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Abstract 

The present formulation of the analysed problem is based on 

Donell’s nonlinear shallow shell theory, which adopts Kirch-

hoff’s hypothesis. Transverse shear deformations and rotary 

inertia of a shell are neglected. According to this theory, the 

non-linear strain-displacement relations at the shell midsurface 

has been proposed. The validity and reliability of the proposed 

approach has been illustrated and discussed, and then a few 

examples of either linear or non-linear dynamics of shells with 

variable thickness and complex shapes have been presented and 

discussed. 
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1 INTRODUCTION 

The problems of nonlinear vibrations of plates and shallow shells are topical for both theory and 

application in many areas of modern industry. Especially, it concerns the space industry, where the 

plates and shells are used as members of many structural components. In practice, these elements 

can have a variable thickness, different form of the middle surface and boundary conditions, as well 

as different orientation of the anisotropy axes. The studies of linear vibrations of anisotropic shells 

have attracted the attention of many researchers for a long time [4, 6, 7, 9, 10]. Great progress has 

been made over the past decades to develop numerical approximate methods as the most effective 

tools for studying nonlinear vibrations of the composite plates and shallow shells [1-3, 5, 7, 9-11]. 

This is confirmed by a large number of papers and books. The finite elements method (FEM) is one 

of the most widely applied approach to non-linear vibration problems of continuous mechanical 

systems [10, 11]. However, it should be emphasised that even for linear vibrations of shells with 

variable thickness numerical results are not so widely presented. Furthermore, in the case of non-

linear vibrations of anisotropic shells of variable thickness the computational results are rather mar-

ginally discussed. This is due to the difficulties that arise while solving this class of problems. First 

of all, it is difficult to construct the system of eigenfunctions in an analytical form in the case of an 

arbitrary shape of a shallow shell. However, the latter approach is used mainly to solve nonlinear 
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problems. The second complex question refers to a transition from continuous to discrete models 

with respect to time. In this paper we propose a method to solve this class of problems using the R-

functions theory and variational methods. In the literature devoted to the study of plates/shells 

statics and dynamics this approach is known as RFM which is an abbreviation for the R-function 

Method [3, 7, 9]. It should be noted that the use of RFM allows researchers to take into account not 

only variable thickness of a shell, but also to design eigenfunctions in an analytical form that are 

then used to solve the problem of geometrically nonlinear vibrations of the shell. Further on in this 

paper we develop this approach to investigate non-linear free vibrations of orthotropic shallow shells 

with variable thickness. 

 

2 MATHEMATICAL FORMULATION 

The present formulation of the problem is based on Donell’s nonlinear shallow shell theory, which 

adopts Kirchhoff’s hypothesis. Transverse shear deformations and rotary inertia of a shell are ne-

glected. According to this theory, the non-linear strain-displacement relations at the shell midsur-

face can be written as follows 
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 Here u,v,w are the displacements of the shell in directions Ox, Oy and Oz, respectively, whereas 

,x yR R -are radii of the shell curvature (Fig.1). 

 The constitutive relations of the shell can be expressed as follows 
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Here 3
12 21 12 21, , , , , , , , ,ij ij ij ij ij ijC C B h x y D D B h x y  are the stiffness coeffi-

cients of the shell depending on x and y, assuming that the shell has a variable thickness. 

 

 

 We introduce the following notation 
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Fig. 1. Geometry of a shallow shell 
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 The equation of equilibrium for free geometrically nonlinear vibration of a shallow shell may be 

written in the following form 

 
2

11 12 13 1 1 2

u
L u L v L w Nl w m

t
, (12) 
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t
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 In formulas (12)-(14) differential operators ,ij iL Nl  ( , 1,2,3)i j  are defined as follows 
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 Here 1 21 / , 1 /x yk R k R  are curvatures of the shell in directions Ox, O,  respectively.  

The obtained system of equations is supplemented by boundary conditions defined by the way of 

shell fixation. 



Awrejcewicz, Kurpa and Shmatko / Large amplitude free vibration of orthotropic shallow shells of complex shapes with variable thickness     153 

 

 

Latin American Journal of Solids and Structures 10(2013) 149 – 162 

3 METHOD OF SOLUTION 

(i) Solving the linear vibration problem. The linear vibration problem for an orthotropic shallow 

shell with variable thickness is solved using the Ritz variational method. 

 The variational statement of the linear problem is reduced to finding the minimum of the follow-

ing functional 

 

max maxJ U T ,   (22) 

 

 where maxU  and maxT  are the maximal kinetic and elastic strain energies of the shell, respec-

tively 
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 The R-functions theory is used to find a minimum of the functional including the basic functions 

satisfying the given boundary conditions. The main advantage of the R-functions method relies on 

the possibility of constructing these functions in an analytical form. For some kinds of boundary 

conditions such basic functions have been already presented in references [3, 7, 8, 9, 12]. For exam-

ple, the system of admissible functions corresponding to a clamped edge, and to in-plane immovable 

simply supported edges follows 

 
2, ,i i i i i iu v w . (25) 

 

 In the above 0means the equation of the domain border, whereas ,i i i  ( 1,..., )i n are 

the elements of some complete systems 1 2 3, ,i i iP P P . 

 Observe that the natural modes corresponding to linear vibrations of the shells serve as basic 

functions to represent the unknown functions.  

 

(ii) Solving the non-linear vibration problem. Let us denote the natural frequency and the corre-

sponding eigenfunctions by L  and ( )cw , ,c cu v  , respectively. Then displacements of the non-

linear problem can be presented as follows 

 

( , , ) ,cw x y t y t w x y , (26) 
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2
11, , , ,

c
v x y t y t v x y y t v x y , (28) 

 

 where functions 11 11, , ,u x y v x y  are solutions to a system similar to the Lamè system of the 

following form 

 

11 11 12 11 1
cL u L v Nl w , (29) 

 

21 11 22 11 2
cL u L v Nl w . (30) 

 

 Symbol  in equations (27-28) is equal to 1 for shells and and it is equal to 0 for plates. The 

above mentioned problem is solved by the RFM. Note that the solution to this problem has been 

already described in references [7, 9]. Substituting expressions (27)- (29) for ( , , ),u x y t  ( , , ),v x y t  

( , , )w x y t  into equations (12)-(14) and ignoring inertia terms in equations (12)-(13), one may see 

that equations (12)-(13) are satisfied identically. Therefore, applying the Bubnov-Galerkin proce-

dure to equation (14) we obtain the following equation 
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2

12 11 112 , ,
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 Expressions , ,
N NpL
ij ij ijN N N  stand as components of the following vectors 
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 which are defined as follows 
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 In order to find a backbone curve, let us put cos NA and let us apply again the Bub-

nov-Galerkin procedure [9, 13]. Then, the approximate relation between maximum amplitude A and 

the ratio of the nonlinear vibration to linear one /N L  is as follows: 

 

28 3
1 .
3 4
A A  (37) 

 

4 NUMERICAL RESULTS 

The so far developed approach is validated on some tested problems and will be applied to solve 

new problems regarding nonlinear vibrations of shallow shells with variable thickness. 

  

Problem 1. The correctness, validity and reliability of the developed method have been studied by 

solving the linear vibration problem for an orthotropic clamped spherical shallow shell with square 

plane-form and variable thickness of the following form 

 
2

0 1 6 6 1h h x x . (38) 



156     Awrejcewicz, Kurpa and Shmatko / Large amplitude free vibration of orthotropic shallow shells of complex shapes with variable thickness 

 

 

Latin American Journal of Solids and Structures 10(2013) 149 – 162 

 

 The material properties of the shell are 

 

1 47.6E GPa , 2 20.7E GPa , 12 5.31G GPa , 12 0.149v . (39) 

 

 Coefficient is varied within the interval 0.5;0.5 , 0h  stands for the shell thickness corre-

sponding to 0 . The remaining geometric parameters are: 0 / 0.008h a , / 1b a . 

 A comparison of non-dimensional frequency parameter 
2

0 02 /i i a h D , where 

3
11 0

0
12 2112(1 )

E h
D

v v
, for a clamped spherical panel versus results reported in reference [4] is given in 

Table 1. In what follows we study the influence of parameter variation . This problem has been 

solved in [4], using a spline – approximation to the assumed solution. One may see that the differ-

ence between our results and those given in [4] is less than 1.5%. It confirms the validation of the 

RFM method. Results reported in [4] are in bold. 

 
Table 1. Comparison of non-dimensional frequencies for the clamped spherical panel with square plane-form using 

the RFM and spline approximation (see [4]) 

 

 i  –0.5 –0.3 –0.1 0 0.3 0.5 

0.8 

Λ1 42.89 44.07 45.34 45.83 47.66 48.94 

42.90 44.09 45.25 45.84 47.67 48.95 

Λ2 60.71 60.04 59.31 58.95 57.96 57.43 

60.79 60.22 59.47 59.1 58.09 57.56 

Λ3 61.18 65.19 68.39 69.75 72.99 74.52 

61.21 65.22 68.42 69.78 73.01 74.53 

Λ4 79.04 81.98 84.06 84.84 86.32 82.38 

79.21 82.14 84.23 84.99 86.46 83.03 

0.32 

Λ1 109.5 111 112.3 112.8 113.9 114.4 

109.9 111.4 112.6 113.1 114.2 114.6 

Λ2 122.8 123.6 123.9 123.9 123.3 122.5 

122.4 124.3 124.5 124.5 123.9 122.9 

Λ3 123.3 126.9 129.2 130 132.3 133.7 

123.7 127.2 129.9 130.7 132.9 134.2 

Λ4 125.0 127.3 129.8 131.1 134.1 135.6 

125.8 128.1 129.8 131.1 134.1 135.6 

 

 Below we illustrate how the developed software allows us to investigate the vibration of shallow 

shells for different values of turn angle  of the shell orthotropic axes. For instance, new results 

regarding the studied panel for various angles 0 0 030 ,45 ,60  are found. 

 

yx kk 
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Table 2. Influence of the curvature thickness and turn angle of the orthotropic axes on non-dimensional frequencies 

of the clamped spherical panel with square plane-form 

 

  
   

i  
–0.5 –0.3 –0.1 0 0.1 0.3 0.5 

30 

0.08 

Λ1 42.38 43.463 44.43 44.905 45.378 46.28 47.208 

Λ2 58.54 60.31 60.02 59.76 59.46 58.77 58.03 

Λ3 60.715 61.76 63.902 64.81 65.608 66.87 67.72 

Λ4 83.337 85.55 86.717 86.94 86.921 85.88 83.25 

0.32 

Λ1 109.15 110.3 111.09 111.3 111.53 111.7 111.6 

Λ2 116.98 119.9 122.14 122.9 123.56 124.1 124.0 

Λ3 126.75 128.2 129.38 129.8 130.28 130.9 130.8 

Λ4 131.01 131.4 131.42 131.3 131.15 131.0 131.6 

45 

0.08 

Λ1 42.639 43.508 44.245 44.585 44.913 45.541 46.149 

Λ2 57.248 59.27 60.474 60.67 60.573 59.85 58.81 

Λ3 62.793 62.82 62.664 62.70 62.868 63.29 63.52 

Λ4 84.413 86.48 87.387 87.47 87.324 86.33 84.34 

0.32 

Λ1 109.58 110.5 111.01 111.1 111.18 111.1 110.8 

Λ2 116.09 118.4 120.05 120.6 121.08 121.5 121.5 

Λ3 128.83 130.2 131.02 131.3 131.52 131.4 129.9 

Λ4 134.44 134.5 133.89 133.3 132.8 131.7 131.7 

60 

0.08 

Λ1 43.821 44.327 44.727 44.905 45.074 45.396 45.709 

Λ2 56.056 57.93 59.265 59.76 60.151 60.54 59.64 

Λ3 67.863 66.96 65.604 64.81 63.971 62.27 61.37 

Λ4 83.829 85.99 86.878 86.94 86.801 85.92 84.29 

0.32 

Λ1 110.71 111.2 111.38 111.3 111.27 111.0 110.6 

Λ2 120.46 121.9 122.75 122.9 122.99 122.6 121.7 

Λ3 127.67 128.9 129.63 129.8 130 129.2 127.4 

Λ4 131.92 132.3 131.79 131.3 130.68 130.1 129.9 

 

 Modes of the spherical panel vibration for the following fixed parameters: 0.3 , 

0.08x yk k ;  045  are presented in Table 3. 

 
Table 3. Influence of the clamped spherical panel curvatures on vibration modes 

 

=0.08 

    

1=43.5086 2=59.272 3=62.821 4=86.484 

=0.32 

yx kk 
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1=110.52 2=118.42 3=130.19 4=134.52 

=0.64 

    

1=192.26 2=192.839 3=206.68 4=215.196 

 

 Similar results for simply supported spherical shallow shells having square plane-forms are given 

in Table 4 ( 0.32x yk k  and 0 0 00 , 30 ,45 ). 

 
Table 4. Non-dimensional frequencies for simply supported spherical shells 

 

 00  030  045  

i

 

0.3
 

0
 

0.3
 

0.3
 

0
 

0.3
 

0.3
 

0
 

0.3
 

Λ1 74.94 80.46 85.59 94.59 97.31 97.21 99.11 100.2 100.6 

Λ2 90.14 91.39 91.27 96.49 100.1 104.3 103.8 106.0 107.8 

Λ3 94.25 97.25 97.46 101.4 105.2 108.4 103.8 109.3 112.7 

Λ4 95.53 99.56 104.6 113.9 114.9 115.3 114.6 114.7 114.2 

 

 We are going now to extend our approach by carrying out the nonlinear analysis. Relation 

/N L  versus the values of max /W h  for clamped spherical panels with square plane-forms are 

reported in Table 5. Geometric parameters are: 0
0 / 0.008, 0.08, 45x yh a k k , whereas 

parameter is varied. 

 
Table 5. Dependence of the ratio of the nonlinear frequency to linear one on the vibration amplitude of spherical 

panels with variable thickness 

 

/w h  0.3  0  0.3  /w h  0.3  0  0.3  

0.2 1.063 1.059 1.054 1.2 1.368 1.342 1.315 

0.4 1.125 1.116 1.108 1.4 1.428 1.396 1.365 

0.6 1.186 1.174 1.161 1.6 1.487 1.451 1.414 

0.8 1.247 1.230 1.213 1.8 1.547 1.505 1.463 

1.0 1.308 1.286 1.264 2.0 1.606 1.559 1.512 

 

 Backbone curves for simply supported and clamped spherical panels with variable thickness are 

presented in Figures 2-5. 

yx kk 
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Fig. 2. Backbone curves of simply supported spherical panels ( 0.3 , 0.32x yk k ) 

 

 

Fig. 3. Backbone curves of simply supported spherical panels ( 0 , 0.32x yk k ) 
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Fig.4. Backbone curves of simply supported spherical panels ( 0.3 , 0.32x yk k ) 

 

 

Fig.5. Influence of the panel thickness on backbone curves ( 0 , 0.32x yk k ) 

 

Problem 2. Now let us study non-linear vibrations of the shell with complicated form shown in 

Figures 6 and 7. The varying thickness is defined by formula (37). Material properties are the same 

as these in (38). Parameter is varied in the interval 0.5;0.5 , 0h  is the shell thickness corre-

sponding to 0 . The following geometric parameters are taken: 0 / 0.008h a , / 1,b a  

/ 0.75, / 0.6c a d a  
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Fig. 6. Shape of the shallow shell                    Fig. 7. Plane-form of the shell 

 

 The values of non-dimensional frequencies parameter 
2

0 02 /i i a h D  for the clamped 

orthotropic spherical shallow shell (
1 1

0.08
x yR R

) are given in Table 6.  

 

Table 6. Influence of  on frequencies 
2

0 02 /i i a h D  (i=1,2,3,4) of the clamped spherical shallow shell 

 

 

 

i  

-0.5 -0.3. -0.1 0 0.1 0.3 0.5 

1  117.78 118.74 119.39 119.61 119.75 119.83 119.62 

2  125.82 129.04 131.55 132.60 133.55 135.11 136.42 

3  131.95 133.53 134.68 135.16 135.58 136.34 136.85 

4  144.18 144.69 144.32 143.87 143.28 141.76 140.05 

 

 The so far illustrated and discussed examples regarding nonlinear analysis for the given shells 

indicate the efficiency of our approach. Influence of curvatures and thickness parameter 

0.5;0.5  on backbone curves is shown in Fig. 8 and Fig. 9. 

 

 
Fig. 8. Influence of spherical shell curvatures Fig.9. Influence of spherical shell curvatures 

on backbone curves ( 0.5)  on backbone curves( 0.5)  

Ry 

Rx 

 z 
 y 

 x 

   О 
 x 
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5 CONCLUSIONS 

 

Analysis of the geometrically nonlinear vibrations of the shallow shells with variable thickness and 

complex shape has been carried out using the R-functions theory and variational methods. A dis-

tinctive feature of the proposed approach is also the original construction of approximate solutions. 

In a single-mode approximation of the solution, this approach allows to investigate the dynamical 

behavior of shallow shells with an arbitrary form of their plans and various types of boundary con-

ditions. First, the validity and reliability of the proposed approach has been illustrated and dis-

cussed, and then a few examples of either linear or non-linear dynamics of the shells with variable 

thickness and complex shapes have been presented and discussed. 
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