaches using square (SQ) and hexagonal (HEX) arrays of holes. The 
labels SQ AHM and HEX AHM correspond to AHM results obtained with square and hexagonal arrays of holes, 
respectively. Analogous correspondence holds between the labels containing F4 and F4# and the FLS and FDS results, 
respectively. Fig. 11(a) refers to the whole interval (0,1) and Fig. 11(b) refers to the interval (0,0.04). These figures show 
that all the curves are indistinguishable for volume fractions up to 0.5. We then see from these figures that both arrays 
of holes yield the same values of . 

 

Figure 11 Curves of effective elastic modulus  versus void volume fraction . Square (SQ), and hexagonal (HEX) lattices 

together with the FLS (F4) and the FDS (F4#) approaches. (a)  in (0,1), (b) in (0.005, 0.04). 

Next, we compare our results with the results obtained by Swan et al. (2003) for the corresponding effective shear 
elastic constant using the same properties given by these authors. In that work, however, the holes are centered in a 
square unit cell (instead of the hexagonal cell). In Table 1 we present the void volume fraction , which has the values 

 and , the effective shear elastic coefficient obtained by Swan et al. (2003) from the fully drained case, the 
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coefficient  obtained via both AHM and FEM with the FLS approach considered in this work, and percentage errors 
between their effective coefficients and  obtained via both AHM and FEM. Observe from their Table 2 together with 
their Table 1 that  is associated with Young’s modulus  and Poisson’s ratio and that 

 is associated with  and . The fully drained case corresponds to the response of bone in 
which the fluid carries no excess pressures from applied loadings. Observe from Table 1 a very good agreement between 
our calculations and theirs for the case  and a larger discrepancy in the case , which is being 
investigated. 

Table 1 calculated effective constant and relative error between results obtained via AHM and FEM (FLS approach) and results 
presented by Swan et al. (2003) for the fully drained case. 

 

(GPa) 
Swan et al. (2003) 

Fully drained 

(GPa) 
AHM 

(GPa) 
FEM 

Relative Error (%) 
AHM versus 

Swan et al. (2003) 

Relative Error (%) 
FEM versus 

Swan et al. (2003) 

0.01 3.5587 3.8784 3.8776 8.9836 8.9613 
0.04 4.0161 4.0134 4.0098 0.0672 0.1572 

In this paper we have introduced the FDS method, which is a reliable and computationally efficient method to build 
samples for both the numerical prediction of the response of elastic solids containing empty holes and the evaluation of 
the influence of the boundaries on the determination of their material properties. The research was focused on the 
calculation of the effective modulus  in linear elastic solids with two scales only. Our numerical method may, however, 
be further developed to consider multiscale and hierarchical structures similar to the hierarchical structure studied by 
Ramírez-Torres et al (2018). These authors investigate the effective properties of hierarchical composites at each 
structural level and apply the results of this investigation in the analysis of linear elastic composites with hierarchical 
structure, where the calculated effective properties at the lower structural level become the known elastic properties 
for the problems arising at the higher level. In addition to the investigation of multiscale and hierarchical structures, we 
are also interested in using ideas based on the FLS and FDS methods to evaluate the influence of the boundary layer in 
3D printed samples for laboratory testing. The goal is to compare the effective constants of these porous solids with the 
corresponding constants obtained analytically via AHM and numerically via FEM. 

6 CONCLUSION 

In this paper, we have shown some results concerning the analytical and numerical evaluations of the effective 
modulus  of linear elastic solids having a periodic distribution of voids arranged in hexagonal cells. When the side of 
the hexagon with length decreases and the boundary layer thickness  is fixed, or, when  decreases and is fixed, 
we observe convergence of  obtained computationally via Eq. (36) to the corresponding modulus obtained analytically 
via both Eq. (31) and Eq. (32). Another result of interest is that both arrangements, hexagonal and square, yield effective 
elastic modulus  that are very close to each other up to  for both  and tending to zero. This 
investigation represents an ongoing effort to obtain the effective moduli of elastic solids using analytical and 
computational methods. Future work includes obtaining these moduli experimentally so that we can compare them with 
both the analytical and computational predictions. 
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