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Abstract

This paper addresses the use of higher order elements in 2D boundary element analysis of
slender components subjected to bending. Firstly, the technology associated to an efficient
use of high order boundary element is discussed. Subsequently, effective schemes for outside
and inside integration of the kernel tensor functions over these macro elements, involving
element subdivision, are provided, so that they can be efficiently employed to solve bending
problems involving high order variation of displacements. Through numerical experiments,
it is finally shown that the BE method can be successfully applied to analyze slender struc-
tures in bending with higher order elements, if specialized techniques are employed and the
structural behavior is considered a priori, so that appropriate elements can be chosen to
solve a particular problem.
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1 Introduction

The use of high order elements in boundary element analysis of elasticity problems is usually
restricted to a few researchers working with numerical methods. Perhaps, this is due to the fact
that specialized tools like specific programs or particular routines to deal with these elements, in
addition to the difficulties associated with the traditional implementation of the method, many
times do not reach the practicing engineers and the graduate students as it should.

On the other hand, available codes usually restrict the annalist to the use of linear and
quadratic elements. These elements, for their very nature, are not away appropriated to the
stress analysis of structures in bending, especially those involving slender components and com-
plex displacements fields. To accomplish accuracy in these cases, higher order elements are
required. Herein, by higher order elements, or simply HO elements, one will presume boundary
elements with an unlimited number of nodes.

However, when high order elements are concerned, four main flexibility premises need to
be satisfied while implementing the method. Firstly, the implementation will have to permit
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boundary element meshes to be organized with elements of different order. Secondly, no restric-
tions regarding the order of the element to be used must exist. In third place, the nodes of the
element won’t have to be equally spaced, so that a single HO element may be used, for example,
to graduate the mesh in a given position of interest. Finally, an efficient scheme of numerical
integration of the kernel tensor functions over the elements must be considered, so that accuracy
of the result can be attained.

To fulfill these principles, in what follows, specialized procedures to deal with the differen-
tial geometry of the element are referred to and specific routines to deal with these elements
efficiently, are provided. Subsequently, efficient schemes to treat inside and outside integration
of the kernel tensor function are presented and discussed.

Finally, two numerical studies of slender structures subjected to bending were carried out.
Through these studies it is shown that accuracy of results can be accomplished if the displace-
ments responses are considered a priori, so that the appropriate element can be adequately
chosen to solve a given problem. In this paper, only isoparametric elements will be considered,
and for conciseness, only elasticity problems are addressed.

2 Interpolation with HO elements

In order to satisfy the above mentioned flexibility with HO elements, a versatile way to deal
with the differential geometry of two-dimensional boundary elements, in its generalized form,
will have to be considered, so that the traditional sets of equations for the shape functions
and their derivatives will give place to more generalist procedures. Thus, the shape functions
N i of a HO element will be computed by expanding the general expression for the Lagrange
polynomials [8, 12]:

Ni (ξ) =
k∏

j=1,j 6=i

ξ − ξj

ξi − ξj

(1)

where Ni(ξ) is the value of the shape function associated with node i of the element, ξi is the
value of the intrinsic or normalized coordinate at this node and ξj are the values of the intrinsic
coordinates at other nodes. The symbols

∏
stand for the product operator.

Analogously, the shape functions derivatives for an element with k nodes, will be given by:
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where ∂Ni (ξ)/ ∂ξ is the value of the shape function derivative associated with node i of the
element, ξi is the value of the intrinsic or normalized coordinate ξ at this node and ξj
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are the values of the intrinsic coordinates at other nodes. The symbol Σ stands for the
summation operators.

Two subroutines to deal with equation (1) and (2) were presented by the author in
a companion paper [6], however, to deal with elements formed by equally spaced nodes.
To deal with elements having its nodes placed in a graduated fashion, two complete
subroutines to compute the shape functions and their derivatives, written in FORTRAN95
language, are presented in Appendix A and B of this paper.

The main entries to be used with these routines are the extremes a and b, defining
the intrinsic space (e.g. -1 and 1, 0 and 1, etc), the number of nodes in the element, k,
and Rt, the ratio between two adjacent nodes of the element. If equally spaced nodes are
to be considered, the parameter Rt will be unit.

3 Integration of the kernel tensor functions

As a very central part of the boundary element method, the integration process of the
kernel tensor functions, particularly when HO elements are employed, will have to ensure
a certain consistency with regard to the length of each HO element and the number of
Gauss points employed in the quadrature processes. For this purpose, in what follows
equivalence between the integration of these functions along a single quadratic element
and along all the quadratic elements that could be formed using the nodes of the HO
element, will be evoked as a first approach.

3.1 Outside integration

It occurs when the source point of the fundamental solution doesn’t coincide with one
of the nodes of the element that is being integrated, so that none of the kernel tensor
functions for displacements will presents singular behavior. Consequently, also when
solving the internal point responses, full outside integration are considered. Within these
cases, if a standard Gauss quadrature that integrates the whole intrinsic space without
special considerations is employed, the contribution of a given boundary element, Ue, can
be written in a general form, for a given load point P, as:

U e
KL mj ≈

ng∑
n=1

Nm (xn) UKL (Pj, xn) J (xn) ωn (3)

where xn and ωn are the Gauss Points coordinates and their corresponding weighting,
Nm(xn) is the shape function associated with node m, J(xn), the Jacobian of the trans-
formation, Pj is the unit load applied at j direction and ng, the number of Gauss points
used.
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Note that in the above equation the directions of the unit load and the displacements,
as well as node number and collocation point order have to be observed for each element.

To consider all the collocation points, ncp, in the model, as well as the number of
degrees of freedom per node, d, equation (3) can be rewritten in an expanded form:

U e
kl ≈

ncp∑
r=1

ng∑
n=1

k∑
m=1

d∑
j=1

Nm

(
x(n)

)
Ukl

(
Pj (r) , x(n)

)
J

(
x(n)

)
ωn J (4)

On the other hand, the performance expected while using higher order elements will
require a reasonable equilibrium between the number of elements used in the discretization
process and the order of the quadrature employed. For example, cubic elements can be
used instead of quadratic ones, to cover larger spaces with better performance, without
necessarily increasing the number of unknowns in the problem. This can be accomplished
just regrouping adjacent nodes in order to form higher order elements.

However, in many circumstances, higher order quadratures will be required in conjunc-
tion, since not only the response, but also the geometrical quantities need to be computed
accurately.

To circumvent the inconvenient of using elevated quadrature orders, the integration
process can be worked out in the inverse sense, i. e., by reducing the integration space,
within the so called element subdivision process.

An attractive way to implement this technique is to break the element with k nodes,
into k − 1 parts, so that each subinterval of integration, Si, will be the space confined
between two consecutive nodes. Figure 1 shows a partial BE mesh of an arbitrary plane
object, where elements of different orders have been employed in the discretization process.
In the same figure, element E6 is also shown on the intrinsic space in (a) and subintervals
of integration, Si, for this element in (b). For clarity, only the outer boundary was meshed.

To apply the above mentioned strategy, equation (3) and (4) can be rewritten to
consider the subdivision process, as follows:

U e
kl ≈
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r=1

ng∑
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(
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(
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)
ωn JT (5)

where xT (n) are the transformed Gauss coordinates to be used in the integration process,
computed with:

xT (n) =
(ξi+1 + ξi) + (ξi+1 − ξi) xn

2
(6)

The Jacobian of the primary transformation occurring from the intrinsic space to the
subspace of the confined interval will be given by:

JT =
∂xT (n)

∂x
=

ξi+1 − ξi

2
(7)
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Figure 1: External boundary of a slender component discretized with different HO elements

This rule equally applies to computing the solution for the tractions:
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The Jacobian, J, that makes the transformation between the intrinsic space ξ, where the
element is defined, and the boundary path, Γ, is calculated in the usual form:

J =
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(9)

Note that, to apply equation (5), (8) and (9), equations (1) and (2) will be used in
conjunction.

It is interesting to observe that the transformation given by equation (6) usually de-
creases the numerical value of the coordinates, with more or less significance, what will
depend on the number of sub interval employed in the process.

As a consequence and considering also the high number of standard operation involved
in the quadrature process, the numerical results may suffer some loss in accuracy, what
will be particularly true if single precision arithmetic is employed.

To circumvent this, subroutines dealing with equation (1) and (2) can be directly
used to perform the transformations given by equation (6) in a more accurate way, just
performing a single operation on the limits a and b, defining the intrinsic space of the
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element, so that the intrinsic space is increased. For an element with k nodes to be
subdivided into k − 1 sub elements, the extremes of the element, to integrate sub element
SEi, will be set to (Fig. 1):

ai = −SEi and bi = k + ai (10)

The variable SEi found in equation (10), is the number of the sub element that is being
integrated. The above expedient will provide the amplification of the intrinsic space by a
factor of k/2.

3.2 Outside integration rule

In general, the kernel tensor functions are integrated using standard Gauss quadrature.
To achieve accuracy in the integration process, the error inherent to the numerical ap-
proximation will have to be restricted to some constant level.

Consequently, the number of sample points to be used is an important variable to be
defined along the process. An attractive and simple way to define it is considering the
ratio of the distance r that separates the source point from the element that is being
integrated, to the element length, L [2].

In this case, the maximum error in the integration process is expected to occur when
the distance from the source point to the nearest node of the element approaches zero,
what suggests the use of higher order quadrature. On the other hand, the minimum errors
will take place far away from the element, obviously requiring a smaller number of sample
points.

An integration rule for outside integration, varying from 4 to 36 points and based on
both, the principle outlined above and on the formula for the error of the Gauss-Legendre
quadrature process [2], has been implemented in reference [5]. This rule makes use of
an expression that relates the number of sample points to be used, ngp, with regard to
the minimum relative distance, r/L, separating the source point and the nearest node of
the element being integrated and an expected error ε (Fig. 1). Based on the Reciprocal
Logarithm model, this rule is of the form:

ngp =
1

a + b. ln
(

r
L

) (11)

with coefficients:
a = 0.12540225 and b = 0.090458605 ( for ε < 1.0−9 and 3.95 < r/L < 0.3398)
or
a = 0.18238562 and b = 0.13156348. ( for ε < 1.0−6 and 1.67 < r/L < 0.3088)
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3.3 Inside Integration

This particular case, considered when the source point of the fundamental solution co-
incides with one of the nodes of the element being integrated, takes into account the
singularity of order ln(1/r) existing in the displacements kernels Ukk. In this case, the
contribution Ukk of a given element to the global influence matrix can be written in a
general form as:

UE
KK =

(3− 4ν)

8πG (1− ν)

∫

Γ

ln

(
1

r

)
dΓ+

1

8πG (1− ν)

∫

Γ

(rK

r

)2

dΓ (12)

It isn’t totally evident, but the first term on the right-hand side of equation (12) must
be separated into singular and non singular parts, due to the fact that intrinsic spaces
of different natures involved, the first one, ξ, related to the boundary element definition
(usually running from -1 to 1), and the second, η, related to the logarithmic integration
space (running from 0 to 1), are to be considered simultaneously.

This separation, which implicates in several spatial transformations to account for the
position of the source point inside the element, has been considered by other [1–3].

Alternative methodologies, as the self-adaptive one proposed by Telles [9], that makes
use of standard Gauss-Legendre quadrature within a cubic transformation, are quite pop-
ular. However, for most two-dimensional elasticity applications, accuracy is accomplished
(say, to the 4th decimal place), only if quadratures of very high order (of about 36 Gauss
stations) are used.

However, to treat the inside integration process when long elements are to be subdi-
vided, some additional care must be taken, since existing singular quadrature rules many
times permits direct reflections, translations but not scaling [4]. To circumvent this, Lin-
Log quadrature [7] can be considered directly on the boundary, i.e., in terms of element
length, L, by manipulating the intrinsic space where the element is defined. To accomplish
this, the flexibility given by subroutines presented in this paper is used.

To better explain the proposed methodology, a simple example where the source point
of the fundamental solution is placed on node 3 of the 6-noded HO element E1 of Fig. 1,
will be considered. In this case, the subintervals of integration will be those confined
between two consecutive nodes, as previously. From the definition of the Jacobian in the
2D space, the element length is preliminarily computed, using a minimum quadrature
rule, as follows:

L =

npg∑
i=1

J (ξ)iωi (13)

where npg in the number of Gauss points with coordinates and weights (ξi ;ωi). To
place the integration region in different situations, with regard to the position of the
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source point, a two-step analysis where the element is integrated by both sides of the
node can be performed, as shown in Fig. 2.

 
 

Figure 2: Inside logarithmic integration of a six noded HO element – Source point at node 3

To apply this concept to elements of any order, a simple rule to define the extremes
a and b of the intrinsic space can be written in terms of L, to integrate the left and the
right parts of the element, as follows:

By the left: (for n>1)

a = L.

(
n− 1

k − 1

)
and b = −L.

(
k − n

k − 1

)
(14)

By the right: (for n<k)

a = −L.

(
n− 1

k − 1

)
and b = L.

(
k − n

k − 1

)
(15)

In the above equations, k is the number of nodes of the element, n is the node where the
source point is considered and L is the element length. The integration of the subinterval,
whose limits are c and d, is performed using equation (16) and (17):
∫ d

c

ln

(
1

r

)

η

(
∂ξ

∂η

)

c,d

Jdη = −
∫ d

c

ln (r)η

(
∂ξ

∂η

)

c,d

Jdη ≈ −
np∑
i=1

(
ln (ξi)ηi

ωi

(
∂ξ

∂η

)

c,d

J

)
,

(16)
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ξi = ηi (d− c) + c and
∂ξ

∂η
= d− c. (17)

In the above, ηi and ωi are the coordinates and weights of the Lin-Log quadrature,
np is the number of points used in integration process and J, the Jacobian that makes
the transformation from the boundary path, Γ, to the intrinsic coordinate. The shape
functions and their derivatives, needed to calculate the nodal influences are computed
using equation (1) and (2) that remains valid in this case. Note that the above strategy
can be applied to internally integrate elements of any order.

In general, the variable r appearing in equation (16) needs to be written in terms of
η, so that that the curvature of the element (especially of long elements) can be taken
into account. This can be accomplished through a simple mapping of the coordinate ηi

on the actual element, followed by a geometrical computation of r.
However, as the integration process in being performed over subintervals of the ele-

ment, the eventual error associated with this detail would be of secondary importance,
even for curved elements

Note that a one point Lin-Log rule, integrates exactly the function ln (1/x) on the
interval running from 0 to 1. To integrate the kernels of equation (12), a four point
rules showed to be precise enough, within numerical experiments carried out with curved
elements.

Table 1 gives the coordinates and weights computed for a six-point rule using Lin Log
quadrature. If higher order quadratures are desired, other coordinates and weights can
be deduced based on the moments ln(x),1; x ln(x), x; x2.ln(x), x2, etc.

Table 1: Coordinates and weights for a six-point rule – Lin Log quadrature
xi wi

0.003025802137546 0.011351338817273
0.040978254155951 0.075241069954917
0.170863295526877 0.188790041615416
0.413255708844793 0.285820721827227
0.709095146790628 0.284486427891408
0.938239590377167 0.154310399893758

4 Numerical experiments

To better evaluate the performance of HO elements of different order, two different prob-
lems involving slender structures have been analyzed using the program ELASCON [5],
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developed by the author. Based on the methodology previously outlined, this program
can be applied to analyze meshes of mixed elements of any order.

First problem
Within this study, a circular ring subjected to bending is considered. Due to symmetry,

only one quarter of the structure has been modeled. To numerically analyze the problem,
a fixed number of 32 functional nodes have been used to develop four different BE meshes.
To represent the main edges (internal and external), 13 nodes forming elements of different
orders were employed for a plane stress elasticity solution.

On the other hand, two quadratic elements were used in each of the symmetry edges
(in all cases). In this fashion, the different meshes were prepared just by regrouping
nodes. Excluding the quadratic elements used on the symmetry edges, the four meshes
were formed with six quadratic elements, four cubic elements, three 5-noded elements and
two 7-noded elements per edge, respectively.

For completeness, 11 points, numbered from 2 to 12, were also placed inside the solu-
tion domain, along the structural axis, in alignment with the boundary nodes. Physical
and geometrical data for the bending problem, as well as the BE meshes with same number
of degrees of freedom are presented in Figure 3.

In addition, a study using only quadratic elements was performed. Within this study,
the number of elements representing the main edges was successively increased, in order
to check for convergence.

Results
The values of vertical displacement for point A (Fig. 3), obtained with the different

meshes are depicted in Fig. 4. For comparison, this figure also shows the theoretical value
(including the effects of compression and shear), given by beam theory [10]. The results
of the convergence study performed exclusively with quadratic elements, as well as the
predicted value, are shown in Fig. 5.

The normal (hoop) stress distributions, numerically and analytically computed at the
outer edge nodes of the model, are shown in Fig. 6.

Finally, Fig. 7 shows the radial displacements determined from internal points results.
This figure also depicts the predicted values of these displacements, computed along the
structural axis.
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Figure 3: Circular ring subjected to bending – Physical model, BE discretization and material
data.

Second problem
The main objective of this analysis was to check, in a qualitative sense, the performance

of the different elements in situations where high gradients of the responses are present.
To this end, a frame with built-in ends has been considered. It was subjected to a
horizontal loading uniformly distributed with respect to the vertical axis, as examined by
Timoshenko and Young [11], within a plane stress elasticity solution.

Figure 8 brings the physical and geometrical data for the bending problem as well as
a general boundary element mesh composed of 92 functional nodes.

As in the previous problem, three different BE meshes were constructed using the same
number of nodes, in order to keep the number of unknowns unchanged. The different
meshes were formed by 42 quadratic elements, 28 cubic elements and 21 quartic elements,
respectively.

To represent each of the built-in ends, 2 extra quadratic elements have been employed
in all cases. Also within this analysis, a study using only quadratic elements has been
performed in order to check for convergence.
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Figure 4: Displacements at point A, computed with different HO elements and same number of
degrees of freedom

Results
The results of the first part of the analysis are graphically presented in Fig. 9, 10

and 11. These figures depict the deformed shape and the distribution of normal stresses,
σn, computed at the functional nodes placed on the inner and outer boundaries of the
structure, respectively.

The results of the convergence study using quadratic elements only are presented in
Fig. 12 and 13. In this case, the values of normal stresses, σn, are depicted relatively to
the nodal positions, with regard to the point “H” shown in Fig. 8.

The reference values adopted for comparison were those computed within the first part
of this study, obtained with the quartic elements.

5 Analysis of results

First problem
In this case, all elements with order higher than quadratic showed the ability to deal

satisfactorily where quadratic elements presented bad results. This demonstrates that
the parabolic nature of the quadratic element is not sufficient to satisfactorily describe
the variation of the displacements in the bending problem, even within a much finer
discretization, as pointed out in the convergence study.

The best result for this displacement was accomplished with the 7-noded element,
whereas the cubic and the quartic elements returned moderately higher results, if com-
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 Figure 5: Displacement responses at point A, computed with meshes (gradually refined) of

quadratic boundary elements.

pared with the predicted value given by beam theory. Similarly, the responses computed
for the normal (hoop) stress, showed to be in good agreement with the predicted values,
even considering that they had been obtained from coarse meshes, in terms of number of
elements. Also in this case, the performance of the quadratic elements was very poor.

It is interesting to note that the small divergences occurring at the extremes of the
predicted and computed curves, would be higher if a finer mesh of HO elements where
used. This is due to the fact that the theory applied to predict this response, even
accounting for compression and shear, is based on small deflections hypothesis, which in
turn, does not perfectly apply to the slender structure analyzed herein.

In general, the internal results are very accurate in BEA, since the governing differ-
ential equations are satisfied in the solution domain. In the present case, however, the
displacement field is described by a composition of sinoidal functions and cubic powers
(related to position and curvature, respectively), so that the results for the radial dis-
placements obtained with the most populous mesh (in terms of number of elements),
demonstrated from a different angle the inadequacy of the quadratic elements to solve
problems involving relatively high gradients of the responses. On the other hand, the
7-noded element, for being capable to interpolate with accuracy the high variations of the
displacements at the extremes of the structure, presented better results (Fig. 4 and 7).

Second problem
The results obtained from this analysis confirmed those found in the previous one,

regarding the performance of quadratic elements. From Fig. 10 and 11, it is possible to
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Figure 6: Nodal normal (hoop) stress distribution – outer edge.

note that the responses computed with these elements presented a highlighted fluctuation
in regions where the responses present rapid variation.

It is interesting to observe that responses of this kind were obtained in both, straight
and curved regions, what some how confirms that the low performance of the quadratic
elements, comparatively to cubic and quartic elements, at least in this case is not due only
to an eventual inability presented by the element to accurately interpolate the geometry,
as intuition suggests.

In this regard, a counter example is given in Fig. 11 and 12. Within the regions
enclosed by cycles “1” in these figures, which are placed on the curved boundary, the
structural responses are relatively smooth so that, even in the case were very few quadratic
elements have been used, the responses computed were more stable and accurate. On the
other hand, within the region enclosed by cycle “2” in Fig. 11 (and 13), which is placed
on a straight boundary, again the responses computed with quadratic elements become
unstable and less accurate, since the displacement field is more complicated in this region
(Fig. 9).

Also, the convergence study showed that a mesh of quadratic elements, about three
times greater (in terms of degrees of freedom), was necessary to obtain satisfactory results
in these regions (Fig. 13).

In fact, several numerical experiments carried out by the author [6] showed that, as the
order of the variation of the displacements is increased (for example, when the structure
is subjected to distributed loads of higher order, as the linear and the quadratic ones), the
element whose order matches the expected order of the response, seems to perform better,
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Figure 7: Radial displacements along structural axis computed with internal points results.

 
 
 

 
 

Figure 8: Frame subjected to horizontal load – Actual problem and general BE mesh.

if computational effort and number of degrees of freedom involved are taken into account
simultaneously. In this case, both, a fine first approximation and a faster convergence will
be accomplished.

6 Conclusions

To model the problems presented in this paper, a small number of degrees of freedom
have been deliberately employed, so that the performance of different HO elements could
be checked and compared in different ways. The results obtained in the previous studies
show that the boundary element method is suitable to analyze structures in bending, even
in extreme circumstance where slender components are considered.
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Figure 9: Deformed shape and contour of principal stress σ1 (Pa) - quartic elements.

To this, the order of the element to be used must be compatible with the expected
behavior of the component that is being analyzed. In this regard, a careful choose of the
element order is necessary.

To accomplish this, an adaptive process can be conveniently implemented to check
for convergence using elements of different order, just regrouping adjacent nodes, thus
preserving the number of unknowns in the problem. On the other hand, these elements
will perform adequately if appropriate schemes of integration, as those suggested in this
paper, are primarily considered and implemented.
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Appendices

A Subroutine to compute shape functions values

SUBROUTINE SHAPE_FUNCTION1(a, b, K, Rt, QSI, N)
!-------------------------------------------------------------------------
! To compute the values of the shape functions for a given one-dimensional
! element
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Figure 11: Normal stresses computed at boundary nodes using elements of different order – Outer
boundary

! Written by: Luiz Eduardo T. Ferreira (leferrei@uol.com.br)
! Last modified: 08/30/04
! NOTE: ALL REAL VARIABLES ARE DOUBLE PRECISION
!-------------------------------------------------------------------------

IMPLICIT NONE
! Entries:

REAL(8), INTENT(IN) :: a, b !Lower and upper limits of intrinsic elem.
INTEGER, INTENT(IN) :: K !Number of nodes of element
REAL(8), INTENT(IN) :: Rt !Ratio between two adjacent elements
REAL(8), INTENT(IN) :: QSI !Position in which the S.F are to be evaluated
REAL(8), INTENT(OUT),DIMENSION(K) :: N !Array with results

! Local variables:
REAL(8) :: DELTA_QSI, NUMERATOR, DENOMINADOR, SUMM
REAL(8),DIMENSION(K) :: QSI_N
INTEGER :: I, J

! Process begins here, initialize variables:
I=0; J=0
N = 0.0D0 ! Array to store results \\
QSI_N = 0.0D0 ! Positions of the nodes \\
NUMERATOR = 1.0D0 ! Numerator of equation1 \\
DENOMINATOR = 1.0D0 ! Denominator of equation1 \\

!-------------------
SUMM=0.0D0
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Figure 12: Normal stresses computed at boundary nodes with quadratic elements – Inner bound-
ary

RATIO: &
DO I=0,K-2

SUMM=SUMM+Rt**I
END DO &
RATIO
DELTA_QSI = (b-a)/ SUMM ! Increment for the norm. coordinates
QSI_N(1) =a
QSI_N(2) =a + DELT_QSI
NODES_OF_ELEM: &

DO I=2, K-1
SUMM=0.0D0
ADJ_NODE: &

DO J= 0,I-1
SUMM = SUMM + Rt**(J)

END DO &
ADJ_NODE
QSI_N(I+1) =a + DELTA_QSI * SUMM

END DO &
NODES_OF_ELEM

! Compute shape functions values, Ni, for all the ’K’ nodes of element:
SHAPE_FUN_Ni: &
DO I=1,K

! For all ’J’ positions over the intrinsic element, compute equation1:
PRODUCTORY: &

DO J=1,K
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Figure 13: Normal stresses computed at boundary nodes with quadratic elements – Outer bound-
ary

IF(J==I) CYCLE PRODUCTORY
NUMERATOR = NUMERATOR *(QSI-QSI_N(J))
DENOMINATOR = DENOMINATOR*(QSI_N(I)-QSI{\_}N(J))

END DO &
PRODUCTORY
N(I)=NUMERATOR/DENOMINATOR
NUMERATOR = 1.0D0
DENOMINATOR = 1.0D0

END DO &
SHAPE_FUN_Ni

END SUBROUTINE SHAPE_FUNCTION1

B Subroutine to compute shape function’s derivatives

SUBROUTINE SHAPE_FUNCTION_DERIV1 (a, b, K, Rt, QSI, dN)}
!-------------------------------------------------------------------------
! To compute the values of the deriv. of shape functions for a given
! one-dimensional element
! Written by : Luiz Eduardo T. Ferreira (leferrei@uol.com.br)
! Last modified: 08/30/04
! NOTE: ALL REAL VARIABLES ARE DOUBLE PRECISION
!-------------------------------------------------------------------------
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IMPLICIT NONE
! Entries:

REAL(8), INTENT(IN) :: a, b ! Lower and upper limits of the
! intrinsic elem.

INTEGER, INTENT(IN) :: K ! Number of nodes of element
REAL(8), INTENT(IN) :: Rt ! Ratio between two adjacent elements
REAL(8), INTENT(IN) :: QSI ! Position in which the deriv. is to

! be evaluated
REAL(8), INTENT(OUT), DIMENSION(K) :: dN ! Array with results

! Local variables:
REAL(8) :: DELTA_QSI, DENOMINATOR, SUM1, SUM2, PROD1, PROD2, SUMM
REAL(8),DIMENSION(K) :: QSI_N
INTEGER :: I, J, N

! Process begins here, initialize variables:
I=0; J=0; N=0
dN = 0.0D0; QSI_N = 0.0D0

! Fill the array of the nodal positions:
SUMM=0.0D0
RATIO: &
DO I=0,K-2

SUMM= SUMM + Rt**I
END DO &
RATIO
DELTA_QSI = (b-a)/ SUMM ! Increment for the norm. coordinates
QSI_N(1) = a
QSI_N(2) = a + DELTA_QSI
NODES_OF_ELEM: &

DO I=2, K-1
SUMM=0.0D0
ADJ_NODE: &

DO J= 0,I-1
SUMM = SUMM + Rt**(J)

END DO &
ADJ_NODE
QSI_N(I+1) =a + DELTA_QSI * SUMM

END DO &
NODES_OF_ELEM

! Compute derivatives of shape functions, dNi, for all the ’K’ nodes of element:
D_SHAPE_FUNCTION: &
DO I=1,K
DENOMINATOR = 1.0D0

! For all ’J’ positions on the normalized element, compute first productory:
PRODUCTORY1: &

DO J=1, K
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IF(J==I) CYCLE PRODUCTORY1
DENOMINATOR = DENOMINATOR*(QSI_N(I)-QSI_N(J))

END DO &
PRODUCTORY1

SUM1 =0.0D0; SUM2 =0.0D0
! Compute first summation:

SUMMATION1: &
DO N=I,K-1
PROD1=1.0D0

! Now, the inner productory:
PRODUCTORY2: &

DO J=1,K
IF(J == I.OR.J == N+1) CYCLE PRODUCTORY2
PROD1 = PROD1*(QSI-QSI_N(J))

END DO &
PRODUCTORY2
SUM1=SUM1+PROD1
END DO &

SUMMATION1
! Compute second summation:

SUMMATION2: &
DO N=1, I-1
PROD2=1.0D0

! Now, the inner productory :
PRODUCTORY3: &

DO J=1,K
IF (J == I.OR.J == N) CYCLE PRODUCTORY3
PROD2 = PROD2*(QSI-QSI{\_}N(J))

END DO &
PRODUCTORY3
SUM2=SUM2+PROD2
END DO &

SUMMATION2
! Store the value computed at this node:

dN(I)=(SUM1+SUM2)/DENOMINATOR
END DO &
D_SHAPE_FUNCTION}

!
END SUBROUTINE SHAPE_FUNCTION_DERIV1
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