
 ORIGINAL ARTICLE 

 

Received: October 03, 2019. In Revised Form: March 23, 2020. Accepted: March 31, 2020. Available online: April 09, 2020. 
https://doi.org/10.1590/1679-78255818 

 
Latin American Journal of Solids and Structures. ISSN 1679-7825. Copyright © 2020. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Latin American Journal of Solids and Structures, 2020, 17(3), e268  1/30 

Alternative active nonlinear total Lagrangian truss finite element 
applied to the analysis of cable nets and long span suspension bridges 

Humberto Breves Codaa , Adriana Patrícia de Oliveira Silvaa , Rodrigo Ribeiro Paccolaa*  

a Escola de Engenharia de São Carlos, Universidade de São Paulo. Av. Trabalhador São-carlense 400, São Carlos, SP, Brasil.  
Email hbcoda@sc.usp.br, adriposilva@gmail.com, rpaccola@sc.usp.br 

* Corresponding author 

http://dx.doi.org/10.1590/1679-78255818 

Abstract 
An alternative geometrically nonlinear total Lagrangian finite element is presented and applied to solve 
cable, cable nets and a very long suspended bridge in both three and two-dimensional spaces from its 
setting-up through its response to earthquake. It includes dynamics, pseudo-dynamics regularization, elastic 
actuators and automatic stress calibration. Dynamics and pseudo-dynamics are used to perform transient 
structural analysis and the setting-up of very unstable structures. Elastic actuators allow pre-stressing 
structural members for the iterative structural design and cables natural length definition. Automatic stress 
calibration comprises continuous cables in complicated structures without sliding contact devices. 
The formulation is applied to model main cables of suspended bridges passing through saddle points. 
Inertial terms are introduced by an alternative mathematical way. Two simple examples are used to validate 
all aspects of the proposed formulation. Finally, a representative application is performed, i.e., the 
numerical design and analysis of a very long span suspension bridge by the proposed strategy. 
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1 INTRODUCTION 

Wide span structures are desired when large areas without intermediate supports are needed. One economic 
solution to accomplish this task is the use of cable structures. This is because the final stress levels and the self-weight 
of cables are lower than those presented by bending structural elements. Given the importance of this structural 
system, the number of scientific papers - related to the development of numerical methods and strategies to solve 
cable structures - is very large and, therefore, it is not our intention to make an extensive review of the subject. 

This study presents a position based finite element strategy capable of a complete solution of structures 
composed of cables (cable nets) and truss bars, culminating here in the analysis of a very long and slender suspended 
bridge, from its setting-up stage to its response to earthquakes. 

Cable structures are known to exhibit highly nonlinear behavior and their equilibrium always depends on its 
current configuration (Greco and Cuomo 2012, Kim et al. 2002, Veenendaal and Block 2012). Thus, a first challenge is 
determining the natural initial configuration of the structure, usually called form-finding. According to Greco and 
Cuomo (2012) there are several form-finding strategies in literature, but the most commonly used types are dynamic 
relaxation (DR), minimal surface method (MSM) and force density method (FDM). In Veenendaal and Block (2012) an 
interesting review of the form-finding methods with their evolution in time can be seen. In Veenendaal and Block 
(2012) the form-finding methods are also divided into 3 categories stiffness matrix method (Siev and Eidelman 1964), 
geometric stiffness method (FDM) (Schek 1974) and dynamic equilibrium method (relaxation) (Barnes 1977), where the 
mentioned references are considered precursor works. Also in Greco and Cuomo (2012) it is mentioned that the 
equivalence between FDM and MSM is proven in Wüchner and Bletzinger (2005), therefore, there is no contradiction 
between nomenclatures.  

Regardless the different denominations of form-finding strategies, it is important to note that their basic ideas are 
used in analytical, numerical, or any other solution scheme. In the majority of these strategies the determination of a 
possible equilibrium position for cables depends on the pre-definition of a ratio between the force and length of the 
network parts. The choice of this ratio is not a trivial task, as the initial configuration of the cable net depends on it. 

Following Crusells-Girona et al. (2017), as far as the FEM is concerned, the simplest way to model cables is by the 
use of straight finite elements whose geometric nonlinearity is taken into account (in most cases) by corrotational 
formulations (Borst et al. 2012). Most works use the above mentioned form finding formulation in order to determine 
of the natural position of cables as the starting point for FEM analyses. 

In the present study, non-corrotational juxtaposed truss finite elements are used to model cables. We adopt a 
total Lagrangian finite element formulation based on positions that does not use rotation matrices (Greco et al. 2006, 
Greco et al. 2013, Coda 2009). One of the criticisms of this type of element is the high number of degrees of freedom 
used for numerical simulation. However, due to the high degree of sparsity of the truss finite element matrices, the 
computational cost of cable assemble is very small when compared to the remaining structural degrees of freedom. 
One example of this statement is the analysis of suspension bridges, as a particular interest of this study. Moreover, in 
this study, we adopt special sparse matrix solvers to reduce numerical efforts (The Harwell Subroutine Library 
Mathematical Software Library 2014). 

Many works make use of curved finite elements or semi-analytical elements for form-finding or even static 
analysis of cables and cable networks (Greco and Cuomo 2012, Impollonia et al. 2011, Andreu et al. 2006, Such et al. 
2009, Yang and Tsay 2007, Kim et al. 2016, Ahmadizadeh 2013). These elements are intended to be computationally 
economic, but still need improvements to present well-established performance in dynamic analysis, one of the 
objectives of the present study. 

From the known natural position of cables, an interesting discussion in which solution models for cable and cable 
nets are classified in two categories - finite element methods and classic elastic catenary expressions - can be found in 
Abad et al. (2013). In this reference various benchmark examples (and important references) for static analysis of cable 
and cable nets can also be found. Regarding optimization of cable forces in stayed bridges, valuable information can be 
found in Zhang and Au (2014) and Thai and Kim (2012). Dynamic analysis of isolated cables can be seen in Zhou et al. 
(2017) and Thai and Kim (2011) among others. 

As already mentioned, in this work we adopt the position-based finite element method, which is a good 
alternative for structural geometrically nonlinear analysis. This technique presents general and simple numerical 
operations for the static and nonlinear dynamic analysis of various types of structural elements and structures (Coda 
2018, Soares et al. 2019, Coda 2015). Although it is not the objective of this study, it is important to mention that the 
simplicity of considering large deformations is also applied to large strains, see Pascon and Coda (2015,2013) for 
instance. In the present study, we propose an alternative active element (elastic actuator) that controls the initial 
length of all elements involved, enabling (i) pre-tensioning or loosening cables in the process of determining natural 
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initial configurations and (ii) optimal stress distribution in cable structures and contiguous cables, reducing the need to 
model saddles or pulleys in cable connections. 

An alternative dynamic relaxation technique is also provided to enable the analysis of highly nonlinear problems 
including setting-up problems. Two simple examples are used to validate the formulation and the motivating example 
of the study, a very long span suspension bridge, is presented in detail. Conclusions on the validity of the formulation 
and the mechanical aspects of suspension bridge analysis are shown at the end of the article. 

2 TOTAL LAGRANGIAN FINITE ELEMENT 

As mentioned above the truss finite element - to be used here and, therefore, adapted for the search of initial 
(natural) cable position and for stress balancing (calibration) in mixed structures - is based on positions rather than 
displacements and its formulation is briefly presented in this section. 

2.1 Mechanical energy 

The adopted truss element is shown in Figure 1 in a suitable form to describe the FEM based on positions. 
The element undergoes a change of configuration, or position, so that the associated strain energy is related only to its 
change in length which is a function of the initial coordinates ( i ) iXα  and current position iYα  of nodes α  (Cartesian 
coordinates). The truss element does not resist to transverse loading, thus we consider that only nodal forces are 
possible and, in this work, this property is extended to inertial forces, therefore, lumped mass is adopted. Although 
Fig. 1 is a two-dimensional representation, the formulation is three-dimensional and, as nodal positions are the 
unknown, the bar element has six degrees of freedom (three by node). 
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Figure 1 Change of configuration of a truss finite element 

The total mechanical energy of the structural system can be expressed as 

P U KΠ = + +  (1) 

in which the potential of conservative external loads iFα  is given by 

i iP F Yα α= −  (2) 

and the kinetic energy by 

( ) i i
1K M Y Y
2

α α
α=     (3) 

The strain energy ( )j
e iU Yα  is also a function of current nodal positions and is described as follows. Using the one 

dimensional Green-Lagrange strain  
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2

2
0

1 1
2
 

= −  
 





   (4) 

and the Saint-Venant-Kirchhoff constitutive model 

j 2
e

1u K
2

=   (5) 

in which K  is equivalent to the Young modulus for small strains. The strain energy of element j  (stored in its initial 
configuration - Lagrangian description) is written as 

( ) ( )( )
( ) ( )

( ) ( )
2j j 2

j jj j 0 0
e i e i0 0 2

0

A
U Y A u Y K 1

8
α α  

= = −  
 








  (6) 

in which ( )j
0A  is the cross section area of the element, ( )j

0  is its initial length, ( )j
  is the current length, j

eu  is the specific 
strain energy and ( )iYα  is the Green-Lagrange strain.  

Writing the square of the current length as 

( ) ( ) ( )2 2 22 2 1 2 1 2 1
1 1 2 2 3 3Y Y Y Y Y Y= − + − + −  (7) 

and substituting it in Eq. (5), results 

( ) ( ) ( ) ( )( ) ( )
22 2 22 1 2 1 2 1j j 1 1 2 2 3 3j 0 0

e i 2
0

Y Y Y Y Y YA
U Y K 1

8
α

 − + − + − 
= − 

 
 





 (8) 

Recalling that the total mechanical energy is the sum of the portions depending on nodes α  and elements j  ,i.e., 
introducing Eqs. (2), (3) and (8) into Eq. (1), one writes the general expression of ( )iYαΠ  depending only upon nodal 

positions. 

2.2. Motion equation 

The mechanical equilibrium equation, or the motion equation, is achieved here applying the mechanical energy 
stationary principle over Π . In dynamics, most references prefer to do this using the Hamilton principle or the virtual 
work principle (Clough and Penzien 1993), however a simple and elegant procedure is used here for, in an equivalent 
way, arrive to the desired equation when the unknown parameters are positions. Thus the equilibrium equation is 

U K P 0δ δ δ δΠ = + + =  (9) 

Since all members of Eq. (1) are written as a function of nodal positions, the variation described in Eq. (9) can be 
rewritten as 

k k
k k k k

U K PY Y 0
Y Y Y Y

β β
β β β βδ δ

 ∂Π ∂ ∂ ∂
 = + + = ∂ ∂ ∂ ∂ 

 (10) 

and, as the nodal position variation kY βδ  is arbitrary, one writes the set of nonlinear equilibrium equations as 

k
k k k

U K P 0
Y Y Y

β
β β β

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (11) 
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In what follows the terms of Eq. (11) are developed. For the potential of conservative external forces, one writes 

( )i i i
i i ik k

k k k

F Y YP F F F
Y Y Y

α α α
α α β

αββ β β δ δ
∂ − ∂∂

= = − = − = −
∂ ∂ ∂

 (12) 

in which kF β  is the external force applied in k  direction at node β . 
For strain energy one uses the energy conjugate concept among internal force and position (Coda 2018, 

Soares et al. 2019, Coda 2015, Pascon and Coda 2015, Pascon and Coda 2013) written in a compact form as 

( ) ( )( )

nel j
je i nel e ij 1int e

k
j 1k k k

U Y U YUF
Y Y Y

α
α

β
β β β

=

=

∂ ∂∂
= = =
∂ ∂ ∂

∑
∑  (13) 

From Eq. (8), the last term of Eq. (13) is developed for each finite element j  as 

( ) ( )(int) ( )jj j 2 1e
k k0k

0k

U 1F A S Y Y
Y

β
β

β
∂ −

= = −
∂ 

 (14) 

where β  assumes values 1 or 2 of the local numbering of nodes. The internal force is assembled by a cumulative 
process respecting the relation among local and global numbering of nodes, an usual finite element procedure. 

In Eq. (14) S  is the second Piola-Kirchhoff stress and is given by 

( ) euS K∂
= =
∂

 


 (15) 

see Eq. (5). For the one dimensional model the relation among the second Piola-Kirchhoff stress S  and the Cauchy 
stress σ  is simply / 0Sσ =   . 

For kinetic energy the differential procedure is based on the independence of the space and time variables, 
inherent to Newtonian mechanics. Thus the variation of kinetic energy can be written as 

k
k

KK Y
Y

β
βδ δ∂

=
∂

 or equivalently as dKK dt
dt

δ =  (16) 

Developing the second form of Eq. (16) and matching, one finds 

( ) ( )( ) ( ) ( )k k k k k k k k k
k

dK 1 Kdt M Y Y Y Y dt M Y Y dt M Y Y Y
dt 2 Y

β β β β β β β β β
β β β βδ δ∂

= + = = =
∂

        (17) 

in which the property i iY Y dtα αδ =   has been used. Thus, from Eqs. (10), (11) and (17) results the inertial force 
(d'Alembert principle (Clough and Penzien 1993)) 

( )
( )

iner
k kF M Yβ β

β=   (18) 

Substituting Eqs. (12), (13) and (18) into Eq. (11) yields the set of nonlinear dynamic equilibrium (or motion) 
equations in compact form 

( ) ( )int iner
k k k kF F F 0β β β β+ − =  (19) 

or passing the notation from node β  and direction k  to degree of freedom ( )i d 1 kβ= − +  one writes Eq. (19) as 
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int ext
i i i i iF M Y F 0+ − =  or int extF Y F 0+ ⋅ − =



 

M  (20) 

in which M  is a diagonal mass matrix stored in a single vector and d  stands for dimension (3 or 2). It is interesting 
to recall that the internal force, Eq. (14) is calculated at the element level and globally assembled. 

2.3. Solution process - transient problem 

The equation of motion (20) is rewritten using compact notation as 

( ) ( )extUg Y Y Y F t 0
Y Y

+∂Π ∂
= = + ⋅ ⋅ − =
∂ ∂

   



 

  M C  (21) 

where, for convenience, one recovers the meaning of the internal force as the derivative of the strain energy 
regarding nodal positions, Eq. (14). The damping matrix is included as simply mass proportional, as it is not the 
objective of this study to have further discussions on this subject. Equation (21) is valid at any instant of the structural 
analysis and time is a continuous variable. However, the numerical solution requires time to be treated discretely, i.e., 
the current instant is calculated as the previous instant plus the time interval, such as 

s 1 st t t+ = + ∆  (22) 

in which s 1t +  is the current instant. Equation (21) is valid at the current instant and is rewritten as 

( ) ext
s 1 s 1 s 1 s 1

s 1 s 1

Ug Y Y Y F 0+
Y Y+ + + +

+ +

∂Π ∂
= = + ⋅ ⋅ − =
∂ ∂

   



 

  M C  (23) 

where, by simplicity, t  is omitted. The Newmark´s time integrator is used to solve Eq. (23) over time in the 
following form Warburton (1976) 

2
s 1 s s s s 1

1Y Y Y t Y Y t
2

β β+ +
  = + ∆ + − + ∆    

  

 

    (24) 

( )s 1 s s s 1Y Y 1 t Y t Yγ γ+ += + − ∆ + ∆
   

     (25) 

in which β  and γ  are free parameters of the method, adopted here as /1 4β =  and /1 2γ =  (Warburton 1976). 
It is of interest to write current velocity and acceleration as a function of current positions and known values of 

the past. In order to do that, it is enough to isolate these variables in Eqs. (24) and (25), as 

s 1 s s s 1
s 1 s s2 2 2 2

Y Y Y Y1Y 1 Y Q
2t t t tββ β β β

+ +
+

   = − + + − = −  ∆ ∆ ∆ ∆  

   







   (26) 

( ) s s
s 1 s 1 s s s s 1 s s2 2

Y Y 1Y Y Y t 1 Y 1 Y t Y R tQ
t 2 tt t

γ γγ γ γ
β β ββ β+ + +

     = + + ∆ − − + + − ∆ = + − ∆     ∆ ∆∆ ∆   

 



     

  

  (27) 

with 

s s
s s2

Y Y 1Q 1 Y
2t t ββ β

   = + + −  ∆ ∆   

 





  and ( )s s sR Y t 1 Yγ = + ∆ −  
  

   (28) 

Substituting Eqs. (26) and (27) into Eq. (23) results 

( ) ( )ext
s 1 s 1 s s 1 s s s 12

s 1

Ug Y Y Q Y R t Q F t 0
Y t

+
t

γ γ
ββ+ + + +

+

∂
= + − ⋅ ⋅ + ⋅ − ∆ ⋅ − =

∆∂ ∆

      





M CM C C  (29) 
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Equation (29) is reduced to ( )s 1g Y 0+ =


 , resulting in a nonlinear set of equations with the current position vector 

( )s 1Y +


 being the unknown. It will be solved by the Newton-Raphson procedure. 

A first-order truncated Taylor series expansion is performed as follows 

( ) ( )( ) 0 0
s 1 s 1 s 10 g Y g Y g Y Y+ + += ≅ +∇ ∆

    

    (30) 

in which 

( )
2 2

s 1 2 2 2 2
s 1 s 1

Ug Y
t tY Y t t

γ γ
β ββ β+

+ +

∂ Π ∂
∇ = = = + + = + +

∆ ∆∂ ∂ ∆ ∆







estatM C M CH H  (31) 

being estatH the static Hessian matrix given for a finite element and written for local nodes and global directions, 
see Eq. (8), as 

( ) ( ) ( )( )
( ) ( )

2 1 2 1jj i i k k0
ikik

0 00

Y Y Y YA
H 1 1 K Sαβ β α δ

 − − = − − +  
 

 



 (32) 

where α  and β  are local nodes numbers (1 or 2) and ikδ  is the Kronecker delta (or identity matrix). The global Hessian 
matrix is assembled in the same way of internal forces, but respecting advanced strategies for using sparse matrices 
solvers (The Harwell Subroutine Library Mathematical Software Library 2014). 

From Eq. (31) one writes the linear system used to find a position correction at the analyzed instant, i.e. 

( ) ( )0 0
s 1 s 1g Y Y g Y+ +∇ ⋅∆ = −
  

   or ( )0
s 1Y g Y +∆ = −⋅

 

H  (33) 

where 0
s 1Y +


 is a trial position. At the beginning of a time step the trial position is the solution of the previous step, i.e., 

sY


. Solving the position correction Y∆
  by Eq. (33) a new trial solution for s 1Y +

  is achieved by 

0 0
s 1 s 1Y Y Y+ += + ∆
  

 (34) 

The velocity and acceleration should be recalculated, at each iteration, using Eqs. (26) and (27) rewritten in a 
compact form as 

s 1
s 1 S2

YY Q
tβ
+

+ = −
∆







  and s 1 s 1 s sY Y R tQ
t

γ γ
β+ += + − ∆
∆

  

  (35) 

It is interesting to remember that sQ


 and sR  remain constant during iterations as they are values of the past. They 
are updated at the end of a time step. The stop criterion of the iterative procedure is given by 

( )0

ext

g Y
TOL

F
≤





 or 
Y

TOL
X

∆
≤



  (36) 

in which TOL  is the tolerance defined by the designer. 
When results converge 0

s 1Y +


 becomes the proper solution s 1Y +
  that, for the next step, will again be the first trial 

solution 
At the first time step the acceleration should be calculated by the equation of motion as 

1 ext
0 0 0

0

UY M F CY
Y

−  ∂
= − − ∂ 





   (37) 
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It is worth noting that the static process is the same, only all values containing mass and damping are neglected. 

3. ACTIVE ELEMENT (ACTUADTOR) AND ALTERNATIVE DUNAMIC RELAXATION PROCESS 

The search for the initial (natural) configuration of cables and cable networks will be made by the same element 
used to solve the mechanical problem. In order to do so a small modification of the presented formulation is necessary. 
The numerical procedure is inspired in mechanical actuators whose change in nominal (initial) length is made by 
controlling the volume of fluid inserted into their hydraulic chamber, regardless of whether or not external loading 
exists. In our finite element, we perform the control of the nominal length by imposing a length variation along the 
searching of cables natural initial position analysis.  

3.1. Imposed length variation  

In order to impose the length variation one applies (divided by load steps or time steps) an increment ∆  upon the 
original numeric length 0  of the finite element, creating the nominal length of the element, called here the natural 
initial length of the cable element 0n , as 

( )0n 0 t= + ∆    (38) 

in which t  represents time or load step and ( )0 0∆ =  and ( )0n 00 =  . The increment is applied until 0n  reaches its final 
desired value. The natural initial length substitutes the original initial length in all presented formulae. For example, the 
Green strain, Eq. (4) becomes 

2

2
0n

1 1
2
 

= −  
 





  (39) 

and the strain energy stored in a finite element, Eq. (6) becomes 

( ) ( )( )
( ) ( )

( ) ( )
2j j 2

j jj j 0 0n
e i e i0 0n 2

0n

A
U Y A u Y K 1

8
α α  

= = −  
 








  (40) 

that is, the referring space becomes the natural initial space (current undeformed length) of the structural 
element (cable). In practice, changing the length of the element changes the value of the internal force influencing the 
equilibrium equation, which changes the equilibrium configuration of the structure (cable) until achieving the natural 
position of the cable. 

3.2. Stress calibration 

For stress calibration on a cable element, we also use the concept of natural initial length, but the length variation 
to be imposed is calculated using the difference between the calculated stress cS  and the design stress dS  as 

( )( ) ( ( ) / )2 2c d
0n c d

c d

S S 2 S S K
S S

−
∆ = + − −

−
     (41) 

The calculated ∆  is applied in Eq. (38) throughout the Newton-Raphson iterative process until an acceptable ∆  is 
achieved. In this case an additional stop criterion is introduced 

c d

c d

S S
NTOL

S S
−

<
+

 (42) 

for which a new tolerance ( NTOL ) is also defined by the user. 
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3.3. Stress balance  

The difference between the stress balance technique and the stress calibration is that in the latter the stress level 
intended for a particular cable is predefined by the user, whereas in the former the final stress level is unknown and 
should be calculated in order to cables have the same final stress. 

Thus, for two finite elements, during each iteration of the Newton-Raphson method, the trial balanced stress ( dS ) 
stress is defined as a weighted average of the calculated stresses as 

c1 c2 1 1 2 2
d

1 1 2 2 1 1 2 2

S S A K A KS
A K A K A K A K

 
= +  + 

 (43) 

in which indices 1 and 2 represent local numbering for the two involved finite elements. From the knowledge of 
the trial balanced stress level one applies Eq. (41) for each element calculating 1∆  and 2∆ . These length changes are 
introduced in Eq. (38) throughout the Newton-Raphson iterative process until Eqs. (36) and (42) are satisfied. 

When the cable has high stiffness the required length change to achieve the desired stress is small and vice versa. 
Thus, the weighting proposed in Eq. (43) is such that the stress level is closer to the one presented by the cable 
element of lower stiffness.  

3.4. Alternative dynamic relaxation 

As it is well known, see Eq. (32), when cables stress levels are near zero or negative the static Hessian matrix is 
near singular or even singular. The alternative dynamic relaxation used here (called pseudo-dynamic) is based on usual 
dynamic techniques (Barnes 1977), in which the presence of mass and damping matrices in the total Hessian matrix 
(Eq. (31)) eliminates singularity.  

In classical dynamic relaxation it is necessary to calibrate the damping level so that it approaches the critical 
damping leading to a time solution that asymptotically leads the dynamic analysis of cables to the static natural initial 
position of the cable (Barnes 1977, Lewis et al. 1984). 

In the proposed alternative pseudo-dynamic relaxation technique the dynamic procedure is adapted by removing 
the inertial and damping forces, maintaining only the mass matrix and, if desired, the damping matrix, see Eq. (31). This 
procedure eliminates negative stresses (compression) that can be generated by inertial forces in the static portion of 
total Hessian. This procedure also eliminates vibration. 

In the proposed pseudo-dynamic relaxation, the total Hessian matrix results 

2
1

ite t
= +

∆
estat MH H  (44) 

in which ite  is the iteration number of the Newton-Raphson procedure that gradually reduces the mass influence and 
t∆  is a pseudo-dynamic time step. The experience of the user (structural designer) in dynamic analyses facilitates the 

choice of this pseudo t∆ . 
The solution process is the same described in section 2.3, however for each iteration the matrix dynamic 

contribution is reduced and, after convergence, an additional iteration is performed without the mass matrix, i.e., with 
= estatH H , that is, finding the static result for each pseudo time step. 

3.5 - Basic algorithms: 

 The algorithms presented in this section are separated by their use. The first summarizes the solution of the 
dynamic problem after finding the initial position of the structure. The second describes the static solution including 
the pseudo dynamic regularization to find the natural position. The last algorithm introduces both stress calibration 
and stress balance over the static solution. The first and the second use ∆  as input value and the last calculates it to 
find the design stress. 

3.5.1 - Dynamic Solution 
It is important to recall that a time step is called s . 
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a) The first trial solutions for position, velocity and acceleration, are assumed as the solution of the previous time 
step, i.e., 0

s 1 s 1 sY Y Y+ += =
  

, 0
s 1 s 1 sY Y Y+ += =
  

   , 0
s 1 s 1 sY Y Y+ += =
  

   . The updated value and the trial value are stored in the same 
vector as, at the end of iterations, they coincide with the step solution. 

b) Take the applied external force ( )ext
s 1 s 1F t+ +


, the prescribed position ( )s 1 s 1Y t+ +


 and/or the prescribed ∆  and calculate 

sQ


 and sR
  using expressions (28). 

c) Using the trial position and the imposed ∆ , compute the internal force int
s 1F +  by Eq. (14) and the static Hessian 

matrix estat
s 1+H  by Eq. (32).  

d) Assemble the global internal force and static Hessian matrix, complete the Hessian matrix with dynamic parts 
using Eq. (31). 

e) Assemble the unbalanced vector ( )s 1g Y +


  by Eq. (29), observe that at this point the inertial force is introduced. 

f) Solve Y∆
  by Eq.(33) 

g) Update the current position by Eq. (34) 

h) Update acceleration and velocity by Eq. (35) 

i) Evaluate /Y X∆
 

. 

 i1) If /Y X tol∆ <
 

 the equilibrium position is found at this time step. Store the solution of this step as past 

values for the next step (first trial), i.e., S S 1Y Y +=
  , S S 1Y Y +=

 

   and S S 1Y Y +=
 

  , go back to item (b) for the next time 
step. 

 i2)if /Y X tol∆ ≥
 

, go to item (c) and start a new iteration in order to improve the solution precision. 

3.5.2 - Static solution with pseudo dynamics 
In the static solution s  means a load or position step. 

a) The first trial solution for position is the solution of the previous step, i.e., 0
s 1 s 1 sY Y Y+ += =
  

. The updated value and the 
trial value are stored in the same vector as, at the end of iterations, they coincide with the step solution. Assume 
the first iteration as ite 1= . 

b) Take the applied external force ( )ext
s 1 s 1F t+ +


, the prescribed position ( )s 1 s 1Y t+ +


 and/or the prescribed ∆  all input 
values. 

c) Using the trial position and the imposed ∆ , compute the internal force int
s 1F +  by Eq. (14) and the static Hessian 

matrix estat
s 1+H  by Eq. (32).  

d) Assemble the global internal force and static Hessian matrix 

e) Complete the Hessian matrix with the pseudo dynamic part using Eq. (44). 

f) Assemble the unbalanced vector using this equation ( ) ( )ext
s 1 s 1

s 1

Ug Y F t
Y+ +

+

∂
= −
∂

 



  

g) Solve Y∆
  at Eq.(33) 

h) Update the current position by Eq. (34) 

i) Evaluate /Y X∆
 

. 

 i1) If /Y X tol∆ <
 

 go to item (c) and start the last iteration without executing item (e). The equilibrium 
position is found, store the solution of this step as previous values to the next step (first trial), i.e., S S 1Y Y +=

   go 
back to item (b) for the next step. 

 i2) If /Y X tol∆ ≥
 

, update ite ite 1= + and go to item (c) and start a new iteration in order to improve the 
solution precision. 
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3.5.3 - Static solution with stress calibration and stress balance 

This analysis occurs after the first natural static position is found by algorithm 3.5.2. It means that the input data 
are constant and satisfies equilibrium with the internal force. Additional ∆  are the new unknown for stress 
adjustments. 

a) The first trial solution for position is the solution of the previous step, i.e., 0
s 1 s 1 sY Y Y+ += =
  

. The updated value and the 
trial value are stored in the same vector as, at the end of iterations, they coincide with the step solution. 

b) Take the applied external force ( )ext
s 1 s 1F t+ +


, the prescribed position ( )s 1 s 1Y t+ +


 and/or the prescribed ∆  (that compose 

0n ) all input values that are now constant. 

c) Using the trial position and prescribed values, calculate stress cS  at element level by Eq. (15) considering (39). 

 c1) If there is stress calibration calculate the trial ∆  by Eq. (41) and update 0n  using (38) 

 c2) If there is stress balance calculate dS  by Eq. (43), the trial ∆  by Eq. (41) and update 0n  using (38) 

d) Compute the internal force int
s 1F +  by Eq. (14) and the static Hessian matrix estat

s 1+H  by Eq. (32).  

e) Assemble the global internal force and static Hessian matrix 

f) Assemble the unbalanced vector by equation ( ) ( )ext
s 1 s 1

s 1

Ug Y F t
Y+ +

+

∂
= −
∂

 



  

g) Solve Y∆
  at Eq. (33) 

h) Update the current position by Eq. (34) 

i) Evaluate /Y X∆
 

. 

 i1) If /Y X tol∆ <
 

 and /c d c dS S S S NTOL− + <  the equilibrium position and the designed stress are achieved. 

 i2) If /k kY X tol∆ ≥  or /c d c dS S S S NTOL− + ≥ , go to item (c) and start a new iteration in order to improve the 
solution precision. 

4. EXAMPLES 

The example section is divided in three cases. The first shows that the proposed active element and the 
pseudo-dynamic relaxation technique used together make possible to find the natural static position of cables and 
also give very good results in force. The second example shows that the proposed formulation is capable to solve 
loose cable nets, finding the natural static position and solving (in position and force) complicate loading situations. 
Finally, the third example is a particular interest of the proposed study by the importance of suspension bridges in the 
current engineering state of art. It is a study of a very long suspended bridge from its setting-up through an earthquake 
analysis. Readers interested in more benchmarks to check static formulations are invited to see, for example, 
Abad et al. (2013). 

4.1. Simple cable modelling 

This is a very simple example and is used to check the active element as a tool to find cable natural position 
(form-finding) and the positional truss finite element performance. The presented formulation is used to model a 
steel cable with the following properties: elastic modulus K E 210GPa= = , density / 37000kg mρ = , cross section radius 

2r 10 m−= . Two values are chosen for the cable length, .1L 10 5m=  and 2L 11m= . These cables should overpass a 
horizontal distance of 10m=  with a gravity acceleration of / 2g 10m s= , see Fig. 2. The numerical simulation is divided 
in three phases.  
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Figure 2 Horizontal cable subjected to self-weight 

In the first phase the pseudo-dynamic regularization is applied making / /2
tot estH H M t ite= + ∆  in which ite  is the 

number of numerical iteration of the Newton-Raphson procedure and .t 1 0s∆ =  is the fictitious time step. For this case 
only one load step is sufficient to find the final configuration. The initial configuration of the cable is straight with a 
length of 10m . One observes that after the convergence ( . 9tol 1 0x10−=  in positions) an additional iteration is performed 
without regularization. The transverse displacement of the center of the cable (sag) is, in this phase, .f 5 39cm= . 

In the second phase all cable elements are considered elastic actuators (actives) and their length are changed in a 
smooth way in order to avoid compression. The total length change is .L 0 5m∆ =  (for ,1L 10 5m= ), that is, .jL 0 025m∆ =  for 
each element (20 finite elements) divided in 100 pseudo time steps .t 0 01s∆ =  used to regularize the Hessian matrix. For 

2L 11m=  we adopt .jL 0 05m∆ =  for each element (20 finite elements) divided in 200 pseudo time steps of .t 0 005s∆ = .  
 The second phase result corresponds to the final cable position including the self-weight load and the flexibility 

of the cable. In the third phase we withdraw the load (one step) without regularization, in order to find the inextensible 
(natural) position of the cable. 

For .1L 10 5m= , the final displacement with the load is .loadf 1 39481m=  and without the load is .unloadf 1 39476m= , i.e., 
the difference is less than 55x10 m−  and, thus, the flexibility of this cable is negligible for the self-weight. 

 In Table 1 we present comparisons between numerical and analytical solutions (displacements and forces), in 
which H  represents horizontal forces and V  vertical forces at supports. Analytical solutions are well known and 
written in hyperbolic cosines and sines. One observes that the differences between solutions are very small. 

Table 1 Values comparison for 20 finite elements 

iL  anaf  unloadf  loadf  anaH  loadH  anaV  loadV  

10.5m 1.393m 1.395m 1.395m 202.228N 202.020N 115.448N 115.453N 
11.0m 2.003m 2.005m 2.006m 144.027N 143.893N 120.945N 120.945N 

Only to be complete, keeping the same physical properties, we modeled a cable with length .L 11 0m=  that should 
overpass the slopping distance between points (0,1)m and (10,2)m, see Fig. 3. The distance among supports is 

.0d 10 0499m=  and is used to define the initial configuration of the cable, see Fig. 3.  

 

A g⋅

10m

1m
2mf

1x

2x

 
Figure 3 Cable overpassing a slopping distance 
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We use the same phases of the horizontal cable and .2L 11 0m=  to run this case. For this length, we adopted 

jL 0.04750622m∆ =  for 20 elements and 200 pseudo time steps of .t 0 005s∆ = . As a result in force we have .anaH 147 328N= , 

.numH 147 187N= , 1
anaV 103.573N= , 1

numV 103.589N= , .2
anaV 138 317N= , .2

numV 138 301N= . 
 Both solutions are in equilibrium with the applied load and the maximum relative difference is less than 0.1%. 

Thus, we do not see any reason to use more than 20 finite elements for each cable to solve usual engineering 
problems. It is important to mention that the calculated vertical reaction is the automatic internal force plus the 
external force corresponding to half element connected to the support. 

 The number of variables stored to assemble the sparse Hessian matrix of 20 finite elements is 396 for a 3D 
analysis and 176 for a 2D analysis (The Harwell Subroutine Library Mathematical Software Library 2014). This number 
of variables is irrelevant for the current computational resources. The formulas ( )ST 18 nn 2 54= ⋅ − +  for 3D and 

( )ST 8 nn 2 24= ⋅ − +  for 2D analyses can be used to calculate the number of stored variables ( ST ) in the system of 
equations to solve a single cable with ( nn ) nodes. 

4.2. Cable net 

This example was proposed by Greco et. al. (2014) and is a 5-cable network as shown in Fig. 4a. It is an important 
example for the validation of cable structure solution codes. The authors used C-FDM to find an initial configuration 
and then solved load cases, one of which was chosen for comparison.  

As our formulation does not use a classical form-finding process, we will analyze the same problem using the 
active elements to find the natural initial position. The initial numerical problem is plane and has the following node 
initial coordinates ( . ; . ; )P1 0 5 0 25 0= , ( . ; . ; )P2 0 5 0 75 0= , ( ; ; )P3 0 0 0= , ( ; ; )P4 0 1 0= , ( ; ; )P5 1 0 0=  and ( ; ; )P6 1 1 0= , see Fig. 4a. We use 4 
different meshes, for all of them the division of cables 1, 2, 4 and 5 has two times more elements than cable 3. The 
number of elements adopted for cable 3 that defines the discretization is 5, 10, 20 and 40, resulting in discretization 
with 46, 91, 181 and 371 nodes, respectively.  

 

 
(a) (b) 

 

 
 

 
Figure 4 (a) Initial configuration, (b) Final configuration for 91 nodes 

The cables properties are K E 175MPa= = , / 37000kg mρ =  and . 4 2A 2 857x10 m−= . The adopted gravity acceleration is 
/ 2g 10m s= , resulting in the same load used by reference, i.e., /q 20N m=  accompanying the current position.  

The search of the natural self-weight configuration is divided in three phases. The first uses the pseudo-dynamic 
regularization with fictitious time step .t 1 0s∆ =  with a total of 10  steps. Fig. 5 shows the equilibrium configuration and 
cable force distribution at the end of phase 1. 
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Figure 5 Displacements and cable normal force for phase 1 - 91 nodes 

In phase 2 we applied 100 static steps without Hessian regularization pulling support 6 until position ( ; ; )P6 1 1 1= . In 
Fig. 6 final position and normal forces for all cables at the end of phase 2 are shown. 

 
Figure 6 Displacements and cable normal force for phase 2 - 91 nodes 

In phase 3, we apply the pseudo-dynamic Hessian regularization with .t 0 1s∆ =  and apply a change of length for all 
finite elements in 100 steps. The initial lengths of the finite elements are calculated from the initial configuration (Fig. 
4) and the final lengths are given by the length of cables (Greco et al. 2014).To facilitate the reproduction of this 
example, the initial and final lengths are given in Table 2. Figure 7 presents the final displacement results and normal 
forces in cables.  

Table 2 Initial and final lengths of cables 

( ) /L m Cable  1 2 3 4 5 

0l  0.5590 0.5590 0.5000 0.5509 0.5590 

n0 fl l=  1.2887 1.2887 0.5912 1.1874 2.0978 
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Figure 7 Displacements and forces in cables – 381 nodes 

Table 3 compares horizontal forces at points 3, 4, 5 and 6 (see Fig. 4) with values given by Greco et al. (2014). 
Table 4 compares the vertical forces.  

Table 3 Horizontal forces (N) 

Discr./point Node 3 Node 4 Node 5 Node 6 

46 5.87573 5.87964 5.87715 5.87748 
91 5.86845 5.87357 5.87297 5.86665 

181 5.86672 5.87203 5.87192 5.86404 
371 5.86630 5.87168 5.87168 5.86342 

Reference 5.87000 5.87000 5.87000 5.87000 

Table 4 Vertical forces (N) 

Discr./point Node 3 Node 4 Node 5 Node 6 

46 27.93301 25.33133 27.93467 47.87679 
91 27.92903 25.33023 24.93427 47.88235 

181 27.92804 25.32961 24.93406 47.88422 
371 27.92777 25.32947 24.93399 47.88472 

Reference 27.92800 25.32800 24.93400 47.88700 

Using the values of Tables 3 and 4, it can be seen in Fig. 8 that, for any discretization, forces are practically the 
same as those presented by the reference for any discretization used, i.e., the convergence of results is very fast. 
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Figure 8 Relative difference among forces at extremities * /discr ref refrd 100 F F F= −  



Alternative active nonlinear total Lagrangian truss finite element applied to the analysis of cable nets and 
long span suspension bridges 

Humberto Breves Coda et al. 

Latin American Journal of Solids and Structures, 2020, 17(3), e268 16/30 

Table 5 compares the final positions found for points 1 and 2 of Fig. 4 (elastic case) with those given by Greco et al. 
(2014). As can be seen, there is no noticeable difference. 

Table 5 Comparison of free node positions for various discretizations (m) 

Coord./Node X Y Z 
ref

1P  0.499300 0.249900 -1.11480 

46
1P  0.499984 0.249294 -1.11655 

91
1P  0.499947 0.249757 -1.11524 

181
1P  0.499938 0.249872 -1.11491 

371
1P  0.499936 0.249905 -1.11482 

ref
2P  0.499400 0.750000 -0.99630 

46
2P  0.499856 0.750818 -0.99789 

91
2P  0.499540 0.750211 -0.99673 

181
2P  0.499470 0.750060 -0.99643 

371
2P  0.499452 0.750019 -0.99636 

The analysis is continued by applying an increasing horizontal force at point 2 until the value ( ), ,F 0 100 0 N= −
 . 

We adopted the discretization called 371 and 100 for pseudo time steps .t 0 1s∆ = . Figure 9 presents graphics that relate 
the forces at points 3, 4, 5 and 6 to the intensity of the applied force at point 2. It is important to mention that these 
results are in very good agreement with ones presented by Greco et al. (2014). 

 
Figure 9 Horizontal and vertical forces at supports  

In order to show that coarser discretizations also give excellent results, we show in Fig. 10 the relative difference 
among forces at the extremity of cable 4 ( /371 i 371dr 100 F F F= ⋅ − ) for discretization i  (number of nodes) regarding 
discretization 371 for the same increasing loading. As one can see the largest difference is of . %0 35  in the vertical 
reaction for discretization 46. 
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Figure 10 Relative difference at extremity of cable 4 

 Finally, Fig. 11 shows the vertical displacements of nodes 1 and 2 for the same increasing force applied at 
node 2 and Fig. 12 shows some snapshots for the load levels. 10N , 30N , 60N  and 100N . 

 
Figure 11 Displacements for nodes 1 and 2 for horizontal increasing applied force. 

 
Figure 12 Snapshots for different load levels 

These first two examples show how the solution of cables and cable networks can be accurately made using 
positional geometric nonlinear truss elements associated with pseudo dynamic regularization and active element 
strategy. Moreover, it is observed that the solution convergence is very fast and that only 10 truss elements per cable 
length is sufficient to have very satisfactory answers to static problems. Next example is important to show the 
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capacity of the proposed formulation, i.e., to solve a very flexible suspended structures (in this case a bridge) from this 
setting-up through an earthquake response. 

It is important to note that the number of variables stored to constitute the sparse Hessian matrix of 10 finite 
elements is 216 for a 3D analysis and 96 for a 2D analysis (The Harwell Subroutine Library Mathematical Software 
Library 2014). This number of variables is irrelevant for the current computational resources. 

4.3. Very long suspended bridge 

After verifying that the proposed active truss element (associated with the pseudo-dynamic regularization 
technique adopted here) are able to solve cable and cable network problems, we solve a 4020m long suspension bridge 
with 2000m center span and 1000m of secondary spans, see Figs. 13, 14 and 15. Due to scale, some dimensions are not 
shown in figures, the pillars width is 10 m, the height of the girder is 15m and the distance of the lower points of main 
cables to the girder surface is 15m (at extremities of the bridge). At the center of the bridge the initial distance of the 
lower point of the main cable to the girder surface is 15m, but this distance will change in the process of the bridge 
setting-up. Moreover, pillars are square constituted by truss elements and the girder has 40m of width. This example is 
inspired in the Akashi-Kaikyo bridge Japan. Although not being the same problem, some mechanical information are 
adapted (not equal) to the ones given in Furuya et al. (1994), Yim (2007) and Miyata and Yamaguchi (1993) and other 
cited therein.  

 

1000m 1000m2000m

240m

75m

 
Figure 13 Basic dimensions of the modeled bridge - 2D model mesh. 

 
Figure 14 General vision of the adopted 3D mesh 

 
Figure 15 Detail of girder, pillar, main and suspension cables - 3D mesh and nodes 
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The structural elements have the following cross sections: main cables . 2
mcA 1 131m= , suspension cables 

. 2
scA 0 0341m= , pillar truss elements . 2

pbA 0 784m= , main girder bars . 2
mgA 0 085m=  and secondary girder bars . 2

sgA 0 0304m= . 

The adopted material has elastic modulus of K E 200GPa= =  and mass density / 37000kg mρ = . In order to calculate the 
self-weight we used / 2g 10m s=  as gravity acceleration. We increased in 2.5% the girder (3D model) bars self-weight as 
additional loading (traffic and equipments). 

For both discretizations (2D or 3D) we used 50 truss elements to model each main cable of secondary spans and 
100 elements to model the central span main cables. 

The solution of the problem involves (i) positioning the main cables using a 2D model and performing stress 
balance, (ii) the static solution of the 2D and 3D models without adjusting the suspension cables, (iii) adjusting the 
suspension cables to the proper positioning of the girder in its ideal static configuration (2D and 3D), (iv) shortening of 
loose cables (2D and 3D), (v) the transient dynamic analysis of the bridge under 3D real seismic shake and, 
(vi) determining the frequencies and modes of vibration of the positioned 3D structure susceptible to the shake. 

i) Positioning the main cables 

In order to find the natural initial position of main cables we begin with a two-dimensional analysis in which these 
cables are modeled with straight initial configuration, as shown in Fig. 16.  

 
Figure 16 Initial straight and deformed loaded cable with final stress level (GPa) 

In the first phase we use the pseudo dynamic regularization with time step 2t 10 s−∆ = , self-weight load of 
. /q 79 17kN m= . All cable elements are considered actives with time proportional increase from initial numerical straight 

length until reaching the full length. For each element of the central span we use c 0.63875m∆ =  and for each element of 
the secondary spans we use 0.15m∆ =



 .  
With these elongation values, the normal stresses found (in the loaded phase) in the juxtaposed cable elements at 

the top of the towers are .168 9MPaS =


 and .c 168 4MPaS = , that is, almost equilibrated. In the second phase, keeping the 
loading and the initial stretching, the stress balancing cS S=



 is imposed by Eq. (43) with a tolerance of 5tol 10−= . As the 
structure is stable, this phase is statically solved resulting in equal stresses cS S 168.48583MPa= =



 with a small length 
alteration for the connected cables at pillars, i.e., .c 0 0422m∆ = −  and .0 0423m∆ =



 . Thus, the central cables become with 
total initial loaded length of .c 2063 7906m=  and secondary cables with .1007 5423m=



 .  
In the third phase, using the pseudo-dynamic regularization with the same number of time steps, we removed the 

self-weight loading to achieve the node coordinates to be used in the bridge discretization of Figs. 17 and 18 (initial 
natural position). As additional information, the sag at the central cable is 224.110m when loaded and e 221.311m 
unloaded.  

ii) Static solution of the 2D and 3D models without adjusting the suspension cables 

Using the natural coordinates of the isolated cable analysis, we generate the discretizations presented in Figs. 17 
and 18 for the 2D and 3D models respectively. The 2D model has 1676 nodes and 2757 elements. The 3D model has 
5986 nodes and 19405 elements. The 2D model girder loading is calculated from the loading of the 3D model to give 
the same overall weight for the complete structure. This load is equally distributed in all 2D girder elements as 

/tq 20kN m=  and in the pillars elements as . /pq 276 5kN m= . 
The 2D solution is performed in a single phase with pseudo dynamic regularization with only one time step of 
.t 1 0s∆ = . The deformed configuration is presented in Fig. 17 with details for loose cables. 
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The 3D model is less stable than the 2D model in this phase of analysis. Thus, a restriction of displacement in the z 
direction is applied for all girder points until the equilibrium position is determined. A pseudo time interval of 2t 10 s−∆ =  
is used along 100 steps. One may observe that the loading is applied proportionally to the time achieving 100% at the 
end of the analysis. The applied load is of self-weight plus 2.5% in the girder region, as previously described. The z 
displacements are released and a 3D static step is performed revealing the stability of the equilibrium configuration. 
The achieved results are shown in Fig. 18.  

 

 
(a) Central detail (b) Loose cable 

 

 
(c) General view (d) Values 

  
Figure 17 2D model vertical displacement profile, unit (m) 

 
 

(a) Central detail (b) Loose cables 

 

 
(c) General view (d) Values 

  
Figure 18 3D model vertical displacement profile, unit (m) 
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As it can be seen, the 2D and 3D vertical displacement profiles are similar. Contrary to what is expected, the 3D 
displacement is slightly higher than the 2D due to a redistribution of loading in the main cables resulting in less 
displacement near the pillars and extremities and greater at the central region. This redistribution is promoted by the 
stiffness of the girder that is secondary in the global stiffness of the structure. 

iii) Adjusting the suspension cables to the proper positioning of the girder in its ideal static configuration (2D and 3D) 

We impose a reduction of the suspension cables lengths equal to 1.2 times the girder displacement, immediately 
below the respective cable. This reduction is applied in just one pseudo dynamic step 2t 10 s−∆ =  with pseudo-dynamic 
regularization for both 2D and 3D models. Figures 19 and 20 show the new positions of the central girder with details 
for loose cables. 

 

 
(a) Central detail (b) Loose cables 

 

 
(c) General vision (d) Values 

 
 

Figure 19 Vertical displacement profile for the 2D model after shortening of cables 

 

 
(a) Central detail (b) Loose cables 

 

 
(c) General view (d) Values 

  
Figure 20 Vertical displacement profile for the 3D model after shortening of cables 

iv) Shortening of loose cables (2D and 3D) 

In this item we apply stress control over loose cables. For both 2D and 3D models we take 7 cables from pillars 
through the main and secondary spans (for the 3D model it is a total of 28 cables) and impose that the stress at cables 
should be at least S 25MPa= . For both models the relative tolerance in stress is .NTOL 0 02=  see Eq. (41). Figure 21 
presents stress results for the two models in suspension cables near pillars. Figure 22 presents stresses at cables in the 
central region of the longest span. There is no noticeable change of overall displacements. 
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2D Stress GPa 3D 

 
 

Figure 21 Stress values for cables near pillars in GPa. 

 
2D 

 

 

 
3D 

 
 

 
Figure 22 Stress values at the center of the main span GPa 

The maximum stress at main cables occurs near pillars and are cS 426MPa=  and S 425MPa=


 for the 3D model. 
For the 2D model values are cS 407MPa=  and S 405MPa=



 the difference is explained by the difference of girder stiffness. 
Figure 23 shows an overview of the final stresses in the structure at its static configuration. Figure 24 shows a 3D 

view of the final static equilibrium configuration with all cables stretched.  

  
Figure 23 Three-dimensional view of the stress distribution - GPa 
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Figure 24 Final configuration after stretching suspension cables (displacements (m)). 

v) Transient dynamic analysis of the bridge under 3D real seismic shake. 

This item shows the formulation's ability to simulate real structures subjected to actual seismic events. The chosen 
seismic event is that of Superstation Hill in 1987. The original unscaled time series record has been extracted from PEER 
Ground Motion Database (2014) with a time interval t 5 ms∆ =  and is used in the FEM processing. Both vertical (UP) and 
horizontal (90) and (360) accelerations are transformed into displacements (m) and applied as base movements in the 
time domain. The horizontal base motion (90) is applied in the longitudinal direction of the bridge and the (360) in the 
transverse direction. As the bridge is very long we considered the propagation velocity of the earthquake 
approximately /V 2800m s=  for all wave components. It introduces a difference of phase in the base motions, shown in 
Fig. 25. The wave arrives at one extremity of the bridge and follows its longitudinal direction (plane wave far from its 
origin). 
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Figure 25 Vertical base motion at the four supports. 

Figure 26 shows the horizontal motion at the top of the first tower compared with the horizontal motion 
(earthquake input) pattern of the first support. This movement is the most significant for the tower. 
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Figure 26 First pillar horizontal displacement (bridge direction). 

Figure 27 shows the vertical displacement at the center of the bridge (at one face) compared to the vertical 
movement pattern imposed on the first support. It is possible to estimate the natural frequency of the bridge from the 
presented motion vertw 1.518 rad/s=  or vertf 0.242 Hz= . The estimated period is .T 4 14 s=  
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Figure 27 Vertical displacement at the bridge center 

We observe that the displacement in the center of the bridge is different on each face, thus the difference 
between these displacements is shown in Fig. 28, which shows the excitation of the "torsion mode" of the bridge. Only 
as a reference value we show the vertical input in the first span support. 
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Figure 28 Difference of vertical displacements at the bridge center 

In Fig. 29 we show the normal stress behavior for the two vertical cables in the center of the central span. 
As observed, the behavior presents a very high frequency not directly related to the central motion indicated in Fig. 27. 
However, a visual analysis of the mean tension reveals that this is following the main movement. Another detail is that 
there is no inversion of stress and, therefore, the cable is always tensioned. 
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Figure 29 Central suspension cables stress behavior. 

Figure 30 shows the normal stress for the main cables (in the center of the longest span). In this case it is clear 
that the mean value of the stresses follows the bridge's vertical vibrating frequency. The largest difference between 
dynamic and static stress is approximately 7.5%. 
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Figure 30 Stress behavior of the main cables (center of main span) 



Alternative active nonlinear total Lagrangian truss finite element applied to the analysis of cable nets and 
long span suspension bridges 

Humberto Breves Coda et al. 

Latin American Journal of Solids and Structures, 2020, 17(3), e268 26/30 

Fig. 31 shows stresses for bars at the meeting between the pillar and the central span. The vertical pillar bar (with 
negative tension) has no stress inversion, while the horizontal connection bar (in the girder) has little stress inversion. 
However, it is a very robust bar and the stress level is very low. Both bars present high frequencies in the stress 
behavior, that is, the more significant displacement (vertical at the center of the bridge) does not induce high 
difference in stress at these points. 
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Figure 31 Pillar - girder stress level at truss bars. 

After analyzing the vibration modes of the structure (see next sub-item) we chose to observe the vertical 
displacement of the central point of the first span, see Fig. 32. This motion shows that the critical point for vertical 
displacement of the analyzed structure is the central point of lateral (secondary) spans, not at central span as depicted 
in Fig. 27. 

 
Figure 32 Vertical displacement at the center of the first span 

vi) Determining the frequencies and modes of vibration of the positioned 3D structure 

Taking the 3D structure in its final static (loaded) configuration, shown in Fig. 24, we analyze the natural 
frequencies and associated modes of vibration of the structure (case1) in the range . / . /1 4171rad s w 1 5794 rad s< <  in order 
to check the activated modes during the imposed earthquake of item iv, see text before Fig. 28. We achieved 
73 vibration modes within the interval and, the most important ones (due to the amplitude of the girder motion when 
compared to cables) are depicted in Fig. 33. This result confirms the conclusion of both modes identified in the 
transient analysis, Figs. 27 and 28. 
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Figure 33 Two most important vibration modes with suspension cables 

It is interesting to note the suspension cables movements that take place when the bridge is vibrating, Fig. 33. 
There are various intermediate frequencies dominated by suspension cables movements and there are also 
movements dominated by the main cables movements. In Fig. 34, omitting suspension cables, more detailed views of 
the two important modes are shown. 

 
Figure 34 Vibration modes without suspension cables 
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In the analyzed interval there are modes presenting horizontal motion of main cables with small influence in the 
girder movement, see, for example, Figs. 35, 36 and 37. 

 
Figure 35 Main cables superior view for . /nw =1 4841rad s  

 
Figure 36 Main cables superior view for . /nw =1 5767 rad s  

 
Figure 37 Main cables superior view for . /nw =1 5768 rad s  

5. CONCLUSIONS 

In this study we presented an alternative total Lagrangian finite element strategy to analyze cable structures, 
cable nets and mixed structures (cable/truss). Some functionalities as stress balance for contiguous elements and stress 
calibration for shortening loose cables are based on the presented active element idea. Other important feature of the 
finite element strategy is the presented pseudo-dynamic relaxation, which - eliminating inertial forces - reduces the 
presence of compression in finite element form finding analysis at the same time that improves the Hessian matrix 
conditioning.  

The first two examples show that the formulation can analyze simple and complex cable and loose net problems. 
The adopted sparse matrix computation scheme shows that for nowadays computational resources the number of 
variables is small, even using truss elements to model cables. It also can be seen, in the third example, that the number 
of nodes related to cables is much smaller than the ones associated to the truss (girder) structure. 

The third example (suspension bridge with a 2000m central span) demonstrates the applicability of the developed 
proposed active element. It shows the capacity and adequacy of the proposed formulation in modeling highly nonlinear 
structures, from its setting-up process through its dynamic response (earthquake excitation).  

Using the proposed active finite element it is possible, in the setting-up analysis, the determination of the initial 
position of main cables, the stress balance at main cables through pillars, the stretching of loose suspension cables and 
the determination of the bridge form for utilization purposes. 

The transient analysis is also successfully performed. A real seismic excitation is imposed on the structure and a 
preliminary value for the important vibration frequency could be determined. A study of the natural frequencies in an 
interval estimated by the transient analysis makes possible to find the important frequencies that was excited by the 
earthquake, improving the understanding and the future design of this kind of structure. Thus, the proposed FEM 
strategy is simple and general and can be used in the design process of outstanding engineering problems. 
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