
 ORIGINAL ARTICLE 

 

Received August 20, 2019. In revised form November 25, 2019. Accepted November 27, 2019. Available online December 05, 2019 
https://doi.org/10.1590/1679-78255772 

 
Latin American Journal of Solids and Structures. ISSN 1679-7825. Copyright © 2020. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Latin American Journal of Solids and Structures, 2020, 17(1), e242  1/37 

A NURBS-based finite element formulation for incompressible fluid 
dynamics and fluid-structure interaction with rigid bodies 

Patrícia Tonona , Mateus Guimarães Tonina , Luis Felipe Espatha , Alexandre Luis Brauna*  

a Centro de Mecânica Aplicada e Computacional (CEMACOM), Programa de Pós-Graduação em Engenharia Civil (PPGEC), Universidade 
Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil. E-mail: patricia_tonon@hotmail.com, mateus.tonin@ufrgs.br, 
espath@gmail.com, alexandre.braun@ufrgs.br 

*Corresponding author 

http://dx.doi.org/10.1590/1679-78255772  

Abstract 
A numerical investigation is performed here using a NURBS-based finite element formulation applied to 
classical Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction (FSI) problems. Model 
capabilities related to refinement techniques are analyzed using a finite element formulation with NURBS 
(non uniform rational B-splines) basis functions, where B-splines and low-order Lagrangian elements can be 
considered as particular cases. An explicit two-step Taylor-Galerkin model is utilized for discretization of the 
fundamental flow equations and turbulence is considered using Large Eddy Simulation (LES) and the 
Smagorinsky’s sub-grid scale model. FSI is considered using an ALE kinematic formulation and a conservative 
partitioned coupling scheme with rigid body approach for large rotations is adopted. CFD and FSI 
applications are analyzed to evaluate the accuracy associated with the different refinement procedures 
utilized. Results show that high order basis functions with appropriate refinement and non-uniform 
parameterization lead to better predictions, compared with low-order Lagrangian models. 
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1 INTRODUCTION 

Although the use of finite volume models is still a common practice in the field of Computational Fluid Dynamics 
(CFD), the Finite Element Method (FEM) has gained some popularity in the last decades with significant advances 
observed in computers technology (see, for instance, Zienkiewicz et al., 2013; Reddy and Gartling, 2010). In the FEM 
context, the flow domain and the fundamental flow equations are spatially discretized using isoparametric finite 
elements with Lagrangian basis functions, where linear basis with C0-continuity are usually adopted. However, the 
discretization procedure may lead to approximation errors, which may be significant depending on the geometrical 
characteristics of the physical model to be investigated. In addition, highly nonlinear and small-scale problems, 
especially turbulent flows, demand for high order discretization in both spatial and time domain. In order to overcome 
these drawbacks some improvements have been proposed to the finite element formulation, such as the use of NURBS 
(non uniform rational B-splines) basis functions, which are extensively utilized in Computational Aided Design (CAD) 
(see Piegl and Tiller, 1997). With this improvement, many possibilities with respect to refinement procedures may be 
conceived, in spite of some shortcomings that are also observed. 

In the field of Engineering Design, computational reproduction of physical models has been traditionally 
performed using numerical tools based on CAD technologies, where NURBS are very popular. NURBS can 
exactly reproduce all conic sections and present convenient mathematical properties, such as Cp-1-continuity 
order for p-degree basis functions, convex hull and variation diminishing properties (see, for instance, Piegl and Tiller, 
1997). Recent advances have extended NURBS formulation by using T-splines (Sederberg et al., 2003), which permitted 
local refinement and compatibility of adjacent patches efficiently. By using NURBS functions in a finite element 
formulation, pre-processing and analysis procedures become unified, considering that the same numerical tools are 
employed. 

However, when NURBS basis functions are utilized in finite element modeling, the numerical scheme must be 
reformulated in order to take into account a new framework for spatial interpolation. Basic concepts associated with 
control points and splines are introduced considering the formulation proposed in the automotive industry by De 
Casteljau and Bezier (see Townsend, 2014 for additional details), who utilized Bernstein polynomials and control points 
for manipulating geometric forms mathematically. De Casteljau observed that a curve could be accurately represented 
by manipulating some points around the curve and not along its length. By moving these points of influence (i.e., the 
control points), he noticed that the curve was modified such as moving weights in a boat builder spline. Later, the 
Bezier method was developed using similar concepts (see Bezier, 1972), which was surmounted by a recursive 
algorithm proposed by de Boor, where B-spline functions conceived by Schoenberg (1946) were adopted. 

Other concepts were introduced with the B-spline functions, such as piecewise polynomials and knot vectors, 
which define the local support where a function is not null within the parametric space, considering that the 
parametric space is decomposed into knot spans by using breakpoints (knots). B-splines provide great flexibility for 
reproduction of geometries since the action of the control points is localized. In addition, B-splines can be seen as a 
generalization of Casteljau’s algorithm, including the Bezier method as a special case. Further improvements were 
obtained from the aerospace industry, where the existing methods were unable to handle with designing and 
assembling of aircraft components. NURBS were then conceived considering rational B-splines and knot vectors with 
non-uniform knot spans. By using control points with variable weighting, it was possible to draw conics exactly as well 
as reproduce complex curves and surfaces accurately (see Piegl and Tiller, 1997). NURBS-based finite element 
formulations have been widely applied to a variety of engineering problems, from solid mechanics (Espath et al., 2014; 
Espath et al., 2015) to material science (Gomez et al., 2008). 

A NURBS finite element formulation for CFD applications presents significant improvements over the classical 
Lagrangian finite element formulation. Complex flow phenomena, such as boundary layer and turbulent flows, 
separation, and reattachment are better reproduced considering that different flow regions can be discretized using 
distinct combinations of degree and continuity order associated with the interpolation functions. These basis functions 
are always smooth (C∞) within the knot span and are Cp-m continuous at the knots, where p is the polynomial degree 
and m is the knot multiplicity. Nevertheless, NURBS basis functions are not interpolatory in general since the control 
mesh defined by the control points does not conform to the actual geometry of the physical model. Notice that flow 
variables and coordinates are defined at the control points. The flow spatial domain may be decomposed into patches, 
depending on its geometric complexity, where independent parametric spaces are adopted considering that they must 
be compatible on patch interfaces. Every patch is also decomposed into knot spans, which define the element concept 
in a NURBS-based finite element formulation. Most of the classical flow problems can be simulated using a single 
patch, although multiple patches can also be utilized in order to obtain a more efficient discretization. Finite element 
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formulations with NURBS basis functions applied to CFD and FSI problems may be found in Bazilevs et al. (2006), 
Gomez et al. (2010), Nielsen et al. (2011), Akkerman et al. (2011), and Kadapa et al. (2015). 

Unlike the standard finite element refinement techniques, B-spline refinement can control element size as well as 
degree and continuity order of the basis functions. The basic refinement techniques associated with B-splines are knot 
insertion and degree elevation, which do not change the physical model geometrically or parametrically. By using knot 
insertion, the solution space is enriched with additional elements, control points, and basis functions, but without 
changing the geometry. Knot insertion is equivalent to h-refinement adopted in the finite element modeling only when 
knots are inserted with multiplicity m = p in order to maintain the basis functions with C0 continuity. In general, knots 
can be inserted with multiplicity m = 1, maintaining the original continuity of the basis functions, independently of the 
polynomial degree. This aspect cannot be replicated with a standard finite element formulation. 

When order elevation is performed, knot multiplicity of the existing knots is also increased in order to 
maintain the original continuity order of the basis functions along the element boundaries and no new knots are 
created. Notice that the classical p-refinement utilized in finite element modeling must be initially applied over 
basis functions with C0-continuity, while p-refinement for B-spline discretizations can be adopted using any continuity 
order. This aspect cannot be replicated with a standard finite element formulation. An exclusive technique for B-spline 
refinement is obtained by using degree elevation followed by knot insertion, which is called k-refinement. One can 
notice that a NURBS-based finite element formulation becomes highly flexible with respect to continuity order of the 
basis functions and other refinement methods can be devised. Additional information on refinement methods for finite 
element formulations with NURBS basis functions are found in Cottrell et al. (2009). 

In this work, a NURBS-based finite element formulation is proposed considering the explicit two-step Taylor-Galerkin 
model, where spatial discretization is carried out taking into account B-splines and NURBS basis functions. 
The fundamental flow equations are the Navier-Stokes equations and the mass conservation equation, which is 
described according to the pseudo-compressibility hypothesis for incompressible flows and Newtonian fluids under 
isothermal conditions. In the present model, idealized 2D turbulent flows are simulated using a LES-type (Large Eddy 
Simulation) approach, where the Smagorinsky’s model is adopted for sub-grid scale modeling. Fluid-structure 
interaction (FSI) problems are reproduced using a conservative partitioned coupling model and a rigid body approach 
for large rotations. Finally, classical CFD and FSI applications are analyzed in order to validate the present methodology, 
where different refinement procedures are adopted and investigated. 

2 FUNDAMENTAL EQUATIONS 

2.1 Flow analysis 

In the present model, the flow analysis is performed considering the following assumptions: fluid particles are described 
constitutively according to the Newtonian model for viscous fluids, and the flow is two-dimensional and restricted to the 
incompressible regime under isothermal conditions. In addition, fluid body forces are neglected and a mixed approach is 
adopted for variables definition, where the pressure field is explicitly evaluated using the pseudo-compressibility hypothesis 
(see Chorin, 1967). An Arbitrary Lagrangian-Eulerian (ALE) formulation is adopted for the kinematical description of 
fluid motions when fluid-structure interaction is considered, and turbulence flows are approximately reproduced using 
Large Eddy Simulation (LES) and the Smagorinsky’s sub-grid scale model (Smagorinsky, 1963). Thus, the system of 
fundamental flow equations may be written as follows (see, for instance, White, 2005): 

Momentum balance equation 

      f1
         , 1,2          in SGSi i

j j ij ij
j j

v v
v w i j

t x x
 


  

     
  

  (1) 

Mass balance equation 

2 f0              ( 1,2)              in j

j

vp
c j

t x



   

 
  (2) 

where vi and wi are the components of the flow velocity vector v and mesh velocity vector w, respectively, which 
correspond to the i-direction of a rectangular Cartesian coordinates system, where coordinates components are 
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denoted by xi, p is the thermodynamic pressure, ρ is the fluid specific mass and c is the sound speed in the flow field. 
Although the sound speed c usually has a strict physical meaning, this parameter is considered here as a numerical 
parameter in order to satisfy the incompressible flow condition (divergence-free velocity field). The fundamental flow 
equations are valid in the flow spatial domain Ωf, which is bounded by Tf

t at a time instant t, with t ∈ [0, T], where the 
subscript t indicates time dependence on the spatial domain during the time interval [0, T]. 

The fluid stress tensor σ is given according to the Newtonian constitutive model for viscous fluids, that is: 

          , 1,2ij ij ijp i j        (3) 

with: 

          , , 1,2ji k
ij ij

j i k

vv v
i j k

x x x
   

           
  (4) 

where μ and λ are the dynamic and volumetric viscosities of the fluid and δij are the components of the Kroenecker’s 
delta (δij = 1 for i = j; δij = 0 for i ≠ j). 

Idealized turbulence flows are simulated here using a LES-type approach, where the fundamental flow equations 
are submitted to spatial filtering in which the flow field is decomposed into large and small-scale components. Large 
scales are solved directly utilizing the filtered equations, while scales smaller than the mesh resolution are defined by 
the sub-grid stress tensor τSGS, which must be modeled considering a turbulence closure model. Turbulence models are 

utilized in order to represent the small-scale effects over the large scales. The sub-grid stress tensor components SGS
ij  

are usually approximated according to the Boussinesq assumption, that is: 

 2          , 1,2SGS
ij t ijS i j     (5) 

where ijS  are components of the filtered strain rate tensor. In the present work, eddy viscosity μt is obtained 

considering the Smagorinsky’s sub-grid scale model, which may be expressed as follows: 

St SC     (6) 

where CS is the Smagorinsky constant, which must be specified according to the flow characteristics, with values usually 
ranging from 0.1 to 0.25, and   is the characteristic length of the spatial filter, which may be locally defined as 

E    for a box filter (see Smagorinsky, 1963 for additional details), where ΩE is the finite element area referring 

to element E. When laminar flows are investigated, the sub-grid stress tensor components SGS
ij  are omitted in Eq. (1). 

It is important to notice that the present approach is only an approximation of the actual LES, considering that a 
turbulent flow is inherently three-dimensional. 

In order to solve the flow problem, initial conditions on the flow variables vi and p must be specified. In addition, 
appropriate boundary conditions must also be defined on Tf

t , which may be expressed as: 

fsi
t          ( 1,2)          on i iv w i     (7) 

v          ( 1,2)          on i iv v i     (8) 

p                    on p p    (9) 
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tjn n           ( 1,2)          on ij ij ij j ip i          
   (10) 

where fsi
t  (boundary representing the fluid-structure interface), v  (boundary with prescribed velocity iv ), p  

(boundary with prescribed pressure p ) and   (boundary with prescribed traction ti ) are complementary subsets of 
Tf
t , such that Tf

t = fsi
t ∪ v ∪ p ∪  . In Eq. (10), nj are components of the unit normal vector n evaluated at a 

point on boundary  . Notice that wi = 0 for points outside the ALE domain or when motions of the immersed body 
are not considered in the flow analysis. 

2.2 Fluid-structure interaction 

The fluid-structure coupling is accomplished by enforcing equilibrium and kinematical conditions on the 
fluid–structure interface fsi

t . The no-slip condition is assumed for viscous fluids, such that the relative velocity of fluid 
particles on the fluid-structure interface is set to zero. In this case, the equilibrium and compatibility equations may be 
expressed as follows: 

sti
fsi
tn           ( , 1,2)          on ij ij jp i j          (11) 

s f fsi
t          ( 1,2)          on i iu u i     (12) 

where nj and sti  are components of the unit normal vector n and the structure traction vector ts evaluated at a point on 

boundary fsi
t  and s

iu  and f
iu  are components of the structure and fluid displacement vectors us and uf corresponding 

to a point belonging to the fluid-structure interface fsi
t . In addition, continuity conditions are also imposed on fsi

t  
when moving grids are adopted, which may be given as follows: 

s fsi
t          ( 1,2)          on i ix u i     (13) 

s
fsi
t          ( 1,2)          on i ix u

i
t t

 
  

 
  (14) 

where xi are components of the mesh position vector x referring to the flow spatial domain. 
In order to solve the flow problem on moving grids adequately, the geometric conservation law (GCL) must be 

satisfied (see Thomas and Lombard, 1979 for further information). According to Lesoinne and Farhat (1996), the GCL is 
satisfied in ALE finite element formulations if the mesh velocity vector w is calculated as: 

x x
w x 1n n

t
 

 


   (15) 

Considering that the trapezoidal form of the Newmark’s method is utilized for solving the structural equation of 
motion and a partitioned algorithm is adopted for fluid-structure coupling, a conservative algorithm where the GCL is 
satisfied without violating the compatibility conditions can be obtained if the following equations are employed 
(see Lesoinne and Farhat, 1998): 

x = x + x fsi
1 2 1 2 t          on n n nt      (16) 

where: 
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x u fsi
t          on s

n n     (17) 

x u u fsi
1 2 t          on 

2
s s

n n n
t




      (18) 

Figure 1 shows the coupling scheme adopted here for fluid-structure interaction problems, where one can 
observe that the flow and structure analyses are performed sequentially. In addition, it is also observed that fluid and 
structure are displaced in time by a half time step Δt/2. 

 
Figure 1 Coupling scheme for the conservative partitioned model. 

The mesh motion must be arbitrarily defined when ALE formulation is adopted for the kinematical description of 
the fluid flow. In this work, a mesh motion scheme utilized by Braun and Awruch (2009) is employed, where the mesh 
velocity field is obtained as follows: 

1

1

( 1,2)

NS
j

ij k
ji

k NS

ij
j

a w

w k

a





 



  (19) 

where NS is the number of mesh points located on the boundaries of the ALE domain and aij are influence coefficients 
defined with mesh points i and j, considering that i are inner mesh points and j are mesh points belonging to the 
boundaries of the ALE domain, where wi = 0. The influence coefficients are obtained with: 

 
1

ij n
ij

a
d

   (20) 

where dij is the Euclidian distance between the mesh points i and j and exponent n is a user-defined parameter, which 
is chosen according to the amplitude of the immersed body displacements. In this work, all FSI applications were 
analyzed using n = 4. 

The structural response is obtained here considering the equation of motion for two-dimensional rigid bodies with 
elastic constraints and viscous dampers, which may be expressed as: 

M U C U K U Qs s s s s s s
c c c c      (21) 
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where Ms is the mass matrix, Cs is the damping matrix, Ks is the stiffness matrix and Us
c
 , Us

c
  and Us

c  are the 
acceleration, velocity and displacement vectors evaluated at the center of mass of the structure, which are written 
using three degrees of freedom, with two translational displacements and one rotational displacement. The load vector 
applied at the center of mass of the structure is denoted by Qs

c , with two force components and one moment 
component. Notice that s and c indicate that quantity refers to structure and center of mass, respectively. 

The structural motion on the fluid-structure interface is obtained from the structural response evaluated at the 
center mass by considering the following kinematic relations (see Figure 2): 

int intu u + r ,
s s s

c c   ω   (22) 

 int int intu u + r + r, ,
s s s s s

c c c     α ω ω   (23) 

 
Figure 2 Kinematic relations between center of mass and the fluid-structure interface. 

where intus
  and intus

  are the velocity and acceleration vectors evaluated at a point on the fluid-structure interface, rc,int 
is the position vector referring to a point on the fluid-structure interface with respect to the center of mass of the 
structure, ωs is the vector of angular velocity and αs is the vector of angular acceleration. 

The kinematic relations above may also be expressed using matrix form, that is: 

U LUint
s s

c    (24) 

U LU L Uint
s s s

c c
      (25) 

where: 

L L2 3 1

1 3 2

1 0 0 0

0 1 0 0

r r

r r




                 
  (26) 

L L2 3 1

1 3 2

1 0 0 0

0 1 0 0

r r

r r




                 
  (27) 

int int
int fsi

int int
U U U U

1, 1,
1, 1,

2, 2,
2, 2,

3 3

s s
c cs s

s s s s s s
c c c cs s

u u
u u

u u
u u

 

   
                                    

 

 

   

 

 

  (28) 
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The fluid forces acting on the structure are obtained considering the equilibrium condition imposed on the fluid-
structure interface. This load must be transferred to the center of mass of the structure in order to solve the equation 
of motion for rigid bodies. This procedure may be carried out using the following expressions (see Figure 3): 

fsi

f
fsi intQ ts d



     (29) 

fsi

T f
intQ L ts

c d


     (30) 

where f
intt  is the fluid traction vector, which is evaluated using Eq. (10) for a point located at the fluid-structure 

interface, where the translation matrix L given by Eq. (26) is also evaluated. 

 
Figure 3 Equilibrium conditions on the fluid-structure interface. 

3 NUMERICAL MODEL 

3.1 NURBS-based finite element formulation 

In a NURBS-based finite element formulation for fluid dynamics the spatial domain is initially decomposed into 
patches according to the geometric complexity of the problem investigated, where the basis functions are defined 
using individual parametric spaces. In order to define the element concept in the present formulation, every patch is 
divided into knots spans specified in the different directions of the parametric space by using the knot vectors 
(see Figure 4). For two-dimensional problems, the following knot vectors may be utilized: 

 


1 1
11

0,..., 0, ,..., ,1,...,1         with 1
pp s p p

pp

s n p    


             


  (31) 

 


1 1
11

0,..., 0, ,..., ,1,...,1         with 1
qq s q q

pp

s m q    


             


  (32) 

where p and q are the polynomial degrees of the basis functions defined over the parametric directions ξ and η, 
respectively. The number of basis functions associated with the parametric directions ξ and η is defined by n+1 and 
m+1, respectively, which also defines the corresponding number of control points, and the number of elements is 
determined by the number of non-zero knot spans. 

The NURBS basis functions for two-dimensional applications are given by: 
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, , ,,
, ,

ˆ ˆ ˆ ˆ, , ,
ˆ ˆ,

, i p j q i jp q
i j n m

i p j q i j
i j

N N w
R

N N w

 
 

 




  (33) 

where the subscripts i and j indicate the position of the control point in the index space and the superscripts p and q 
denote the polynomial degree of the basis functions. The weight term wi,j is related to the weight associated with the 
control point defined by the subindices i and j. The B-spline basis functions Ni are evaluated here using the Cox-de Boor 
recursive formulation (Cox, 1972; De Boor, 1972), which may be expressed as: 

 

     

1
,0

1
, , 1 1, 1

1 1

1 if 

0 otherwise
i i

i

i pi
i p i p i p

i p i i p i

N

N N N

  


  
  

   



 
  

   

   


 
 

  (34) 

where p is the polynomial degree of the basis function N(ξ) and i is the knot index. Notice that Eq. (34) is 
straightforwardly extended to basis functions associated with the parametric direction η. 

 
Figure 4 Definitions on spatial discretization using a NURBS-based finite element formulation. 

Considering that n+1 and m+1 denote the number of basis functions related to the parametric directions ξ and η, 
respectively, and the respective polynomial degrees are defined by p and q, element e is identified by determining the 
indices at which the corresponding non-zero knot span begins in the index space, that is: 

1 1, ,i i i ie     
          (35) 

where p+1 ≤ i ≤ n and q+1 ≤ j ≤ m. The total number of elements in which the spatial field is discretized in the 
parametric domain is defined as: 
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   1 . 1eln n p m q       (36) 

Finally, geometry and flow variables are discretized using the following NURBS approximations: 

     x x
1

, , ,
ncp

i i
i

t R t   


    (37) 

           v v v v
1 1

, , ,                     , , ,
ncp ncp

i i i i
i i

t R t t R t         
 

     (38) 

           p p p p
1 1

, , ,                     , , ,
ncp ncp

i i i i
i i

t R t t R t         
 

     (39) 

where Ri is the NURBS basis function related to control point i, which is defined as a function of the parametric 
coordinates (ξ,η), and ncp is the number of global control points (or basis functions). The control point variables and 
geometry are specified by vi, δvi, p, δp and xi. Notice that the sum operations indicated above are performed over the 
total number of basis functions available (ncp), considering that basis functions support is highly localized. 

3.2 The explicit two-step Taylor-Galerkin model 

In the present model, the fundamental flow equations are discretized using the explicit two-step Taylor-Galerkin 
model, where second-order Taylor series and the Bubnov-Galerkin method are adopted for time and space 
discretization considering a NURBS-based finite element framework. 

Time discretization is initially applied to the fundamental flow equations considering a second-order Taylor series 
expansion and a two-step time increment scheme, which leads to the following formulation: 

1 21 nn n
i i iv v v

      (40) 

1 21 nn np p p
      (41) 

where: 

 
1 2

1 2 1
n

n jt i k i
i ij j j ij

j j i k j j

vv v v p
v t v w

x x x x x x

  
 

  


                                        

  (42) 

1 2
1 2 2

n
n j

j

v
p t c

x





        
  (43) 

where Δt is the time increment. Notice that the flow variables must be evaluated at n+1/2 in order to obtain the 
velocity and pressure increments defined by Eqs. (42) and (43). The velocity and pressure fields at n+1/2 are obtained 
from: 

 

  

1 2

2

2

1
           

4

n jn t i k i
i i ij j j

j j i k j
n

i
ij j j k k

j j k

vv v vt
v v v w

x x x x x

vp t
v w v w

x x x

  


 




                                     
        



  (44) 
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1 2 2

2

n
n jn

j

vt
p p c

x

        

  (45) 

The velocity field at n+1/2 must be corrected considering that a pressure increment term was omitted in Eq. (44). 
The velocity correction is performed using the following equation: 

1 2
1 2 1 2 1

4

n
n n
i i ij

j

t p
v v

x





   

 


   (46) 

The weighted residual principle is adopted here in order to minimize approximation errors associated with 
geometry and flow variables, which may be written here as follows: 

T
v vW R

1
e

nel

e

d
 

       
    (47) 

T
p pW R

1
e

nel

e

d
 

       
    (48) 

where Ωe is spatial domain referring to element e and nel is the number of elements in the finite element mesh. Rv and Rp 
are the residual vectors referring to the momentum and mass balance equations, respectively, which are obtained by 
approximating the flow variables and geometry with the finite element interpolations given by Eqs. (37), (38) and (39). 
By using the Bubnov-Galerkin method, the weight functions are defined here using Wv = δv and Wp = δp, which are also 
approximated using velocity and pressure variations given by Eqs. (38) and (39). In order to reduce continuity requirements 
over the basis functions, the weak form of the flow formulation is adopted using the Green-Gauss theorem. An algebraic 
system of equations is obtained for the two-step Taylor-Galerkin model utilized in this work, where the flow variables 
are first evaluated at n+1/2 with the following expressions: 

 Mv Mv t A B v G p D v1 2 1

2

n
n n
i i i i j ij ij j

t
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nn n T
j j

t
c          (50) 

The velocity field is then corrected with: 

 Mv Mv G p p1 2 1 2 1 21
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     (51) 

Finally, the flow variables at n+1 are obtained using: 

Mv Mv Av G p D v
1 2

1 1
n
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where M is the fluid mass matrix, G is the gradient matrix, A is the advection matrix, D is the diffusion matrix and B is 
the balance diffusivity tensor. Detailed information on the two-step Taylor-Galerkin scheme may be found in Kawahara 
and Hirano (1983). 

The element matrices are numerically evaluated using Gaussian quadrature, where three different spaces are 
considered: the physical space Ωe, which is defined by the vector of Cartesian coordinates x = (x1, x2); the parametric 
space ˆ

e , which is defined by the vector of parametric coordinates ξ = (ξ,η) and the quadrature space e , which is 

defined by the vector of quadrature space coordinates  ,  

ξ . The mapping from physical to quadrature space is 

performed using the Jacobian transformation matrix as follows: 

x xd d d

d d d


 

ξ
ξ ξ ξ

  (54) 

The parametric and quadrature spaces are related according to the following equations: 
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2
i i

i

 
    
     (55) 
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i i
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     (56) 

where the parametric space referring to element e is defined by 1 1
ˆ , ,e i i i i    

         . 

The time increment Δt is locally determined using the Courant’s stability condition, that is: 

e
e

e

x
t

c v



 


  (57) 

where Δte is the time increment referring to element e, α is the safety coefficient (0 ≤ α ≤ 1), Δxe is the characteristic 
length of element e, c is the sound speed, and ve is the flow characteristic speed. Although a multi time step 
formulation may be adopted for time integration, the smaller Δte is utilized in this work throughout the finite element 
mesh. 

3.3 Fluid-structure coupling model 

In the present work, a conservative partitioned model is adopted for fluid-structure coupling. Considering a fluid 
element ΩE localized on the fluid-structure interface, the discretized momentum equation referring to element E may 
be written as: 

f f f fM v A v D v G p F1 1

 
      (58) 

This equation is rearranged in order to define mesh points of element E belonging to the fluid-structure 
interface (I) and mesh points located within the fluid flow domain (F). A matrix form of the rearranged system may be 
expressed as: 

f f f f f f f
II IF I II II IF IF I I I I
f f f f f f f

F F F FFI FF FI FI FF FF I

M M v A D A D v G 0 p F
v v p FM M A D A D 0 G

1 1

 

                                                                              





  (59) 
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One can notice that only the first line of the system of equations above is relevant for the fluid-structure problem. 
In addition, the compatibility conditions are also expressed in matrix form considering an element E belonging to the 
fluid-structure interface as follows: 

Iv U TUint
s s

c     (60) 

Iv U TU T Uint
s s s

c c
    

   (61) 

where: 

N N

L L
L L

T T

L L

1 1

2 2

   
   
          
   
         

 

  (62) 

Notice that N is the number of mesh points referring to element E and the matrices Li and L’i associated with mesh 
points out of the fluid-structure interface are set to zero. 

The load vector at the center of mass of the structure is obtained considering the equilibrium equation, which may 
be defined as: 

T
IQ T Fs

c     (63) 

where FI is the fluid force vector corresponding to the first row of the system of equations given by Eq. (59). By 
substituting Eq. (59) into Eq. (63), one obtains the following expression: 


    

T f T f
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T f f f f f
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T A D v A D v G p             

s
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  (64) 

Finally, the compatibility conditions given by Eqs. (60) and (61) are imposed onto Eq. (64), which leads to: 
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   (65) 

The equivalent equation of motion referring to the structure domain is obtained substituting Eq. (65) into Eq. (21), 
that is: 

sMU + CU + K U = Qs s s
c c c c
    (66) 

where the equivalent mass matrix and the equivalent damping matrix are given by: 

 
NELI

s T f
IIM = M + T M T

1
e

e
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      (68) 
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while the equivalent load vector is given by: 

 
NELI

T f T f T f T f
c IF F IF IF F I IQ = T M v + T A + T D v T G p

1
e

e




        (69) 

Notice that all the fluid elements in contact with the fluid-structure interface (NELI) are included in the sum 
operation indicated by Eqs. (67), (68) and (69). Matrix C  is nonsymmetric and nonlinear due to the advection f

IIA  and 
translation T  matrices. Considering that the time step adopted for time integration is generally small, the nonlinear 
matrix 3T ( )  is linearized using ω3 from the last time step. The structural equation of motion defined by Eq. (66) is 
solved here using the implicit Newmark’s method (see Bathe, 1996 for detailed information). 

4 NUMERICAL APPLICATIONS 

In this chapter, typical CFD and FSI problems are solved using the algorithms presented in the previous chapters. 
It’s noteworthy that the preprocessing and analysis tools employed in this work were developed by the authors and 
implemented using Fortran programming language. For the post-processing stage, the commercial software Tecplot 9 
was employed. 

4.1 Wall-driven cavity flow 

The wall-driven cavity flow problem is analyzed here in order to validate the numerical model proposed in this 
work for flow simulation with B-spline basis functions. In addition, the influence of mesh refinement over numerical 
results is also investigated. Incompressible flow regime is assumed and two-dimensional flows are considered, which 
are characterized by the following Reynolds numbers: Re = 103 and Re =104. Notice that a LES-type approach is 
employed for Re = 104, where the Smagorinsky’s constant is set to CS = 0.15 (see Eq. 6). This classical problem consists 
of a square cavity with unit length walls (L = 1 m), where the side and bottom walls are submitted to no-slip boundary 
conditions, while the top wall slides laterally with a constant velocity U = U0. 

A special discretization procedure is proposed in the present analysis considering that uniform knot vectors are 
adopted in both parametric directions and the control meshes are defined arbitrarily according to specifications 
presented in Table 1. The distribution of control points over the physical space is determined considering geometric 
progression from the smallest distance between adjacent control points, which is always localized next to the walls. 
The distance between the first two control points next to the walls is defined here as h and the following values are 
used for all the meshes shown in Table 1: h = 0.001L, h = 0.0025L, h = 0.005L, and h = 0.01L. Notice that unlike the 
discretization procedure utilized in this work, a control mesh is usually defined considering an original coarse mesh, 
which is successively refined using some of the existing refinement methods for B-spline and NURBS basis functions. 
The time increment utilized in the time integration of the flow equations is obtained from Eq. (57) with α = 0.3. 

Table 1 Meshes utilized in the cavity flow analysis. 

Reynolds 
Mesh of control points 

(Nn+1xNm+1) 
Function degree 

(p = q) 

1000 
60 x 60 1, 2, 3 
80 x 80 1, 2, 3 

100 x 100 1, 2, 3 

10000 
80 x 80 1, 2, 3 

100 x 100 1, 2, 3 
120 x 120 1, 2, 3 

The influence of the refinement level over the present numerical predictions is initially analyzed using three control 
mesh configurations (60x60, 80x80 and 100x100) with basis functions degree defined by p = q = 1 and refinement 
parameters h = 0.001L and h = 0.0025L. The flow is characterized with a Reynolds number Re = 103. Notice that these mesh 
configurations reproduce classical finite element grids with Lagrangian basis functions and C0-continuity order. Figure 5 
shows velocity profiles along the horizontal and vertical lines of the cavity referring to results obtained here and the 
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corresponding predictions obtained by Ghia et al. (1982), who adopted a second-order finite difference model with 
257x257 grid points. 

One can see that a very good agreement is obtained with respect to the reference predictions by using 
h = 0.0025L and any of the mesh configurations proposed in the present application. On the other hand, when a mesh 
parameter h = 0.001L is adopted, differences are observed in the central region of the cavity, where predictions are 
improved as the number of control points of the mesh configuration is increased. Nevertheless, a very good agreement 
is also obtained near the wall regions for all mesh configurations utilized here. One can notice that excessive 
refinement near the wall regions (h = 0.001L) may lead to insufficient refinement in the central region of the cavity 
when coarse meshes are utilized. 

In order to analyze the influence of mesh parameter h in the present study, two control mesh configurations 
(80x80 and 100x100) are adopted using basis functions with p = q = 1. Results referring to velocity profiles along the 
horizontal and vertical centerlines of the cavity are presented in Figure 6, where results obtained here are compared 
with numerical predictions obtained by Ghia et al. (1982) for Re = 103. 

The effect of mesh parameter h over the numerical predictions is clearly demonstrated. It is observed that 
insufficient results are obtained when h = 0.01L is adopted, independent of the mesh configuration utilized. One can 
also notice that the effect of using a more refined mesh configuration over the numerical results is small in this case. 

The influence of basis functions over the numerical results is investigated here using an intermediate control mesh 
configuration (80x80) and two intermediate refinement parameters, h = 0.0025L and h = 0.005L. The present results 
are shown in Figure 7, which are compared with predictions obtained by Ghia et al. (1982). 

 
Figure 5 Influence of control mesh configuration: velocity profiles along the horizontal and vertical centerlines of the cavity for 

Re = 103; basis functions: p = q = 1; refinement parameter: (a) h = 0.001L, (b) h = 0.0025L. 
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Figure 6 Influence of mesh parameter h: velocity profiles along the horizontal and vertical centerlines of the cavity for Re = 103; 

basis functions: p = q = 1; control mesh configuration: (a) 80x80, (b) 100x100. 

 
Figure 7 Influence of basis functions: velocity profiles along the horizontal and vertical centerlines of the cavity for Re = 103; control 

mesh configuration: 80x80; mesh parameter: (a) h = 0.0025L, (b) h = 0.005L. 

Turbulence is also analyzed in the present application considering a LES-type approach with CS = 0.15 (see Eq. 6) 
and flow conditions defined by Re = 104. An intermediate control mesh configuration (100x100) is utilized here with 
different basis functions (p = q = 1, 2 and 3) and two refinement parameters: h = 0.001L and h = 0.0025L. Results are 
presented in Figure 8, where comparisons are performed taking into account predictions obtained by Ghia et al. 1982 
for Re = 104. 
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Figure 8 Influence of turbulence: velocity profiles along the horizontal and vertical centerlines of the cavity for Re = 104; control 

mesh configuration: 100x100; mesh parameter: (a) h = 0.001L, (b) h = 0.0025L. 

The present results demonstrate that the control mesh configuration with mesh parameter h = 0.001L is clearly 
insufficient to reproduce the reference results, independent of the basis function degree utilized. In this sense, one can 
observe that by increasing the basis function degree, accuracy is gradually reduced, especially in the central region of 
the cavity. On the other hand, when the mesh parameter h value is increased to h = 0.0025L, the present results are 
improved. In addition, the influence of the basis function degree is now inverted, leading to better predictions when 
the function degree is increased, although the improvements are not significant in this case. Excessive refinement near 
the wall regions led again to insufficient refinement in the central region of the cavity when a coarse mesh was utilized. 

An overall evaluation of the present results can be performed considering Figures 9 and 10, where mesh quality is 
determined using the Euclidean norm of vectors of velocity variation. These vectors are defined taking into account 
sample points proposed by Ghia et al. (1982) to define the velocity profiles along the center lines of the cavity (see 
Ghia et al. (1982) for detailed information). The Euclidean norms referring to velocity vector components are defined 
here as follows: 

       j jh h
1 2v vv v v vj 1 j j 1 j

2 2
h h h h
1 1 2 2

1 1

norm ;        norm
n n

i i i ii i

 

 

           
       (70) 

where v1 and v2 are velocity vectors obtained from sample points located on the center lines of the cavity according to 
positions defined by Ghia et al. 1982 and n is the number of sample points. Notice that each velocity vector 
corresponds to a specific refinement parameter hj (j = 1,…,4), with h1 = 0.001L, h2 = 0.0025L, h3 = 0.005L, h4 = 0.01L. 

It is observed that mesh configurations with an insufficient number of control points lead to inaccurate 
predictions, where the use of smaller mesh parameters h and basis functions with higher degree deteriorates the 
numerical results due to inadequate spatial discretization. This effect may also be associated with the refinement 
procedure proposed for the present application, where the control points were distributed arbitrarily. For a control 
mesh configuration with an appropriate number of control points, mesh parameter and basis function degree, one can 
notice that v1 and v2 norms behave asymptotically with respect to mesh parameter h, converging usually to a 
determined error level as h → 0, which may also be null if the spatial discretization is optimized. In addition, basis 
functions with low continuity order lead to slightly better results when the present refinement procedure is adopted. 
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Figure 9 Euclidean norms: jh
1v norm  and jh

2v norm  as functions of the refinement parameter hj. Reynolds number: Re = 103. 
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Figure 10 Euclidean norms: jh
1v norm  and jh

2v norm  as functions of the refinement parameter hj. Reynolds number: Re = 104. 

The same effects formerly reported with respect to numerical predictions obtained with insufficient mesh 
configurations are observed here and amplified. Considering that a flow with higher Reynolds number is simulated, 
higher levels of spatial discretization are required. The asymptotic behavior of v1 and v2 norms as functions of the mesh 
parameter h is only identified for the control mesh configuration 120x120. Results indicate that the mesh 
configurations utilized in this case are not sufficiently optimized. This aspect may be associated with the spatial 
discretization methodology proposed in this work, where the control points are arbitrarily distributed over the 
computational domain. For a high Reynolds number flow, basis functions with higher degrees seem to lead to better 
results when compared with predictions obtained with low-order basis functions, which are traditionally adopted by 
lagrangian-based finite element formulations. 

The cavity flow field is shown in Figure 11, where pressure field and streamlines obtained with the present 
formulation are presented. One can notice that the present predictions agree very well with the classic results obtained 
by Ghia et al. (1982), with primary, secondary and tertiary recirculation zones reproduced correctly according to the 
Reynolds number adopted. 
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Figure 11 Pressure field and streamlines. 

4.2 Flow around circular cylinder 

The flow around circular cylinder is analyzed here using a wide range of Reynolds numbers and different refinement 
procedures, where a viscous fluid under incompressible flow regime is utilized. Although it is well known that the flow regime 
around circular cylinders is turbulent for Re > 300 (see, for instance, Lienhard, 1966), a two-dimensional approach is 
adopted here as a first approximation to the actual problem. NURBS basis functions are adopted for spatial 
discretization. 

The numerical model is initially validated using a computational domain constituted by a single patch and 
quadratic basis functions in both parametric directions (p = q = 2), where uniform knot vectors are employed. It is 
important to notice that quadratic NURBS functions must be employed along the angular direction (p), at least, in order 
to obtain a circular curve exactly (see Piegl and Tiller, 1997). The flow field is characterized using inflow velocity 
v∞ = 10 m/s and the following Reynolds numbers (Re): 10, 20, 30, 40, 50, 100, 300, 500, 700 and 1000, where control 
mesh configurations of 100x70, 120x90 and 168x120 control points are employed for 10 ≤ Re ≤ 50, 100 ≤ Re ≤ 300 and 
500 ≤ Re ≤ 1000, respectively. Control points are distributed along the radial direction using geometric progression, 
considering that the smaller distance between two consecutive control points corresponds to the first pair of control 
points next to the cylinder surface. This smaller value is defined here as the mean distance between consecutive 
control points along the angular direction, which are only related to control points associated with the cylinder surface. 
The time increment Δt is obtained using Eq. (57) with α = 0.3. Computational domain and boundary conditions utilized 
in the present analysis are shown in Figure 12. 
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Figure 12 Flow on circular cylinder: computational domain referring to single patch analysis. 

Results referring to drag coefficient (CD) and Strouhal number (St) are presented in Table 2, where predictions 
obtained in this work are compared with results obtained numerically by Henderson (1997). Drag (CD) and lift (CL) 
coefficients, as well as the Strouhal number (St), are obtained here using the following expressions: 
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  (71) 

where V is the undisturbed flow speed, D is the cylinder diameter, f is the vortex shedding frequency obtained from 
time histories of lift coefficient, f

1t  and f
2t  are the horizontal and vertical components of the fluid traction vector tf, 

which is evaluated using Eq. (10) for a point located at the fluid-structure interface, Γe is the boundary of element e in 
contact with the cylinder surface and nel is the number of fluid elements on the cylinder surface. An excellent 
agreement with the reference results can be observed. 

Table 2 Flow on circular cylinder: drag coefficient (CD) and Strouhal number (St) for 10 ≤ Re ≤ 1000. 

Reynolds number (Re) 
Present work Henderson 1997 

CD St CD St 

10 2.929 - 2.789 - 
20 2.108 - 2.064 - 
30 1.769 - 1.730 - 
40 1.583 - 1.546 - 
50 1.450 - 1.449 - 

100 1.370 0.165 1.360 0.167 
300 1.360 0.205 1.379 0.211 
500 1.417 0.225 1.430 0.225 
700 1.434 0.232 1.483 0.231 

1000 1.491 0.234 1.502 0.237 
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Flow characteristics may be observed in Figure 13, where streamlines and pressure fields are presented. One can 
notice that a recirculation zone is formed behind the cylinder for Re = 10, 20 and 30, while the von Karman vortex 
street with alternate vortex shedding is obtained for Re = 100, 500 and 1000, which demonstrates that the formulation 
proposed in this work can reproduce complex flow phenomena accurately. The distribution of pressure coefficient over 
the cylinder perimeter is shown in Figure 14 for some of the Reynolds numbers investigated here. 

 
Figure 13 Flow around circular cylinder: pressure field and streamlines for different Reynolds numbers. 

 
Figure 14 Distribution of pressure coefficient over the cylinder perimeter for different Reynolds numbers. 

The influence of the basis functions on the present results is evaluated using a control mesh configuration with 
100x70 control points and flow conditions defined by Re = 40. Two basis function configurations are compared: 
(a) quadratic functions in both parametric directions (p = q = 2) and (b) quadratic functions in the angular direction 
(p = 2) with linear functions in the radial direction (q = 1). 
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Figure 15 Flow around circular cylinder at Re = 40: geometric aspects. 

Table 3 Drag coefficient (CD) and geometric characteristics of the recirculation zone behind the circular cylinder for Re = 40. 

Parameter Mesh 1 (p = q = 2) Mesh 2 (p = 2; q = 1) Reference 

CD 1.58 1.62 1.60 
L/D 2.21 2.23 2.10 
a/D 0.71 0.71 0.69 
b/D 0.59 0.59 0.58 

θ [deg] 52.10 51.50 53.20 

Results referring to drag coefficient (CD) and geometric characteristics of the recirculation zone obtained behind 
the circular cylinder are summarized in Table 3, which are defined considering the geometric parameters presented in 
Figure 15. The present results are compared with numerical predictions obtained by Wanderley and Levi (2002) using a 
finite difference model, where a good agreement is obtained using both the basis functions proposed here, although 
results obtained with p = q = 2 are slightly better. It is important to notice that a mesh configuration with p = 2 and 
q = 1 lead to significant reductions in terms of computational efforts when compared with the processing time spent by 
the mesh configuration with p = q = 2, considering that full Gauss quadrature is employed here for numerical 
evaluation of finite element quantities, such as element matrices and vectors. 

Additional simulations are performed in order to evaluate the influence of refinement parameter h (smallest 
distance between adjacent control points), uniformity of the knot vectors and basis degree over the numerical results. 
For Re = 40, three refinement levels are utilized, which are defined by h = 2.09x10-2 m, h = 3.14x10-2 m and h = 4.71x10-2 m. 
For Re = 100, the following refinement parameters are considered: h = 1.75x10-2 m, h = 2.62x10-2 m and h = 3.93x10-2 m. 
Finally, h = 1.25x10-2 m, h = 1.87x10-2 m and h = 2.80x10-2 m are utilized for Re = 1000. Configurations with linear and 
quadratic basis functions in both parametric directions are also considered. 

Results obtained with the present formulation are shown in Figure 16, where drag coefficient and the Strouhal 
number are considered. It is observed that spatial discretizations with non-uniform knot vectors generally lead to 
better convergence when compared with predictions obtained using uniform knot vectors. In addition, degree 
elevation also improved convergence for flow conditions defined by Re = 40 and Re = 100. However, one can notice 
that similar trends are not observed for Re = 1000. 
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Figure 16 Flow around circular cylinder: drag coefficient and Strouhal number. 

4.3 Backward-facing step flow 

The backward-facing step flow is investigated in the present example using multi-patch refinement, where the 
computational domain is decomposed into parametrically independent sub-domains. This procedure is useful for 
applications with complex geometry or complex flow fields. Six different flow conditions are analyzed, which are 
characterized by the following Reynolds numbers: Re = 100, 200, 400, 600, 800 and 1000. 
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Five patches are utilized here, where mesh control configurations were defined considering a uniform distribution 
of control points and different combinations of basis function degrees along the respective parametric direction 
(p = q = 1; p = q = 2; p = 1 and q = 2 for patches 1 and 4 only, with p = q = 1 for the remaining patches). The control 
points are distributed over the patches as follows: 

• for Re = 100: patches 1 and 4 – 60x20, patches 2 and 3 – 200x20 and patch 5 – 20x20; 
• for Re = 200: patches 1 and 4 – 100x20, patches 2 and 3 – 180x20 and patch 5 – 20x20; 
• for Re = 400: patches 1 and 4 – 200x24, patches 2 and 3 – 220x24 and patch 5 – 24x24; 
• for Re = 600: patches 1 and 4 – 274x24, patches 2 and 3 – 200x24 and patch 5 – 24x24; 
• for Re = 800 and 1000: patches 1 and 4 – 400x30, patches 2 and 3 – 224x30 and patch 5 – 30x30; 
The computational domain utilized in the present investigation is shown in Figure 17, where the patch distribution 

is identified. The geometric characteristics of the channel are defined as follows: h = 1m, s = 0.94 m, xe = 1m, xt = 30 m, 
L1 = 1 m, L2 = 17 m and L3 = 12 m. No-slip boundary conditions are adopted on the channel walls, while a velocity profile 
with parabolic distribution is prescribed at the channel entrance. The outflow condition is imposed considering p = 0 at 
the channel exit. The parabolic inflow velocity is defined using: 
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where maxV1  is the maximum velocity (10 m/s) over the velocity profile and x2 is the vertical coordinate defined with 
respect to the coordinate system shown in Figure 17. The Reynolds number is calculated according to the expression 
presented in Armaly et al. (1983): 
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Figure 17 Backward-facing step flow: computational domain. 

Results obtained with the numerical model proposed in this work are presented in Table 4, where predictions referring 
to reattachment length in the recirculation region after the facing step are compared with experimental results obtained by 
Armaly et al. (1983) and numerical results obtained by Williams and Baker (1997) with a two-dimensional finite element 
model. The reattachment length is normalized with respect to the geometric parameter s (see Figure 17). One can 
observe that the reattachment lengths obtained here for Reynolds < 400 are close to experimental results obtained by 
Armaly et al. (1983), while a better agreement is obtained with respect to numerical predictions obtained by Williams 
and Baker (1997) for Re ≥ 400. It is important to notice that two-dimensional numerical models underestimate the 
extent of the primary separation region for Reynolds numbers greater than 400 when compared with predictions 
obtained experimentally. It has been postulated that this disagreement between physical and computational 
experiments is due to the onset of three-dimensional flow near Re = 400 (Williams and Baker, 1997). 

Figure 18 shows streamlines obtained numerically for the flow region after the backward facing step. One can 
notice that the reattachment length increases as the Reynolds number is increased. In addition, it is observed that a 
secondary recirculation region is formed along the superior wall of the channel for Re ≥ 600. These observations are in 
agreement with results presented by Williams and Baker (1997). 
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Table 4 Backward-facing step flow: normalized reattachment length Xr/s. 

 Xr/s 

100 200 400 600 800 1000 

Present work (p = q = 1) 2.82 4.82 7.96 9.60 10.59 11.65 
Present work (p = q = 2) 2.83 4.84 7.98 9.60 10.61 11.65 

Present work (p = 1, q = 2, patches 1 and 4 only) 2.79 4.74 7.91 9.50 10.37 11.49 
Armaly et al. (1983) – exp 3.07 5.19 8.74 11.54 14.26 16.32 

Williams and Baker (1997) – num 2D 2.42 4.40 8.10 - 10 - 

 
Figure 18 Backward-facing step flow: streamlines as functions of the Reynolds number. 

Flow conditions can also be evaluated using the pressure fields obtained here as functions of the Reynolds 
number, which are presented in Figure 19. For Re = 600, 800 and 1000, these flow fields are obtained considering a 
time average over the last half of the simulation period. Taking into account that patch interfaces are critical for the 
present formulation, where basis functions are only C0-continuous, it is observed that streamlines (Figure 18) and 
pressure isolines are well defined near the patch interfaces, where oscillations are not identified. 
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Figure 19 Backward-facing step flow: pressure fields as functions of the Reynolds number. 

4.4 Lock-in analysis for elastically supported circular cylinder 

In the present example, the lock-in phenomenon observed in elastically-mounted circular cylinders submitted to 
fluid flow is numerically simulated. It is well known that the lock-in phenomenon occurs for a specific range of flow 
speeds, where synchronization between the mechanical frequency of the structure and the vortex-shedding frequency 
is obtained. During the lock-in, the amplitude of oscillations is increased, although rarely exceeding half of the cylinder 
diameter (see, for instance, Simiu and Scanlan, 1996). One can notice that the synchronization frequency is not 
necessarily the natural frequency of the structure. 

The computational domain utilized here is the same as that presented in Figure 12, which is discretized now using 
a control mesh with 180x120 control points and non-uniform knot vectors. Quadratic NURBS basis functions are 
adopted in both parametric directions (p = q = 2). This control mesh configuration is obtained from a coarse grid, which 
is improved by using knot refinement. The grid spacing is gradually reduced towards the cylinder surface, where the 
smallest distance is Δx = 8.73x10-2 m. The time step employed in the time integration of the flow equations is 
Δt = 3.23x10-2 s (see Eq. 57). 

The lock-in phenomenon is investigated using a fixed Reynolds number Re = 150 and different reduced velocities 
(Vred = V/f.D) within the range 3 ≤ Vred ≤ 8. The cylinder is restricted in angular and horizontal directions and free to 
vibrate perpendicularly to the flow, which is mechanically described with the following dimensionless form of the 
structure equation of motion: 
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where uy and Cy are the structure displacement and force coefficient transverse to the flow direction, ξ is the damping 
ratio and Mred = M/ρD2 is the reduced mass. In the present investigation, no damping is considered and a constant 
reduced mass Mred = 2 is adopted. 

The structural response obtained with the present formulation is shown in Figure 20 for some of the reduced 
velocities analyzed here. The typical lock-in response can be clearly identified for Vred = 4, while a structural response 
with relatively low displacement amplitudes are observed when Vred = 8 is considered. In Figure 21, the normalized 
maximum displacement of the structure is plotted against reduced velocity and compared with other numerical 
predictions (Ahn and Kallinderis, 2006; Borazjani et al., 2008), where one can see that the lock-in interval can be 
identified within the reduced velocity range 4 ≤ Vred ≤ 7, considering that the vibration amplitude is significantly 
reduced outside this range. 

The flow field may be evaluated using Figure 22, where instantaneous pressure and vorticity are presented for Vred 
= 4 and Vred = 8 at t = 80 s. These results are similar to predictions obtained numerically by Borazjani et al. (2008) using 
a FSI model and the immersed boundary method. 

 
Figure 20 Lock-in analysis: structural response for different reduced velocities. 

 
Figure 21 Lock-in analysis: normalized maximum displacement as a function of the reduced velocity. 
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Figure 22 Lock-in analysis. Instantaneous pressure and vorticity obtained at t = 80s: a) Vred = 4; b) Vred = 8. 

4.5 Galloping analysis of an elastically supported square cylinder 

Galloping is numerically simulated here considering a square cylinder with an elastic support mounted transverse 
to the flow direction. The galloping phenomenon is typically found in structures with special cross-section shapes, such 
as rectangular ad D shapes, which may exhibit large amplitude oscillations in the direction normal to the flow at lower 
frequencies than those associated with vortex shedding (see Simiu and Scanlan, 1996). 

Geometry and boundary conditions utilized in the present application are found in Figure 23, where dimensionless 
values are indicated. The computational domain is discretized using 180x90 control points, non-uniform knot vectors 
with linear basis functions in the angular direction and quadratic basis functions in the radial direction. The smallest 
grid distance is found next to the cylinder surface with Δx* = 2.22 x10-2 and the time step for time integration is set to 
Δt* = 1.26 x10-4. The structure properties are presented in dimensionless form as follows: m* = 20, c* = 0.0581195 and 
k* = 3.08425. The fluid flow is characterized by a Reynolds number Re = 250, where the dimensionless fluid parameters 
are defined as: v*∞ = 2.5, ρ* = 1.0 and μ* = 0.01. Notice that asterisks indicate dimensionless values. 
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Figure 23 Galloping analysis: computational domain and boundary conditions. 

The structural response obtained here is presented in Figure 24 and instantaneous flow conditions are shown in 
Figure 25, where the pressure and vorticity fields are presented at t* = 301.93 and t* = 310.61. One can observe that 
the displacement amplitude is relatively large and limited, which characterizes the typical conditions for dynamic 
instability by Galloping. Table 5 summarizes the present results referring to maximum displacement amplitude and 
frequency of oscillation, which are compared with predictions obtained from other authors (Dettmer and Peric, 2006; 
Robertson et al., 2003). Results obtained here demonstrate a very good agreement with other predictions considering 
flow aspects and structural vibration characteristics. 

 
Figure 24 Galloping analysis: structural response, vertical displacement. 

Table 5 Galloping analysis: maximum displacement and frequency of oscillation. 

 Max. displacement Frequency of oscillation 

Present work 1.25 0.945 fn 
Dettmer and Peric (2006) 1.117 0.943 fn 

Robertson et al. (2003) 1.150 0.938 fn 
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Figure 25 Galloping analysis: pressure and vorticity fields at (a) t = 301.93s and (b) t = 310.61s. 

4.6 Flow over elastically supported rectangular cylinder 

Fluid-rigid body interaction is analyzed in this example considering a rectangular cylinder immersed in a viscous 
fluid flow. Two conditions are investigated: (a) the structure is released from an initial angular displacement with the 
fluid at rest and no structural damping; (b) the structure is submitted to uniform flow, where vertical and angular 
displacements are induced simultaneously. The computational domains and boundary conditions adopted in the 
present analyses are shown in Figure 26. 

 
Figure 26 Flow over rectangular cylinder: computational domain and boundary conditions. 
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In the first investigation, the cylinder is released from an initial angular displacement of θ0 = 5°, considering that 
fluid and structure are at rest. The structural properties are defined taking into account a torsional frequency 

0.266 rad/sk I   , where kθ is the torsional stiffness, and I is the mass moment of inertia. No structural 

damping is considered in the present analysis and three Reynolds numbers are utilized. The Reynolds number 
associated with the flow is calculated here using a characteristic length L = b/2 = 1.25 m, where b is the base of the 
rectangle, and a characteristic flow speed   x 2

0 sin 2 2.90245 10  m/sV T L    , where T is the period of 

vibration. A control mesh with 161x71 control points is utilized, which is obtained considering knot refinement from an 
initial coarse mesh. Uniform knot vector in the angular direction and non-uniform knot vector in the radial direction are 
adopted, considering that linear basis functions are employed in both parametric directions. 

Results referring to the structural response obtained with the present formulation are shown in Figure 27. 
One can observe that the angular displacements are gradually reduced over the time due to the action of fluid viscosity 
since no structural damping is considered here. In addition, notice that flow damping gets more significant as the 
Reynolds number is reduced. The present predictions are in agreement with results presented by Sarrate et al. (2001), 
where a finite element model was utilized. 

 
Figure 27 Flow over rectangular cylinder: structural response with fluid at rest 



A NURBS-based finite element formulation for incompressible fluid dynamics and fluid-structure 
interaction with rigid bodies 

Patrícia Tonon et al. 

Latin American Journal of Solids and Structures, 2020, 17(1), e242 33/37 

In the second investigation proposed here, the rectangular cylinder is analyzed considering the action of a uniform 
flow (see Figure 26), which leads to vertical and angular displacements in the structure. The dimensionless parameters 
referring to the structure properties are set as follows: mt = 195.57, ct = 0.0325, kt = 0.7864, I = 105.94, cr = 0.0 and 
kr = 17.05, where m, I, c and k denote mass, mass moment of inertia, damping and stiffness constants and the 
subscripts t and r are related to translational and rotational degrees of freedom. The flow field is characterized by a 
Reynolds number Re = 1000. 

A control mesh configuration with 161x71 control points is employed, which is similar to that utilized in the 
previous study. Comparisons are performed considering mesh configurations with uniform and non-uniform knot 
vectors. In addition, predictions obtained from a mesh configuration with linear basis functions in both parametric 
directions are compared with results obtained from a mesh with linear basis functions in the angular direction and 
quadratic basis functions along the radial direction. 

 
Figure 28 Flow over rectangular cylinder: structural response under uniform flow. 
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The structural responses obtained here are presented in Figure 28, where predictions referring to different mesh 
conditions are compared. Notice that the structural vibration is anticipated when uniform knot vectors are adopted, 
although the increase rate and oscillation frequency are the same as those obtained with non-uniform knot vectors. 
The use of basis with a higher degree also anticipates the onset of structural vibration without modifying the increase 
rate and frequency of oscillation. When linear basis are utilized in conjunction with non-uniform knot vectors, vertical 
displacements with greater amplitude are obtained in the early stages of the structural response. 

The mesh configuration and the corresponding pressure field and streamlines for dimensionless time instants 
t* = 439 and t* = 448 are shown in Figure 29, where one can see that the mesh motion scheme adopted in the present 
work can accommodate the structural motion in the region next to the immersed body without excessive distortion. 
It is important to notice that using n = 4 in Eq. 20, one obtains a mesh motion such that elements near the immersed 
body show motion characteristics similar to rigid bodies, maintaining its original geometric aspects. On the other hand, 
elements located in the intermediate region between the fluid-structure interface and the outer border of the ALE 
domain present deformation similar to elastic bodies. As exponent n is reduced, this elastic aspect of the element 
motion is observed in the mesh region near the immersed body. 

 
Figure 29 Flow over rectangular cylinder: mesh configuration, pressure field and streamlines at t* = 439 and t* = 448. 
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5 CONCLUSIONS 

In the present work a NURBS-based finite element formulation for incompressible fluid dynamics and fluid-structure 
interaction with rigid-body dynamics was presented. Model versatility with respect to spatial discretization procedures 
was demonstrated, where different techniques referring to NURBS discretization, such as multi-patches, knot insertion, 
and degree elevation, were adopted. In addition, a control mesh discretization scheme was proposed, where control 
point locations are specified arbitrarily. The present investigation indicates that results obtained with the present 
model are very sensitive to the mesh configuration utilized. In this sense, if the control mesh distribution is not 
adequately set, good predictions are not obtained even with high degree basis functions. In this case, the use of 
functions with higher degree leads to deterioration of the numerical predictions. On the other hand, one can observe 
that improvements can be obtained by using higher degree basis functions when flows with high Reynolds numbers are 
investigated, especially for turbulent flows. The use of non-uniform knot vectors usually leads to better results when 
compared with predictions obtained with uniform knot vectors. This aspect is important in order to capture complex 
flow phenomena, especially in the boundary layer region. Computational efforts are usually high when the present 
formulation is applied to turbulent flows, considering that full Gauss quadrature is employed in this work to evaluate 
element matrices and vector. This drawback may be circumvented by using specialized techniques for numerical integration 
of NURBS basis functions. In this sense, a reduced integration formulation for NURBS-based finite element models may also 
be developed. For future works, the present formulation must be extended to include the three-dimensional approach. 
Potential applications for the present model may be found in the field of Computational Wind Engineering, such as 
aerodynamic and aeroelastic analyses of long-span bridges, low and high-rise buildings. 
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