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ABSTRACT 

Strength degradation of structural materials is an inevitable process, due to deleterious actions such as 
corrosion and fatigue. These phenomena are also typically random, with degradation rates and starting time 
of degradation process largely uncertain. In reinforced concrete structures, corrosion of reinforcing bars 
caused by chloride ions is one of the main pathological manifestations. Past studies on the time-variant 
reliability of reinforced concrete structures subject to corrosion have relied on simplified analytical models 
for estimating the depassivation time. This study contributes with an accurate modelling of chloride diffusion 
through concrete using the boundary element method, which is employed for the first time within a time-
variant reliability framework. Cumulative failure probabilities are evaluated in time by considering random 
depassivation times, random corrosion evolution, and random load processes. The time-variant reliability 
problem is solved using Monte Carlo simulation. An application example is presented, demonstrating the 
capabilities of the proposed framework. 
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1. INTRODUCTION 

The life-time performance of constructed facilities is affected by unavoidable uncertainties in future man-made and 
natural imposed loads, on the strength and strength degradation of materials, on the quality of construction and on the 
employed engineering models. A proper way of modelling the impact of uncertainties in loads and degradation 
mechanisms in the lifetime performance of engineering structures is time-variant reliability analysis. 

The performance of constructed facilities can be affected by strength degradation over time. For reinforced 
concrete structures, in particular, one significant degradation mechanism is corrosion induced by chlorides penetration 
(Comité Euro-Internacional du Béton, 1992; Gonzalez et al., 1995; Cascudo 1997; Val and Melchers, 1997; Val and 
Stewart, 2003; Apostolopoulos and Papadakis, 2008; Suo and Stewart, 2009; Zhang et al., 2010). Several studies show 
that, after depassivation of reinforcement bars due to chloride penetration, structural safety decays sharply (Enright and 
Frangopol, 1998; Weyers, 1998; Vidal et al., 2007; Dang and François, 2013; Pellizzer et al., 2018).Due to the fast strength 
reduction, due to corrosion and after depassivation, the largest part of the structures life corresponds to the 
despassivation time. But this time is also subject to significant uncertainties, due to exposition to random chloride 
concentrations, variations in concrete cover due to workmanship, and variations in diffusive properties of concrete. 
Hence, time-variant reliability analysis is a proper tool to investigate the life-time performance of reinforced concrete 
structures subject to chloride penetration. 

The ingress of chloride ions into concrete is a dynamic and nonlinear process. Several studies present analytical 
formulations to model this phenomenon (Mangat and Molloy, 1994; Vu e Stewart, 2000; Samson et al., 2003; Val et al., 
2009; Audenaert et al. 2010; Guzmán et al., 2011). However, analytical solutions apply to very specific domain 
geometries, and have limitations regarding varying boundary conditions over time. These limitations can be overcome 
by employing numerical solutions. 

In the last years, numerical solutions have been used to address problems like chloride diffusion and reinforcement 
corrosion. The Finite Element Method (FEM) and the eXtended FEM are two approaches already well explored and 
reported in the literature (Pan and Lu, 2012; Xiao et al., 2012; Khelifa, 2013; Duddu, 2014; Yoon and Reis, 2017; Al-
Alaily et al., 2018). Despite the demonstrated accuracy, these methods require a fine discretization of the time and space 
domains, which results in very large number of unknowns and, consequently, very large computation time. An efficient 
alternative, which eliminates spatial domain discretization, is the Boundary Element Method (BEM). Problem equations 
are written in terms of boundary integrals, with no approximation introduced in the problem domain. Thus, accurate 
results of diffusive field can be obtained, with one degree less in size of the discretization mesh. In spite of these 
advantages, only a few studies reported in the literature involve the use of BEM for modeling chloride ion diffusion 
problems in concrete (Warkus et al., 2006; Piasecka, 2011; Yang et al., 2013; Wang and Chen, 2015). These studies 
approach the diffusion and strength degradation problems in a deterministic manner. 

In recent years, some studies have been done regarding time-variant reliability of reinforced concrete structures 
subjected to chloride ion penetration and corrosion. Some studies addressed use of inspection and maintenance to 
maintain reliability indexes over a target value, over the structural lifetime (Mori and Ellingwood, 1994; Enright and 
Frangopol, 1999; Biondini et al., 2006). Structural reliability studies addressing the interaction between climate variability 
and the behavior of structures over time should also be mentioned (El Hassan et al., 2010; Stewart et al., 2012; Bastidas-
Arteaga and Stewart, 2015). Other studies dealing more specifically with the consequences of uncertainties on the 
mechanical behavior of structural elements have also been conducted (Thoft-Christensen, 1998; Stewart, 2004; Duprat, 
2007; Xiang and Zhao, 2007; Ghosh and Padgett, 2010; Simon et al., 2010). 

The studies cited in the last paragraph presented various contributions, but presented some common limitations, 
like use of approximate reliability methods such as FORM and SORM, considering loads as time-invariant, or using simple 
analytical diffusion equations. FORM and SORM are known to be inaccurate for problems involving highly nonlinear or 
multiple limit state equations. Acting live loads are better described as random processes of time, especially in case of 
bridges and viaducts. In addition, simplified analytical models for chloride diffusion modeling were used in most of these 
studies. Use of one-dimensional diffusive chloride models in two-dimensional cross-sections of structural elements leads 
to large differences in reliability, as shown by Sørensen (1996), Val and Trapper (2008) and Bastidas-Arteaga et al. (2011). 
Finally, boundary conditions like flow or concentration of chloride ions at element surface vary in time, but are assumed 
time independent in most cited studies. 

Addressing the above challenges, the present study proposes a framework for the robust and accurate analysis of 
time-variant reliability of reinforced concrete structures subjected to corrosion caused by penetration of chlorides. A 
Monte Carlo based time-dependent reliability analysis is performed, in order to explicitly represent evolution of the 
process. Chloride ion diffusion through concrete is modelled using the Boundary Element Method (BEM); metal loss due 
to corrosion after depassivation of reinforcement bars is considered, and loading is modelled as a random process of 
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time. At any time, structural failure can occur due to acting loads becoming larger than instantaneous strength. To the 
best of the author´s knowledge, this is the first time that BEM is employed in the context of time variant reliability analysis 
involving concrete strength degradation due to chloride penetration. 

2. THE TRANSIENT BEM FORMULATION 

2.1 Governing Equations and Integral Representation 

The Poisson equation is appropriate for describing several potential problems, like diffusion, torsion, thermal 
conductivity and conduction of fluids. The approach accounts for time-independent and time-dependent boundary 
conditions. For the stationary case (time independent), the Poisson’s equation is as follows: 

∇2𝑢𝑢 + 𝑏𝑏 = 0  (1) 

in which 𝑢𝑢 represents the potential and 𝑏𝑏 indicates the domain term. In the particular case of b=0, the Poisson’s equation 
leads to the Laplace solution. 

The solutions of Eq. (1) require enforcement of the following boundary conditions: 

• Dirichlet: 𝑢𝑢 = 𝑢𝑢�  in Γ1 

• Neumann: 𝑞𝑞 = 𝑞𝑞� = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 in Γ2 

where 𝑢𝑢�  describes the prescribed potential values, 𝑞𝑞� describes the prescribed flux value, Γ1 and Γ2 represent the 
boundaries in which potential or flux are prescribed, respectively. The complete body boundary is given by: Γ = Γ1 ∪ Γ2. 
In addition, flux is associated to the potential as follows: 𝑞𝑞 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 .Thus, flux represents the directional derivative of 𝑢𝑢 with 

respect to the outward normal vector 𝜂𝜂. Figure (1) represents the domain, boundaries and normal vector for an arbitrary 
body. 

 
Figure 1 – Domain, boundaries and normal vector for an arbitrary body. 

As previously mentioned, Eq. (1) represents stationary problems. In order to handle transient fields, this equation 
must be modified by introducing a time dependent term. Therefore, the transient potential problem is governed by the 
following differential equation: 

∇2𝑢𝑢 − 1
𝜅𝜅
𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕

= 0  (2) 

in which 𝜅𝜅 indicates the domain-related parameter, such as thermal diffusivity or diffusion coefficient, and 𝑡𝑡 is time. 
Similarly to Eq. (1), solutions of Eq. (2) are obtained by enforcing boundary conditions. Thus, potential and flux values at 
the boundary are prescribed at each time step. The diffusion problems addressed in this study employ Eq. (2). Therefore, 
the potential values indicate chloride concentration along time, whereas flux represents chloride flux along time. 

The differential equation (Eq. 2) can be transformed into a boundary integral representation by applying either the 
finite differences technique, the Laplace transform or the fundamental time dependent solutions (Carslaw and Jaeger, 
1959; Curran et al., 1980; Wrobel and Brebbia, 1981; Wrobel and Brebbia, 1987; Wrobel, 2002). In this study, the latter 
approach was employed. The boundary integral representation for the transient potential problem is obtained by 
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applying initially the Green’s second identity in Eq. (2). Then, integration by parts is employed. Finally, the classical limit 
process is performed, in which the Somigliana’s equation is evaluated at the body’s boundary. The above-mentioned 
procedures lead to the following integral representation, in which temporal and spatial integrations are required: 

𝑐𝑐 �𝜉𝜉� 𝑢𝑢 �𝜉𝜉, 𝑡𝑡𝐹𝐹� = 𝜅𝜅 ∫ ∫ 𝑞𝑞�𝑥𝑥, 𝑡𝑡�𝑢𝑢∗ �𝜉𝜉, 𝑥𝑥, 𝑡𝑡𝐹𝐹 , 𝑡𝑡� 𝑑𝑑Γ�𝑥𝑥�𝑑𝑑𝑡𝑡Γ
𝜕𝜕𝐹𝐹
𝜕𝜕0

− 𝜅𝜅 ∫ ∫ 𝑢𝑢�𝑥𝑥, 𝑡𝑡�𝑞𝑞∗ �𝜉𝜉, 𝑥𝑥, 𝑡𝑡𝐹𝐹 , 𝑡𝑡� 𝑑𝑑Γ�𝑥𝑥�𝑑𝑑𝑡𝑡Γ
𝜕𝜕𝐹𝐹
𝜕𝜕0

  (3) 

in which 𝜉𝜉 indicates the source points, 𝑥𝑥 refers the field points, 𝑡𝑡0 represents the initial time, 𝑡𝑡𝐹𝐹 represents the 
observation time, 𝑢𝑢∗ and 𝑞𝑞∗ indicate the fundamental time-dependent solutions for potential and flux, respectively, and 
𝑐𝑐 is the classical BEM free term. The free-term is the unit for source points positioned at the domain. This parameter is 
equal to 0.5 for source points positioned at smooth boundary geometries. For the plane case, the time-dependent 
fundamental solutions are as follows (Wrobel, 2002; Carslaw and Jaeger, 1959): 

𝑢𝑢∗ �𝜉𝜉, 𝑥𝑥, 𝑡𝑡𝐹𝐹 , 𝑡𝑡� = 1
4𝜋𝜋𝜅𝜅𝜋𝜋

exp �− 𝑟𝑟2

4𝜅𝜅𝜋𝜋
�  (4) 

𝑞𝑞∗ �𝜉𝜉, 𝑥𝑥, 𝑡𝑡𝐹𝐹 , 𝑡𝑡� =
𝑟𝑟𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

8𝜋𝜋𝜅𝜅2𝜋𝜋2
exp �− 𝑟𝑟2

4𝜅𝜅𝜋𝜋
�  (5) 

where 𝜏𝜏 = 𝑡𝑡𝐹𝐹 − 𝑡𝑡, represents the distance between the source 𝜉𝜉 and the field 𝑥𝑥 points, and 𝜕𝜕𝑟𝑟
𝜕𝜕𝑑𝑑

= 𝑟𝑟,𝑘𝑘 𝜂𝜂𝑘𝑘. 

2.2 Algebraic Representation 

Equation (3) provides the values of potential and flux at the boundary for a given time step. The solutions for this 
equation require spatial and temporal integration schemes. The spatial integration is handled by discretizing the entire 
boundary geometry into boundary elements over which polynomial shape functions approximate geometry and diffusion 
fields. The temporal integration is performed through the constant approximation. Such approach enables the analytical 
integration of the time dependent kernels required by the BEM. 

Consequently, discretization of the body’s boundaries 𝛤𝛤 into 𝑁𝑁𝑁𝑁 boundary elements and discretization of the time 
interval 𝑡𝑡𝐹𝐹 − 𝑡𝑡0 into 𝑁𝑁𝑡𝑡 time steps enable rewriting Eq. (3) into its discrete form as follows: 

𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖𝑁𝑁𝜕𝜕 = 𝜅𝜅 ∑ ∑ ∫ ∫ 𝑞𝑞𝑘𝑘𝑢𝑢∗𝑑𝑑𝑡𝑡𝑑𝑑Γj
𝜕𝜕𝑓𝑓
𝑘𝑘

𝜕𝜕0𝑘𝑘Γj
𝑁𝑁𝜕𝜕
𝑘𝑘=1

𝑁𝑁𝑁𝑁
𝑗𝑗=1 − 𝜅𝜅∑ ∑ ∫ ∫ 𝑢𝑢𝑘𝑘𝑞𝑞∗𝑑𝑑𝑡𝑡𝑑𝑑Γj

𝜕𝜕𝑓𝑓
𝑘𝑘

𝜕𝜕0𝑘𝑘Γj
𝑁𝑁𝜕𝜕
𝑘𝑘=1

𝑁𝑁𝑁𝑁
𝑗𝑗=1   (6) 

where𝑢𝑢𝑖𝑖𝑁𝑁𝜕𝜕 represents the potential value at the time 𝑡𝑡𝑁𝑁𝜕𝜕 for a given source point 𝑖𝑖. Equation (6) can be rewritten bearing 
in mind that fundamental solutions 𝑢𝑢∗ and 𝑞𝑞∗ are constantly integrated along time. Moreover, one locates source points 
solely at smooth boundaries in order to ensure enforcement of accurate boundary conditions. Consequently: 

0.5 𝑢𝑢𝑖𝑖𝑁𝑁𝜕𝜕 = 𝜅𝜅 ∑ ∫ ∑ 𝑞𝑞𝑘𝑘 ∫ 𝑢𝑢∗𝑑𝑑𝑡𝑡𝑑𝑑Γj
𝜕𝜕𝑓𝑓
𝑘𝑘

𝜕𝜕0𝑘𝑘
𝑁𝑁𝜕𝜕
𝑘𝑘=1Γj

𝑁𝑁𝑁𝑁
𝑗𝑗=1 − 𝜅𝜅∑ ∫ ∑ 𝑢𝑢𝑘𝑘 ∫ 𝑞𝑞∗𝑑𝑑𝑡𝑡𝑑𝑑Γj

𝜕𝜕𝑓𝑓
𝑘𝑘

𝜕𝜕0𝑘𝑘
𝑁𝑁𝜕𝜕
𝑘𝑘=1Γj

𝑁𝑁𝑁𝑁
𝑗𝑗=1   (7) 

Because the temporal integration is handled analytically, the last equation is further rewritten as follows (Wrobel, 
2002): 

0.5 𝑢𝑢𝑖𝑖𝑁𝑁𝜕𝜕 = 𝜅𝜅 ∑ �∑ 𝑞𝑞𝑗𝑗𝑘𝑘𝑁𝑁𝑁𝑁
𝑗𝑗=1 ∫ 𝑈𝑈𝑘𝑘∗𝑑𝑑ΓjΓj

− ∑ 𝑢𝑢𝑗𝑗𝑘𝑘𝑁𝑁𝑁𝑁
𝑗𝑗=1 ∫ 𝑄𝑄𝑘𝑘∗𝑑𝑑ΓjΓj

�𝑁𝑁𝜕𝜕
𝑘𝑘=1   (8) 

The analytical integration scheme along time transforms 𝑢𝑢∗ into 𝑈𝑈∗ and 𝑞𝑞∗ into 𝑄𝑄∗. These new integral kernels are 
as follows (Wrobel, 2002): 

𝑈𝑈𝑘𝑘∗ = ∫ 𝑢𝑢∗𝑑𝑑𝑡𝑡 = 1
4𝜋𝜋𝜅𝜅

𝜕𝜕𝑓𝑓
𝑘𝑘

𝜕𝜕0𝑘𝑘
�𝐸𝐸1 �

𝑟𝑟2

4𝜅𝜅(𝜕𝜕𝐹𝐹−𝜕𝜕0𝑘𝑘)
� − 𝐸𝐸1 �

𝑟𝑟2

4𝜅𝜅(𝜕𝜕𝐹𝐹−𝜕𝜕𝑓𝑓
𝑘𝑘)
��  (9) 

𝑄𝑄𝑘𝑘∗ = ∫ 𝑞𝑞∗𝑑𝑑𝑡𝑡 = 1
2𝜋𝜋𝑟𝑟𝜅𝜅

𝜕𝜕𝑓𝑓
𝑘𝑘

𝜕𝜕0𝑘𝑘
𝜕𝜕𝑟𝑟
𝜕𝜕𝑑𝑑
�exp �− 𝑟𝑟2

4𝜅𝜅(𝜕𝜕𝐹𝐹−𝜕𝜕0𝑘𝑘)
� − exp �− 𝑟𝑟2

4𝜅𝜅(𝜕𝜕𝐹𝐹−𝜕𝜕𝑓𝑓
𝑘𝑘)
��  (10) 
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in which 𝐸𝐸1 indicates the exponential-integral function. 
As usual in BEM, the integrals illustrated in Eq. (8) lead to the classical influences matrices 𝐻𝐻 and 𝐺𝐺. Then: 

0.5 𝑢𝑢𝑖𝑖𝑁𝑁𝜕𝜕 = ∑ �∑ 𝐺𝐺𝑖𝑖𝑗𝑗𝑘𝑘𝑞𝑞𝑗𝑗𝑘𝑘𝑁𝑁𝑁𝑁
𝑗𝑗=1 − ∑ 𝐻𝐻𝚤𝚤𝚤𝚤𝑘𝑘�𝑢𝑢𝑗𝑗𝑘𝑘𝑁𝑁𝑁𝑁

𝑗𝑗=1 �𝑁𝑁𝜕𝜕
𝑘𝑘=1   (11) 

in which 𝐻𝐻 and 𝐺𝐺 represent the influence matrices, which are defined as follows: 

𝐺𝐺𝑖𝑖𝑗𝑗𝑘𝑘 = ∫ 𝑈𝑈𝑘𝑘∗𝑑𝑑ΓjΓj
      (12) 

𝐻𝐻𝚤𝚤𝚤𝚤𝑘𝑘� = ∫ 𝑄𝑄𝑘𝑘∗𝑑𝑑𝛤𝛤𝑗𝑗𝛤𝛤𝑗𝑗
  (13) 

𝐻𝐻𝑖𝑖𝑗𝑗𝑘𝑘 = �
𝐻𝐻𝚤𝚤𝚤𝚤𝑘𝑘� + 0.5 if 𝑘𝑘 = 1 and 𝑖𝑖 = 𝑗𝑗

𝐻𝐻𝚤𝚤𝚤𝚤𝑘𝑘   � 𝑜𝑜𝑡𝑡ℎ𝑁𝑁𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑁𝑁
      (14) 

Therefore, the classical algebraic BEM system of equations is achieved as follows: 

𝐻𝐻𝑈𝑈 = 𝐺𝐺𝑄𝑄  (15) 

where 𝐻𝐻 and 𝐺𝐺 are 𝑁𝑁𝑥𝑥𝑁𝑁 matrices, which contain the influence coefficients obtained from Eq. (13) and Eq. (14). 𝑁𝑁 
represents the amount of collocation points into the boundary mesh. 

The solution of Eq. (15) requires enforcement of boundary conditions. For this purpose, the classical columns change 
procedure between 𝐻𝐻 and 𝐺𝐺 matrices must be performed. As usual in BEM, the unknown values at the boundary are 
moved to the left side of Eq. (15), whereas the prescribed values are positioned into the right side of this equation. This 
procedure enable rewriting Eq. (15) as follows: 

𝐴𝐴𝐴𝐴 = 𝐹𝐹  (16) 

in which 𝐴𝐴 represents the matrix composed of coefficients from 𝐻𝐻 and 𝐺𝐺 associated to unknown values, 𝐴𝐴 indicates the vector 
containing the unknown values at the boundary and 𝐹𝐹 is the vector obtained from multiplication of the known values and their 
respective influence coefficients. The solution of Eq. (16) provides the unknown values at the body’s boundary. 

Eq. (16) accounts for the fundamental kernels illustrated in Eq. (9) and Eq. (10). Consequently, Eq. (16) is time 
dependent, i.e., the values at the present time depend on the history of fields values. As a result, a time marching process 
is required for its proper solution. The constant approach is applied in the present study (Wrobel, 2002). Therefore, the 
time marching process is as follows: 

𝐻𝐻𝜕𝜕𝑓𝑓𝑈𝑈𝜕𝜕𝑓𝑓 = 𝐺𝐺𝜕𝜕𝑓𝑓𝑄𝑄𝜕𝜕𝑓𝑓 + 𝑆𝑆𝑓𝑓  (17) 

Where 𝑆𝑆𝑓𝑓 is assessed as follows: 

𝑆𝑆𝑓𝑓 = −∑ 𝐻𝐻𝑗𝑗𝑈𝑈𝑗𝑗
𝑓𝑓−1
𝑗𝑗=1 + ∑ 𝐺𝐺𝑗𝑗𝑄𝑄𝑗𝑗

𝑓𝑓−1
𝑗𝑗=1   (18) 

Consequently, for the proper solution of Eq. (16), the 𝑆𝑆𝑓𝑓 vector must be added to the 𝐹𝐹 vector in order to account 
for the time history effects. 

The above-mentioned integral equations have been solved numerically. However, the singular nature of the 
fundamental kernels requires special attention. The standard Gauss-Legendre quadrature has been applied when the 
integrated boundary element does not contain the source point. For this case, the kernels are regular and 𝑟𝑟 ≠ 0. The 
kernels become improper for singular elements. In this case, the integrated boundary element contains the source point 
and at some point of its length, 𝑟𝑟 = 0. The singularity-subtraction method (SSM) handles accurately and properly the 
singular integrals. The SSM handles the improper integrals through a semi-analytical scheme. Then, the application of 
SSM leads to a regular kernel and to a new singular kernel. Nevertheless, the latter has analytical solution. The regular 
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part is assessed through the standard Gauss-Legendre quadrature, whereas the analytical solution is obtained by the 
Cauchy principal value. It is worth mentioning that SSM enables the diffusion modelling accounting for high-order 
boundary elements. In addition, geometrically curved elements may be utilized, which provides better approximation 
for non-straight geometries. The authors demonstrate the analytical solutions for SSM in transient diffusion problems 
taking into account the Cauchy principal value in Appendix A. 

Finally, Eq. (6) also enables the assessment of internal potential fields. In this case, the free term 𝑐𝑐 equals 1 once 
the source point is positioned into the domain. In addition, for this case, Eq. (6) is evaluated exclusively through the 
standard Gauss-Legendre quadrature, because the kernels are regular. 

3. CORROSION PROCESS 

One of the first qualitative idealizations of the useful life of reinforced concrete structures subjected to chloride ions 
penetration was proposed by Tuutti (1982). In this model, structural useful life is divided in two phases: initiation and propagation. 
In the initiation phase, the chloride ions present on the outer surface of the structure move through the micro pores of the 
concrete. When the concentration of chlorides at the concrete/reinforcement interface reaches a threshold value, reinforcement 
depassivation occurs, ending the initiation phase. Propagation phase then begins, where the corrosion chemical reactions occur, 
resulting in deleterious mechanical effects on steel and concrete. Initiation and propagation phases occur in parallel within the 
same reinforced concrete element, i.e., some reinforcement bars may have already undergone depassivation, while others have 
not. This is due to the high randomness present in the variables involved in the corrosive process. 

In the initiation phase, the main transport mechanism of chloride ions through the concrete’s micro pores is 
diffusion. The diffusion of chloride ions in concrete is often modeled using Fick’s laws (Vu and Stewart, 2000; 
Samson et al., 2003; Val et al., 2009; Guzmán et al., 2011). Two limitations of most differential equation solutions 
presented in the literature, describing Fick's law, are that they are obtained from semi-infinite domains, and consider 
constant boundary conditions over time. Since it is extremely important to accurately predict when the corrosion 
propagation period will begin, in the present work an alternative approach is presented, based on the Boundary Element 
Method (BEM). Among the advantages of BEM model is the possibility of varying boundary conditions over time, and the 
possibility of analyzing two-dimensional domains with any contours of geometry. Therefore, the formulation presented 
here seeks to be a guide for a more reliable modeling of the reality of the chloride diffusion phenomenon. 

In the propagation phase, one of the main effects of corrosion is the reduction of reinforcement steel area. Chemical 
reactions that consume the constituent metal of the rebars produce two basic types of corrosion: uniform and pitting. In 
this work, uniform corrosion of the reinforcements considered. The model adopted is presented in the work of Thoft-
Christensen and Hansen (1994) and Val and Melchers (1997). Based on Faraday's laws, the authors propose an equation 
to predict the residual diameter of the corroded rebar as follows: 

𝑑𝑑(𝑡𝑡𝑐𝑐) = 𝑑𝑑0 − 0.0232 𝑖𝑖𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑡𝑡𝑐𝑐   (19) 

where 𝑑𝑑0 is the original diameter of the non-corroded rebar in mm, 𝑖𝑖𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 is the corrosion rate inμA/cm2 (microampere 
per square centimeter) and 𝑡𝑡𝑐𝑐is the elapsed time after rebar depassivation, in years. Once the diameter of the corroded 
bar 𝑑𝑑(𝑡𝑡𝑐𝑐) is known, it is possible to calculate the steel area of each of the steel rebars and hence the total steel area of a 
given reinforced concrete cross section. The corrosion rate 𝑖𝑖𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 in this work is calculatedusing the empirical equation 
presented by Vu and Stewart (2000).This equation is based on measurements available in the literature and on the 
conversion of the oxygen diffusion rate to the corrosion rate by considering the percentage of corrosion products and 
the molecular equations of corrosion in the cathodic zone. The expression that relates rate of corrosion with elapsed 
time after the depassivation of the reinforcements is: 

𝑖𝑖𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟(𝑡𝑡𝑐𝑐) = �37.8(1−𝑤𝑤/𝑐𝑐)−1.64

𝑐𝑐𝑐𝑐𝑐𝑐
� 0.85 𝑡𝑡𝑐𝑐−0.29  (20) 

where 𝑖𝑖𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟(𝑡𝑡𝑐𝑐) is the corrosion rate in 𝜇𝜇𝐴𝐴/𝑐𝑐𝑚𝑚2 (microampere per square centimeter), 𝑒𝑒/𝑐𝑐 is the water/cement ratio, 𝑐𝑐𝑜𝑜𝑐𝑐 is the 
reinforcement concrete cover thickness in mm and 𝑡𝑡𝑐𝑐 is the elapsed time after the depassivation of the rebar in years. In this 
study, other deleterious mechanisms of the propagation phase, such as reinforcement stress reduction, modification in the stress 
transfer mechanism between steel and concrete, and the appearance of internal cracks are not taken into account. 
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4. TIME-VARIANT RELIABILITY 

Structural safety assessment approaches found in most normative codes are based in semi-probabilistic methods, 
and thus adopted for structural design (Brazilian Association of Technical Standards, 2014). Despite that, structural safety 
can be explicitly considered and quantified as a probability that the structure won’t behave as intended, the probability 
of failure. Instant probabilities of failure are usually employed in this context. The effect of input random variables is 
studied as uncertainties are propagated trough structural systems, resulting in stochastic outputs. When stochastic time-
variant loads are present, instant probabilities of failure are no longer representative, since structural failure conditions 
may vary over time. The same is true for resistance degradation scenarios, where accumulated damage or changes in 
the materials can also affect structural safety, usually diminishing it in time. In this context, a more general approach 
must be considered, so that structural safety can be addressed as a function of time. In order to do that, consider a set 
of 𝑀𝑀 = 𝑝𝑝 + 𝑞𝑞 elements 𝑿𝑿(𝑡𝑡,𝜔𝜔), where 𝜔𝜔 denotes the outcome in the space of outcomes Ω. The random variables of the 
problem are a subset of 𝑿𝑿(𝑡𝑡,𝜔𝜔), and ordered as 𝐴𝐴𝑗𝑗(𝜔𝜔), 𝑗𝑗 = 1, … ,𝑝𝑝. These variables are employed to represent most 
resistance parameters, such as structural material and geometrical properties. Also, let all 𝐴𝐴𝑘𝑘(𝜔𝜔, 𝑡𝑡), 𝑘𝑘 = 𝑝𝑝 + 1, … ,𝑝𝑝 + 𝑞𝑞 
be another subset of 𝑿𝑿(𝑡𝑡,𝜔𝜔), gathering stochastic processes, so that time-variant loads are also represented. 

A limit state function is defined, representing the behavior of a structural component or system. It denotes safety 
when assumes values greater than zero and failure otherwise. Thus, the function 𝑔𝑔(𝒅𝒅, 𝒕𝒕,𝑿𝑿(𝑡𝑡,𝜔𝜔))is used to define the 
failure domain, for undesirable structural responses, and safety domain, for adequate structural behavior: 

𝐷𝐷𝑓𝑓(𝑡𝑡,𝒅𝒅) = �𝒅𝒅,𝑿𝑿(𝑡𝑡,𝜔𝜔):𝑔𝑔�𝒅𝒅, 𝒕𝒕,𝑿𝑿(𝑡𝑡,𝜔𝜔)� ≤ 0�  is the failure domain 

𝐷𝐷𝑠𝑠(𝑡𝑡,𝒅𝒅) = �𝒅𝒅,𝑿𝑿(𝑡𝑡,𝜔𝜔):𝑔𝑔�𝒅𝒅, 𝒕𝒕,𝑿𝑿(𝑡𝑡,𝜔𝜔)� > 0�  is the safe domain  (21) 

In Eq. (21), vector 𝒅𝒅 groups some deterministic parameters of the problem, which can be employed, for 
instance, in structural design optimization. The instantaneous probability of failure 𝑃𝑃𝑓𝑓𝑖𝑖, for a certain limit state, 
at a certain time 𝑡𝑡 = 𝜏𝜏 is then given by: 

𝑃𝑃𝑓𝑓𝑖𝑖(𝒅𝒅, 𝜏𝜏) = ℙ(𝑔𝑔(𝒅𝒅, 𝜏𝜏,𝑿𝑿(𝜏𝜏,𝜔𝜔)) ≤ 0) = ∫ 𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝐷𝐷𝑓𝑓(𝒅𝒅,𝜋𝜋)       (22) 

where ℙ denotes the probability operator, and 𝑓𝑓(𝒙𝒙) is the joint probability density function of the random variables for 
a certain limit state and a configuration 𝒅𝒅 at a time 𝜏𝜏. In time-dependent problems, it is more convenient to work with 
the concept of cumulative probability of failure 𝑃𝑃𝑓𝑓𝑐𝑐(𝑡𝑡1, 𝑡𝑡2). For a certain design configuration 𝒅𝒅 and for a given limit state, 
the probability of a structure not behaving as intended within the time interval [𝑡𝑡1, 𝑡𝑡2] is given by: 

𝑃𝑃𝑓𝑓𝑐𝑐(𝒅𝒅, 𝑡𝑡1, 𝑡𝑡2) = ℙ�∃𝜏𝜏 ∈ [𝑡𝑡1, 𝑡𝑡2]:𝑔𝑔�𝒅𝒅, 𝒕𝒕,𝑿𝑿(𝑡𝑡,𝜔𝜔)� ≤ 0�  (23) 

Approximate methods have been proposed for the computation of 𝑃𝑃𝑓𝑓𝑐𝑐 (Andrieu-Renaud et al., 2004, Sudret, 2008). 
Although efficient, they are not very accurate, particularly when highly non-linear limit states or multiple design points 
are present. In order to overcome these limitations, more accurate simulation based approaches can be employed, at 
the cost of considerable computational burden. In this paper, a simulation based approach is adopted, and the 
corresponding increase in computational cost is diminished by the employment of BEM and normative code-based 
analytical limit states. 

4.1 Monte Carlo-based estimation of the cumulative failure probability 

When coupled with efficient techniques (Kroetz et al., 2017b), direct simulation becomes feasible in the context of 
structural optimization (Kroetz et al., 2017a, Kroetz et al., 2020, Moustapha et al. 2016). In order to simulate structural 
performance from time-dependent limit state equations, stochastic processes are discretized as finite sets of random 
variables (Sudret and Der Kiureghian, 2000). Hence, the limit state equations that describe the problem are evaluated 
considering the fixed values sampled from random variables, and the values assumed by the stochastic processes in each 
instant of the discretized time-series. To represent the stochastic processes, the technique known as “expansion optimal 
linear estimation” (EOLE) is employed herein, as proposed by Li and Der Kiureghian (1993). In this work, the random 
process discretization is performed using the software UQlab (Marelli and Sudret, 2014). 
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Let 𝑿𝑿(𝑡𝑡,𝜔𝜔) be a Gaussian random process, with mean 𝜇𝜇, standard deviation 𝜎𝜎 and auto-correlation coefficient 
function 𝜌𝜌𝑋𝑋(𝑡𝑡1, 𝑡𝑡2). Also, consider that 𝒫𝒫 time points are selected in the time-series interval [0:𝑇𝑇], with 𝑡𝑡1 = 0 and 
𝑡𝑡𝒫𝒫 = 𝑇𝑇. The EOLE representation of the stochastic process reads: 

𝑿𝑿(𝑡𝑡,𝜔𝜔) = 𝜇𝜇 + 𝜎𝜎∑ 𝜉𝜉𝑖𝑖(𝜔𝜔)
�𝜆𝜆𝑖𝑖

𝑁𝑁
𝑖𝑖=1 𝜙𝜙𝑖𝑖𝑇𝑇𝑪𝑪𝜕𝜕,𝜕𝜕𝑖𝑖(𝑡𝑡)      (24) 

In this notation,{ 𝜉𝜉𝑖𝑖 (𝜔𝜔), 𝑖𝑖 = 1, … ,𝒫𝒫} are independent standard normal variables and {𝜙𝜙𝑖𝑖 𝜆𝜆𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁} are the first 
eigenvectors and eigenvalues of the correlation matrix 𝑪𝑪, sorted in decreasing order, where 𝐶𝐶𝑖𝑖𝑗𝑗 = 𝜌𝜌𝑋𝑋�𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗�, 𝑖𝑖, 𝑗𝑗 ={1,...,𝒫𝒫}. 
Since the expression represents a numerical simulation model, the expansion must be truncated to 𝑁𝑁 ≤ 𝒫𝒫 terms, where 
𝒫𝒫 is the value that defines the order of expansion. Once all random variables and random processes are sampled, for 
each studied structural configuration 𝒅𝒅, the limit state equation 𝑔𝑔�𝒅𝒅, 𝒕𝒕,𝑿𝑿(𝑡𝑡,𝜔𝜔)� is evaluated in all points of the discretized 
time interval [0:𝑇𝑇]. 

In order to estimate the cumulative failure probability, the simulated values are stored in an array 𝐺𝐺 of dimension 
1 × 𝑁𝑁, where 𝑁𝑁 is the number of time instants in which the limit state equation is discretized. Each position 𝑖𝑖 of this array 
corresponds to a time 𝑡𝑡𝑖𝑖 = (𝑖𝑖 − 1)Δ𝑡𝑡 where Δ𝑡𝑡 = 𝑇𝑇

𝑁𝑁−1
 is the sampling step, so that an uniform discretization is assumed. 

For each 𝑡𝑡𝑖𝑖, a corresponding counter 𝑘𝑘𝑗𝑗 that is increased whenever 𝑔𝑔 presents the first outcrossing in the interval [𝑡𝑡𝑖𝑖; 𝑡𝑡𝑖𝑖+1]. 
The Monte Carlo estimation for the cumulative probability of failure, considering 𝑁𝑁𝑀𝑀𝑀𝑀  samples is then given by: 

𝑃𝑃𝑓𝑓𝑐𝑐(0, 𝑡𝑡𝑖𝑖) = 1
𝑁𝑁𝑀𝑀𝑀𝑀

𝑘𝑘𝑗𝑗  (25) 

5. PROPOSED METHODOLOGY 

In order to address the safety of a concrete structure throughout its whole life span, the first step of the proposed 
methodology is to quantify the time for depassivation of reinforcement bars, thus triggering corrosion processes. The 
analysis is divided in two independent steps, henceforth addressed as Problem 1 and Problem 2. In Problem 1, 
uncertainties regarding the chloride penetration process, as detailed in Section 3, are considered as input to the BEM 
based analysis, performed as explained in Section 2. The input variables to this analysis are the chloride threshold value 
𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝜕𝜕, the surface chloride concentration 𝐶𝐶𝑠𝑠, the diffusion coefficient in concrete 𝜅𝜅 and the thickness of the concrete 
cover 𝐶𝐶𝑇𝑇. This problem is solved 106 times, in order to provide a million depassivation times, which are considered as 
inputs to the second problem. Problem 2 consists in the Monte Carlo based time-dependent reliability analysis. This step 
also considers uncertainties in the structural parameters: random variables concrete strength 𝑓𝑓𝑐𝑐 and steel strength 𝑓𝑓𝑦𝑦 
and the loads of the problem, hereby generically represented by random process 𝑞𝑞(𝑡𝑡). The statistical parameters of the 
random variables and processes depend on the problem, and are addressed in Section 6. The relationship between 
Problem 1 and Problem 2 is illustrated in Figure (2). 

Thus, a time-dependent reliability framework is proposed for degrading reinforced concrete beams. The cumulative 
probabilities of failure can be accurately computed since a Monte Carlo direct simulation method is employed, as 
described in Section 4.1. The computational burden is reduced because “Problem 1” is efficiently solved using BEM, 
hence accurate low-dimension mesh models are employed. The structural behavior considered in the analysis reflects a 
practice of engineering structural design; hence analytical models are adopted, as suggested by the Brazilian normative 
code for reinforced concrete beams (Brazilian Association of Technical Standards, 2014). 

 
Figure 2 – Proposed methodology. 
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6. APPLICATION EXAMPLE 

Consider the 4 meter span beam represented in Figure (3). The beam has rectangular cross-section of 40cmX20cm, 
and 3 longitudinal reinforcement bars with diameter 12.5mm. It is also subject to a time-variant load 𝑞𝑞(𝑡𝑡), described by 
a random process with Gaussian autocorrelation function, with correlation length of 1 year. 

 

Figure 3 – Reinforced concrete beam of the case study. 

Table 1 shows the random quantities involved in the chloride diffusion problem, and Table 2, the random quantities 
involved in the structural reliability analysis. The boundary was discretized in 8 quadratic discontinuous and 
isoparametric boundary elements. The number of Gauss points per element is 8. Figure (4) illustrates adopted boundary 
element mesh and boundary conditions. The simulation of chloride ion penetration was performed until 200 years, 
discretized in 50 time steps. Depassivation occurrence time of each rebar was determined by means of interpolation 
between the successive time steps within which depassivation occurred. A mesh convergence analysis was previously 
done in order to determine a suitable boundary discretization for the problem. 

 

Figure 4 – Boundary Element mesh and boundary conditions. 

Table 1 – Statistical parameters for the diffusion analysis with BEM. 

Parameter Distribution type Mean COV 

Chloride threshold value 𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝜕𝜕 Uniform 0.90 kg/m3 0.19 
Surface chloride concentration 𝐶𝐶𝑠𝑠 Lognormal 1.15 kg/m3 0.50 
Diffusion coefficient in concrete 𝜅𝜅 Lognormal 0. 6742277 cm2/year 0.75 

Cover Thickness CT Normal 3.00 cm 0.50 
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Table 2 – Statistical parameters for the time-variant reliability analysis. 

Parameter Distribution type Mean COV 

Concrete Strength 𝑓𝑓𝑐𝑐  Lognormal 30 MPa 0.20 
Steel Strength 𝑓𝑓𝑦𝑦 Lognormal 500 MPa 0.20 

Load 𝑞𝑞(𝑡𝑡) Gaussian random process 10 kN/m 0.20 

Reliability analysis was carried out over a 50 year time-span, considering 106 samples in each of the 500 discrete time-
points, so that each correlation length is discretized in 10 time steps. The limit state considered compares resisting bending 
moment (𝑀𝑀𝑅𝑅) with load effect bending moment (𝑀𝑀𝑆𝑆). The resisting bending moment is given by normative recommendations 
of the Brazilian standard for reinforced concrete design (Brazilian Association of Technical Standards, 2014): 

𝑔𝑔(𝒙𝒙, 𝑡𝑡) = 𝑀𝑀𝑅𝑅(𝒙𝒙, 𝑡𝑡) −𝑀𝑀𝑆𝑆(𝒙𝒙, 𝑡𝑡) 

𝑀𝑀𝑅𝑅(𝒙𝒙, 𝑡𝑡) =  𝐴𝐴𝑠𝑠(𝑡𝑡)𝑓𝑓𝑦𝑦 �𝑑𝑑 −
𝜆𝜆𝑥𝑥
2
� 

𝑀𝑀𝑆𝑆(𝒙𝒙, 𝑡𝑡) =  𝑞𝑞(𝜕𝜕)𝑙𝑙2

8
      (26) 

In Eq. (26) 𝜆𝜆 = 0.8 when 𝑓𝑓𝑐𝑐 < 50MPa and 𝜆𝜆 = 0.8 − 𝑓𝑓𝑐𝑐−50
400

  when 50MPa ≤ 𝑓𝑓𝑐𝑐 ≤ 90MPa, 𝑥𝑥 is the height of the neutral 
axis in the cross section, and 𝐴𝐴𝑠𝑠 is the remaining area of steel. The steel cross-section area is only reduced by corrosion 
after depassivation by chlorides. Time-independent corrosion is considered in the first year after depassivation (Eq. 19), 
and time-dependent corrosion is adopted from this point on (Eq. 20). The structure is also considered to fail when the 
normative ductility criterion is violated, once again considering NBR6118 specification, which is indicated by: 

�
𝑥𝑥
𝑑𝑑
≤ 0.45 𝑖𝑖𝑓𝑓𝑓𝑓𝑐𝑐 ≤ 50MPa

𝑥𝑥
𝑑𝑑
≤ 0.35 𝑖𝑖𝑓𝑓𝑓𝑓𝑐𝑐 > 50𝑀𝑀𝑃𝑃𝑀𝑀

      (27) 

As mentioned, the time-variant reliability problem is solved by generating 106 samples of the depassivation time, 
and same number of samples of resisting (𝑀𝑀𝑅𝑅(𝑡𝑡)) and load effect (𝑀𝑀𝑆𝑆(𝑡𝑡)) bending moments. One sample realization of 
the load effect process, and one sample of the strength degradation due to depassivation and corrosion are shown in 
Figure (5).Cumulative probability of failure results, considering and ignoring corrosion,are shown in Figure (6). In Figure 
(6a), with no corrosion, failure probabilities increase in time only due to successive load applications. As observed, the 
effect of depassivation and corrosion is to sharply increase cumulative failure probabilities in time. 

 
Figure 5 –One sample of time-evolution of 𝑀𝑀𝑅𝑅(𝑡𝑡) and 𝑀𝑀𝑆𝑆(𝑡𝑡). 
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Figure 6 - Results for cumulative probability of failure. 

7. CONCLUDING REMARKS 

This paper has presented a framework for the robust and accurate analysis of time-variant reliability of reinforced 
concrete structures subjected to corrosion caused by penetration of chlorides. A Monte Carlo based time-dependent 
reliability analysis was performed, in order to explicitly represent evolution of the loading and corrosion processes. 
Chloride ion diffusion through concrete was modelled using the Boundary Element Method (BEM); metal loss due to 
corrosion after depassivation of reinforcement bars was considered, and loading was modelled as a random process of 
time. One distinguished feature of the framework proposed herein is the use of BEM in order to accurately model 
depassivation of reinforcement bars, due to penetration of chlorides. To the best of the author´s knowledge, this is the 
first time such an accurate BEM model is employed in the context of time-variant reliability analysis. 
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Appendix A: Singularity Subtraction Method (SSM). Analytical Solutions for Transient Diffusion Case 

The singularity subtraction method (SSM) has been applied to regularize the kernel u∗. The integration by parts of 
kernel u∗ as a function of time leads to the following: 

U1
∗ �ξ, x� = ∫ u∗(ξ, x, tF, t)dt = 1

4πκ
tf
k

t0k
�E1 �

r2

4κ�tF−t0k�
� − E1 �

r2

4κ�tF−tf
k�
�� = 1

4πκ
�E1�a0k� − E1�afk��  (A.1) 

in which E1 is the exponential-integral function E1(z) = ∫ e−t

t
∞
z dt and afk and a0k are as follows: 

afk = r2

4κ�tF−tf
k�  (A.2) 

a0k = r2

4κ�tF−t0k�
  (A.3) 

The singularity is observed in Uk
∗  when k = 1, i.e., in the first time step. In addition, the singularity is herein observed 

when the source point approaches to the field point, i.e., when r → 0. Thus, when k = 1, Eq. (A.1) becomes: 

U1
∗ �ξ, x� = 1

4πκ
[E1(a01) − E1�af1�]  (A.4) 

The variables afk and a0k are positive because κ > 0, r ≥ 0 and tF ≥ tfk > t0k. In Eq. (A.2), when r is nil and tf1 → tF, 
af1 → +∞. Thus, the exponential-integral function is evaluated at + ∞, which results into a nil value. In equation (A.3) 
when r is nil, a01 → 0, because the denominator (tF − t01) is always greater than zero (tF ≥ tf1 > t01). Thus, the exponential-
integral function has nil value, which results into the following singularity: 

U1
∗ �ξ, x� = 1

4πκ
[E1(0) − E1(+∞)] = 1

4πκ
[E1(0)]  (A.5) 

The singularity arising in this equation is logarithmic for distinct intervals of the exponential-integral function 
argument, 0 ≤ z ≤ 1and 1 < 𝑧𝑧 < ∞. Thus, the kernel containing u∗ can be regularized by the following equation: 

∫ U1
∗ �ξ, x�dΓjΓj

= 1
4πκ ∫ �E1(a01) − ln (a01

∗)�Γj
dΓj + 1

4πκ ∫ ln (a01
∗)Γj

dΓj  (A.6) 

whereξ0 is the dimensionless coordinate of the source point, ξ the dimensionless coordinate of the field point, xi the real 
coordinate of a given point, ϕ the shape function, ϕ,i the shape function derivative and the Jacobian is given by: J =

��ϕ,i(ξ0)xi�
2
, the real distance r between the source and the field points is evaluated as follows: 

r = r∗ = |J|ε = |J||ξ − ξ0|  (A.7) 

where ε = |ξ − ξ0| is the dimensionless distance between the source and field points. Substituting dΓ = Jdξ in Eq. (A.6) 
one has: 

∫ U1
∗ �ξ, x�dΓjΓj

= 1
4πκ ∫ E1(a01)ϕ(ξ)J(ξ)dξ1

−1 − 1
4πκ ∫ ln�a01

∗�ϕ(ξ0)J(ξ0)dξ1
−1 + 1

4πκ ∫ ln (a01
∗)ϕ(ξ0)J(ξ0)dξ1

−1   (A.8) 

in which: 

a01
∗ = (r∗)2

4κ(tF−t01)
= (|J(ξ0)||ε|)2

4κ(tF−t01)
  (A.9) 

In Eq. (A.8), the two first integrals on the right side are bounded and no longer singular. Then, they are assessed properly by 
the Gauss-Legendre quadrature. The last integral is evaluated analytically. The latter term on that equation is named as I: 
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I = 1
4πκ ∫ ln (a01

∗)ϕ(ξ0)J(ξ0)dξ1
−1   (A.10) 

The change of the integration domain from dξ to dε and consequently the integration intervals lead to the following: 

I = 1
4πκ ∫ ln �(|J(ξ0)||ε|)2

4κ(tF−t01)
� ϕ(ξ0)J(ξ0)dε1−ξ0

−1−ξ0
  (A.11) 

For simplicity, considering t01 = 0, one obtains: 

I = 1
4πκ ∫ 2 ln(|J(ξ0)||ε|)ϕ(ξ0)J(ξ0)dε −1−ξ0

−1−ξ0
1

4πκ ∫ ln(4κtF)ϕ(ξ0)J(ξ0)dε1−ξ0
−1−ξ0

  (A.12) 

Because of the singular kernel contained in Eq. (A.12), the integral must be evaluated in the Cauchy principal (CPV) 
sense. Then: 

CPV = lim
ε→0

�
1
4πκ

� 2 ln(|J(ξ0)||ε|)ϕ(ξ0)J(ξ0)dε
−ε

−1−ξ0
+

1
4πκ

� 2 ln(|J(ξ0)||ε|)ϕ(ξ0)J(ξ0)dε
1−ξ0

+ε

−
1
4πκ

� ln(4κtF)ϕ(ξ0)J(ξ0)dε
−ε

−1−ξ0
−

1
4πκ

� ln(4κtF)ϕ(ξ0)J(ξ0)dε
1−ξ0

+ε
� → 

CPV = lim
ε→0

� 1
4πκ

ϕ(ξ0)J(ξ0) �∫ 2 ln(|J(ξ0)||ε|) dε−ε
−1−ξ0

+ ∫ 2 ln(|J(ξ0)||ε|) dε1−ξ0
+ε − ∫ ln(4κtF)ϕ(ξ0)J(ξ0)dε−ε

−1−ξ0
−

∫ ln(4κtF) dε1−ξ0
+ε ��  (A.13) 

To evaluate the terms of Eq. (A.13) properly, they are rewritten in separated form, from I1 to I4 as follows: 

CPV = lim
ε→0

� 1
4πκ

ϕ(ξ0)J(ξ0)[I1 + I2 − (I3 + I4)]�  (A.14) 

Thus, evaluating I1one has: 

I1 = 2[ε ln(|J(ξ0)ε|)]−1−ξ0
−ε = 2{−ε ln(|J(ξ0)ε|) + ε − [(−1 − ξ0) ln(|J(ξ0)(−1 − ξ0)|) + 1 + ξ0]}  (A.15) 

Thus, evaluating I2one has: 

I2 = 2[ε ln(|J(ξ0)ε|)]ε
1−ξ0 = 2{(1 − ξ0) ln(|J(ξ0)(1 − ξ0)|) − 1 + ξ0 − [ε ln(|J(ξ0)ε|) − ε]}  (A.16) 

Then, evaluating I3one has: 

I3 = ln(4κtF) [−ε + 1 + ξ0]  (A.17) 

Then, evaluating I4 one has: 

I4 = ln(4κtF) [1 − ξ0 − ε] (A.18) 

Adding I1 and I2 one obtains: 

I1 + I2 = 2{−ε ln(|J(ξ0)ε|) + ε + (1 + ξ0) ln(|J(ξ0)(−1 − ξ0)|) − 1 − ξ0 + (1 − ξ0) ln(|J(ξ0)(1 − ξ0)|) − 1 + ξ0
− ε ln(|J(ξ0)ε|) + ε} → 

I1 + I2 = 2{−2ε ln(|J(ξ0)ε|) + 2ε − 2 + (1 + ξ0) ln(|J(ξ0)(−1 − ξ0)|) + (1 − ξ0) ln(|J(ξ0)(1 − ξ0)|)}  (A.19) 
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Adding I3 and I4 one obtains: 

I3 + I4 = ln(4κtF) [−ε + 1 + ξ0 + 1 − ξ0 − ε] = ln(4κtF) [−2ε + 2]  (A.20) 

By applying the L'Hôpital’s theorem one obtains: 

lim
ε→0

{ε ln(J(ξ0)ε)} = 0  (A.21) 

Therefore, the limit of Eq. (A.14) is achieved as follows: 

CPV = 1
4πκ

ϕ(ξ0)J(ξ0){−4 + 2(1 + ξ0) ln(|J(ξ0)(−1 − ξ0)|) + 2(1 − ξ0) ln(|J(ξ0)(1 − ξ0)|) − 2ln(4κtF)}  (A.22) 

Consequently: 

CPV = 1
2πκ

ϕ(ξ0)J(ξ0){−2 + (1 + ξ0) ln(|J(ξ0)(−1 − ξ0)|) + (1 − ξ0) ln(|J(ξ0)(1 − ξ0)|) − ln(4κtF)}  (A.23) 

It is worth mentioning that Eq. (A.23) is valid for discontinuous elements, i.e., when the source points are not 
positioned at the element ends ξ0 = ±1. When continuous elements are utilized, the finite part of Eq. (A.23) is evaluated, 
leading to the following: 

CPV = 1
2πκ

ϕ(ξ0)J(ξ0){−2 + 2 ln(|2J(ξ0)|) − ln(4κtF)}   (A.24) 
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