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Abstract 
In this paper, nonlinear analysis of thick cylindrical shells with arbitrary variable thickness made of hyperelastic 
FGM with radially variation of material properties in nearly incompressible state under non-uniform pressure 
loading is presented. Thickness and pressure of the shell vary in axial direction by linear and/or nonlinear 
functions. The governing equilibrium equations are derived based on shear deformation theory (SDT). 
The Mooney-Rivlin type material is considered which is a suitable hyperelastic model for rubbers. Boundary 
Layer Method of the perturbation theory which is known as Matched Asymptotic Expansion (MAE) is used for 
solving the governing equations. A new ingenious solution and formulation have been defined during current 
study to simplify and abbreviate the representation of inner and outer equations components in MAE. 
In order to validate the results of the current analytical solution, a numerical modeling based on Finite 
Element Method (FEM) have been investigated. Afterwards, for different rubber case studies, the effect of 
material constants, inhomogeneity index, geometry and pressure profiles on displacements, stresses and 
hydrostatic pressure distributions resulting from MAE and FEM solution have been illustrated. This approach 
enables insight into the nature of the deformation and stress distribution across the wall of rubber vessels 
and offers the potential for investigating the mechanical functionality of blood vessels such as arteries in 
physiological pressure range. The results prove the effectiveness of SDT and MAE combination to derive and 
solve the governing equations of nonlinear problems such as nearly incompressible hyperelastic FG shells. 

Keywords 
Variable thickness shells, Nonlinear perturbation solution, Cylindrical pressure vessel, Hyperelastic FGM, 
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1 INTRODUCTION 

Hyperelastic materials are quite common in many engineering applications. These materials are incompressible or 
almost incompressible and undergo large strains when subjected to loads. In the last decades, many constitutive models 
are developed for hyperelastic materials, which can be used in computational model according to the application. The 
Mooney-Rivlin model of hyperelastic materials can simulate most of the mechanical behaviour of the rubber materials. 
The model provides a good description of the mechanical properties of rubber materials when deformation is less than 
150%. Rubber products are used in different industrial applications; such as rubber hose to carry fluids, rubber anti-
vibration mountings, cylindrical pneumatic floating rubber fenders for boats and so on. Furthermore, rubber seals for 
sealing connectors are used to very easily seal on the internal or the external diameters of test parts which have smooth 
cylindrical connections. Rubber cylindrical sleeves have been used for many years successfully for label printing and have 
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been proven of value for the established printing processes. Packer rubber produces a larger contact pressure and forms 
a seal between the rubber and the casing, resulting in sealing of the annular gap and isolation of the production layer. A 
comprehensive survey on the finite element methods of incompressible or almost incompressible hyperelastic materials 
can be found in many papers (Boyce and Arruda 2000). As an important research, Sussman and Bathe (1987) introduce 
a displacement-pressure finite element formulation for the geometrically and materially nonlinear analysis of 
compressible and almost incompressible solids. Simo and Taylor (1982) analyzed incompressible nonlinear elastic solids 
by a penalty function approach. Bijelonja et al. (2005) presented development of a displacement-pressure based finite 
volume formulation for modelling of large strain problems involving incompressible hyperelastic materials with a 
Mooney–Rivlin model. Some useful researches focus on developing strain energy function that can describe the 
mechanical behavior of rubber-like materials and incompressibility characteristic. For instant, Doll and Schweizerhof 
(2000) developed the volumetric part of the strain energy function and investigated new volumetric functions. 
Montella et al. (2014) presented the mechanical behavior of a Tire Derived Material in details numerically and 
experimentally. The problem of the finite axisymmetric deformation of a thick-walled circular cylindrical elastic tube 
subject to pressure is formulated for an incompressible isotropic neo-Hookean material by Zhu et al. (2010) and solved 
numerically by finite element library Libmesh. Tanveer and Zu (2012) presented finite amplitude transient vibration 
analysis of nearly in compressible hyperelastic axisymmetric solids by a mixed p-type method and solved the equations 
by the Newmark’s method along with the Newton–Raphson iterative technique for Mooney-Rivlin material description. 
Kiendl et al. (2015) presented formulations for compressible and incompressible hyperelastic thin shells with plane stress 
condition based on energy methods and used continuous iso-geometric discretization to build the numerical solution. 
The common problems with mention numerical methods, as Poisson’s ratio approaches 0.5, are the ill conditioning of 
stiffness matrix, the locking phenomena and effect of applying numerical techniques on resulted displacements and 
stresses. 

Functionally graded materials (FGMs) are special composites, in which material properties are varied continuously 
and smoothly through certain direction. Thus, the discontinuities between the layers which occur in layered composites 
and cause stress concentration are not observed in FGMs. Graded rubber like materials attracted the attention of 
researchers for modeling these materials behavior under mechanical and geometrical boundary conditions. For instance, 
effects of material inhomogeneities on stress distributions through the thickness of circular cylinders made of rubber like 
materials in mechanical and thermal load was studied by Bilgili (2003). In another study, Bilgili (2004) investigated plane 
strain deformations of a circular cylinder made of heterogeneous neo-Hookean material with circumferential 
displacements prescribed on the inner and the outer surfaces. Batra and Bahrami (2009) considered cylindrical pressure 
vessel made of FG rubber like material under internal pressure. To discover stress components of the pressure vessel, 
they assumed axisymmetric radial deformations of a circular cylinder composed of FG Mooney–Rivlin material with the 
material parameters varying continuously through the radial direction either by a power law relation. Anani and Rahimi 
(2015, 2016) studied behavior of spherical and cylindrical shell made of FG rubbers by neo-Hookean model. They 
assumed radial variation of material properties by power law function and used classical theory (PET) and Gauss-
hypergeometric function to derive and solve equations, respectively. Geometrically nonlinear dynamic behavior of FG 
thick hollow cylinder under axisymmetric mechanical shock loading is investigated using meshless local Petrov–Galerkin 
(MLPG) method by Ghadiri Rad et al. (2015). The FG cylinder is assumed to be made of large deformable neo-Hookean 
materials such as carbon-based polymers. 

In optimizing a shell with respect to weight or stress distribution, one method is to use shells with varying thickness 
or materials properties. The literature that addresses the stresses of thick cylindrical shells with variable thickness is quite 
limited. Eipakchi (2010) calculated stresses and displacements of linear elastic conical shell with varying thickness under 
non-uniform internal pressure analytically, using shear deformation theory (SDT). Ghannad et al. (2013) presented a 
closed-form analytical solution for thick FGM cylindrical shells with variable thickness subjected to constant internal 
pressure based on the first-order shear deformation theory (FSDT) and solved the governing equations by the usage of 
perturbation theory. Gharooni et al. (2016) investigated thermo-elastic analysis in pressurized thick FGM cylinders with 
varying properties of power function based on higher-order shear deformation theory. The innovative formulations for 
higher-order approximation with FG function of materials properties have been presented in this research. Jabbari et al. 
(2016) investigated thermo-elastic analysis of rotating truncated conical shells with varying thickness made of 
functionally graded materials (FGMs) subjected to thermo-mechanical loading. The system of partial differential 
equations is semi-analytically solved by using multi-layered method (MLM). Nejad et al. (2015) presented semi-analytical 
solution for elastic analysis of axially functionally graded rotating thick cylindrical shells with variable thickness under 
non-uniform pressure by the usage of SDT and MLM. 
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Investigating aortic aneurysm as pressurized hyperelastic blood vessels enable scientists to evaluate the relative 
sensitivity of displacement and stress to geometrical and mechanical properties of the aneurysmal tissue. Furthermore, 
in pathologic conditions, arteries are even under more shear deformation compared to healthy vessels (Azar et al. 2018). 
In clinical interventions, such as balloon angioplasty significant wall shearing may take place. Simulation of arteries under 
blood pressure to yield displacement and stress analysis of blood vessels could result in useful information on the 
behavior of the arterial tissues under shear deformation (Vossoughi and Tozeren 1998). Mihai and Goriely (2017) 
investigated the physical responses of nonlinear elastic materials that are generally described by parameters which are 
scalar functions of the deformation. They established relations between various hyperelastic material model parameters 
which are used to quantify nonlinear elastic responses in several hyperelastic models as rubber to soft tissues. 

Although numerous studies have been carried out on nearly incompressible hyperelastic shells, no study has been 
carried out to date on non-uniformly pressurized cylinder with nonlinear variable thickness made of hyperelastic FGMs. 
In the current study, nonlinear quasi-static analysis of thick cylindrical pressure vessels with arbitrary variable thickness 
made of Mooney-Rivlin model of hyperelastic FGM with radially variation of material properties in nearly incompressible 
state under non-uniform pressure loading is presented. The variation of the thickness and pressure profiles of the vessel 
are considered in axial direction by linear and/or nonlinear functions. In order to improve the approximation and take 
into account the effect of shear stresses and strains, the general method of derivation and nonlinear analysis has been 
presented by using first-order shear deformation theory. Matched Asymptotic Expansion (MAE) of the perturbation 
theory is used for solving the governing system of nonlinear coupled differential equations with variable coefficients. A 
new ingenious formulation and parameters have been defined during current study to simplify and abbreviate the 
representation of inner and outer equations components in MAE. In addition, the terms of variable thickness and non-
uniform pressure have been presented in special representation separately. The effect of materials constants, 
inhomogeneity index, geometry and pressure parameters on displacements, stresses and hydrostatic pressure 
distributions resulting from MAE solution have been investigated for some case studies and the results have been 
compared with a FEM modeling in ANSYS software. We present the equations that provide the general continuum 
description of the deformation and the hyperelastic stress response of the material. Current study aims to illustrate the 
performance of the potentials and their reliability for the prediction of the state of deformation and stress in hyperelastic 
FG vessels from rubbers to arteries. 

2 BASIC FORMULATIONS 

2.1 Shear deformation theory 

Consider a thick-walled axisymmetric cylindrical shell with variable thickness (of the outer surface) subjected to non-
uniform internal pressure in the reference configuration as Figure 1. Geometry of the shell could be described in the 
terms of cylindrical polar coordinates r , θ and x : 

( ) , ,≤ ≤ ≤ ≤ ≤ ≤i or r r x 0 2 0 x Lθ π   (1) 

where ir  and ( )or x , respectively, are the inner and outer radius and L is the length of the shell. The parameter r  is the 
radius of every layer of cylinder in the reference configuration which can be replaced in terms of radius of mid-plane ( )R x

and distance of every layer with respect to mid-plane ( )z : 

( ) ( )( ) , ( , , ) ( , , )= + − ≤ ≤ ⇒ = ⇒
h x h xr R x z , z dr dz   r x z x

2 2
θ θ   (2) 

where ( )h x is the thickness of the cylinder which is varying along axial direction. The following relations can be written 
for the geometry components of the shell: 

( )( ) , ( ) ( )= + = +i o i
h xR x r r x r h x

2
  (3) 



New nonlinear solution of nearly incompressible hyperelastic FGM cylindrical shells with arbitrary 
variable thickness and non-uniform pressure based on perturbation theory 

Gharooni et al. 

Latin American Journal of Solids and Structures, 2019, 16(8), e229 4/28 

 
Figure 1: Geometry and loading parameters in cross section of the shell. 

The general axisymmetric displacement field, in the first-order Mirsky-Hermann's theory could be expressed on the 
basis of radial displacement zU  and axial displacement xU , as follows 

( , ) ( ) (x), ( , ) ( ) z (x),= + = = +z xU z x w x z U U z x u x0θψ ϕ   (4) 

where ( )w x and ( )u x are the displacement components of the middle surface. Also, (x)ψ and (x)ϕ are the rotational 
components used to determine the displacement field. 

The matrix representation of deformation gradient tensor [ ]F  in geometrically nonlinear kinematic is (Zhu et al. 
2010) 

[ ]

′ ′+ + 
 + = +
 +
 ′ ′+ + 

F

1 0 w z
w z0 1 0
R z
0 1 u z

ψ ψ
ψ

ϕ ϕ

  (5) 

where ( ) ( )′ = ∂ ∂x . Consequently, the right Cauchy–Green deformation tensor, [ ] [ ] [ ]=C F FT  and its principal invariants , ,1 2 3I  
in cylindrical polar coordinate basis are given by (Tanveer and Zu 2012) 

[ ] ( )

( ) ( ) ( )( ) ( )

, ,

,

  
+   = = + + = +    +    

 ′ ′ ′ ′ ′ ′ ′ ′= + + + + = = + + + + +

C
zz zx 2

2 2
zz

xz xx
2 2

xx zx xz

C 0 C
w z0 C 0 C 1 C 1
R z

C 0 C

C w z 1 u z C C 1 w z 1 u z

θθ θθ
ψψ ϕ

ψ ϕ ψ ψ ϕ ϕ

  (6) 

, ,= + + = + + − = − =2 2 2
1 zz xx 2 zz xx zz xx zx 3 zz xx zxI C C C I C C C C C C C I C C C C C Jθθ θθ θθ θθ θθ   (7) 

Jacobian which is known as volume ratio of deformation has the following terms (det is determinant operator): 

( ) ( ) ( )( ) ( )( )det ( )
( )

   ′ ′ ′ ′= = + + + + + + − +   + 
F 1J R x z w z 1 1 u z w z

R x z
ψ ψ ϕ ϕ ψ   (8) 

The Green–Lagrange strain tensor can be defined as ( )= −E C I1 2  ( [ ]I is the identity tensor). Considering Voigt notation 
of Green–Lagrange strains { } { }=ε T

zz xx zxθθε ε ε γ , Its components are as follows: 
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( )

( )
( )

( )

,

,
( ) ( )

  ′ ′ ′ ′
′ ′ ′ ′ ′ ′= + + = + + + + + + +     


++ ′ ′ ′ ′ ′ ′= + = = + + + + + + + +

2 2 2 2 2 2
2

zz xx

2

zx zx2

u wu u w z z
2 2 2 2 2 2

w zw z 2 u w w z
R x z 2 R x z

θθ

ψ ϕ ϕ ψε ψ ε ϕ ϕ ψ

ψψε γ ε ϕ ϕ ψ ψ ψψ ϕϕ

  (9) 

2.2 Hyperelastic FGM 

Hyperelastics (as rubber-like materials) are kind of materials in which the stresses are only dependent on the initial 
and the final configurations but independent of the load path. These materials are characterized by the existence of 
stored energy function which depends on the right Cauchy–Green deformation tensor through the strain invariants 
( )( , , )1 2 3W I I I . For incompressible material, the determinant of deformation gradient is equal to unity ( )=J 1 . In the present 
study, the extension of incompressible materials to nearly incompressible materials is considered; means that the 
incompressibility constraint is replaced with a penalty function correspond to the constraint. Therefore, the following 
strain energy function is developed based on the invariants ,1 2I I  and J  (Ghaemi et al. 2006): 

*( , , ) ( , ) ( ) ( )= + +

1 2 1 2W I I J W I I W J cH J  (10) 

*W  in Eq. (10) is the response of material to distortional part of the deformation. In the present study, the hyperelastic 
material of the shell is assumed to be isotropic and Non-homogenous with two-term Mooney-Rivlin material description 
in nearly incompressible condition which is a suitable hyperelastic model for rubbers. It has the following form (Batra 
and Bahrami 2009): 

( ) ( )*( , ) = − + −1 2 1n 1 2n 2W I I C I 3 C I 3   (11) 

where 1nC  and 2nC  are material constants resulting from experimental tests. Non-homogenous and isotropic FG 
hyperelastic materials have different properties in terms of points. The changes of properties in functionally graded 
rubbers are generally considered in radial and/or longitudinal directions. As the constants of Mooney-Rivlin model have 
relation with initial shear modulus ( )= +n 1n 2nG 2 C C , the variations of these two constants could be considered with power-
law distribution continuously and smoothly in the radial direction. Although the variations of the FGM layers are the 
function of radial direction in the current research, because of outer radius variation along axial direction, the properties 
of outer points are determined based on thickness profile. These constants have the following form (Batra and Bahrami 
2009, Anani and Rahimi 2016): 

( ) ( )( ) ( ), , ,
   + +

= =   
   

n n

1n 1 2n 2
i i

R x z R x zC x z C C x z C
r r

 (12) 

where 1C  and 2C  are material constants at the internal surface and n  is the inhomogeneity index determined empirically. 
In the second term of the right hand side of Eq. (10), we can write: 

{ }( ) ( )=

21W J G J2λ   (13) 

( )G J  in Eq. (13) is a penalty function which has to satisfy the conditions ( ) = ⇔ =G J 0 J 1  and > 0λ  is a penalty 
parameter which can be estimated by experimental data proportional to the material properties and is known as 
compressibility parameter (Silva and Bittencourt 2008, Ghaemi et al. 2006). Therefore, the assumption of almost 
incompressible rubber is accomplished by dropping the restriction =J 1  and including a hydrostatic work term in the 
strain energy function. Considering the compressibility parameter as = kλ , where k  is an additional material constant 
representing the bulk modulus, only scales the penalty functions but does not change their shapes. In this context k  can 
be interpreted as a penalty parameter that enforces incompressibility if large values are chosen. In this case, k is the ratio 
of the volumetric stress, known as hydrostatic pressure ( )P , to the volumetric strain (Mihai and Goriely 2017). 
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= =
∆ −0

P Pk
V V J 1

  (14) 

0V  and ∆V are the reference volume and volume changes through deformation, respectively. Various relations is 
recommended for estimating the value of incompressibility parameter; for instant ( ) ( )= + −k 2G 1 3 1 2ν ν . The common part 
of similar relations is definition of the bulk modulus based on material constants ( 1nC and 2nC in current model) or initial 
shear modulus ( )nG and Poisson’s ratio ( )ν . In nearly incompressible rubber materials, Poisson’s ratio with respect to 
compressibility intensity consider about . .= −0 49 0 499ν  which is constant in shell. The order of graded compressibility 
parameter nk  (bulk modulus) can be estimated based on compressibility intensity in FGM rubber as (Ghaemi et al. 2006, 
Tanveer and Zu 2012, Kiendl et al. 2015): 

( ) ( ). to .= → ∝ + × = → ∝ + ×2 3
n 1n 2n n 1n 2n0 49 k C C 10 0 499 k C C 10ν ν   (15) 

Therefore, FG bulk modulus can be considered similar to Eq. (12). 

( ) ( ),
 +

=  
 

n

n
i

R x zk x z k
r

  (16) 

k is the bulk modulus at the internal radius. For the volumetric part, there are many forms proposed by researchers, all 
of which are functions of the bulk modulus and the Jacobian of deformation. Generally, in the limiting state, the 
volumetric part has to satisfy ( ) , ( ) , ( )′ ′′→ ⇒ → → →  J 1 W J 1 W J 0 W J k conditions (Doll and Schweizerhof 2000). 

Considering zero values of displacement components in the reference configurations (initial state) with Eqs. (5), (6) 
and (7) lead in  [ ] [ ] [ ]= =F C Ι  and ( ) ( ), , , , , ,=1 2 3I I I J 3 3 1 1 . In the third term of the right hand side of Eq. (10), constant c and 
function ( )H J  with the condition ( ) , ( )′= = ⇔ =H J 0 H J 1 J 1  only guarantee the stress free reference configuration with no 
physical meaning. Moreover, in the general case of nearly incompressible hyperelasticity (as Mooney-Rivlin material), 
hydrostatic pressure ( )= −P k J 1  does not vanish even at the natural state. The first condition ( )( ) =H J 0 corresponds to the 
incompressibility constraint =J 1  and the second condition ( )( )′ =H J 1  is necessary for giving the meaning of pressure to 
the constant multiplier of H as = − 0c p . Then the initial value of P  (i.e. 0p ), which has no clear physical meaning, must be 
introduced to make the initial stress zero. In the current study, the function ( )H J and ( )G J are considered as (Doll and 
Schweizerhof 2000, Ghaemi et al. 2006): 

( ) , ( )= = −H J ln(J ) G J J 1   (17) 

Finally, the strain energy per unit undeformed volume of FG hyperelastic material for two-term Mooney–Rivlin 
model in nearly incompressible condition is expressed as the following coupled form (Holzapfel 2000). 

( ) ( ) ( )ln( )= − + − − + − 2n
1n 1 2n 2 0n

kW C I 3 C I 3 p J J 1
2

  (18) 

Consequently, constitutive equation of coupled Mooney-Rivlin model in material description and nearly incompressible, 
isotropic and non-homogenous conditions would result (Holzapfel 2000, Başar and Weichert 2000). 

( ) [ ] ( ), ,
= 2 −∂

= + − + − −  ∂
S I C C

C
11 2

1n 2n 1 2n n 0n
W I I J

2 C C I 2C k J J 1 p   (19) 

Eq. (19) relates the right Cauchy–Green strain tensor [ ]C  to the second Piola–Kirchhoff stress tensor [ ]S  through 
constitutive relation. [ ]I  is the identity tensor. The initial stress is zero if the hydrostatic pressure vanishes at the natural 
state, and vice versa. Recalling the assumption of stress-free reference configuration, Eq. (19) result in ( )= +0n 1n 2np 2 C 2C  
(Holzapfel 2000, Bijelonja et al. 2005). Thus, the multiplier 0np  in the case of ( ) =H J ln(J )  denotes the pressure measured 
in the initial volume. The components in the right hand side of Eq. (19), other than identity tensor and material constants, 
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can be written in the displacement field components. Therefore, the relation between the second Piola–Kirchhoff stress 
tensor and displacement components could be derived. 

2.3 Governing equations 

Considering the boundary surface 0A  of the body consists of two parts y0A and σ0A  where displacements y  and 
forces t



0  are prescribed, respectively, based on the principle of virtual work, the variation of strain energy of the elastic 
body is equal to the variation of external work due to loading (Kim et al. 2012, Başar and Weichert 2000, Doghri 2000). 

( ). . :Π = Π − Π = − + −∫∫∫ ∫∫ ∫∫∫
σ

y b a y t P F




 

0 0 0

EXT INT 0 0 0 0 0 0 0
V A V

δ δ δ 0= δ dV δ dA δ dVρ ρ   (20) 

where 0ρ , 0V  and b


0 are density, volume and body force in undeformed configuration, respectively. a  is dynamic 
acceleration. [ ]P and [ ]F are first Piola–Kirchhoff stress and deformation gradient tensors, respectively. Kinematically 
admissible virtual deformation variables are understood to be the variations yδ  and Fδ  which are subjected to the 
constraints (GRAD is gradient operator) 

(in ) & (o n )= =F y y y
 

0 0δ GRADδ V δ 0 A   (21) 

Therefore, the principle of virtual work (Eq. (20)) is a weak formulation of the equations of motion as well as the 
dynamic boundary conditions. Equality of energy conjugate variables preserves its validity i.e. : :=P δ F S δ E . In the static 
equilibrium and absence of body forces, Eq. (20) results in the variation of external work consists of non-uniform internal 
pressure ( )iP x applying at the internal surface iA  of cylinder: 

. ( ) , dΠ = ==∫∫ ∫∫y t
0 i

EXT 0 0 i z i i iiA A
δ = δ dA P x δU dA dA r dxr r θ   (22) 

idA is the internal surface element. Considering displacement components from Eq. (4), we can rewrite Eq. (22): 

( ) ( )( ) ( )  Π − −  
  

∫
L

EXT i
0

h x h xδ = 2 P x R x w dx
2 2

π δ δψ   (23) 

The internal virtual work in material description can be expressed from Eq. (20) and energy conjugate variables 

( ): , ( ) d ( ) z dΠ = = = = +∫∫∫ ∫∫∫S E
0 0

ij
INT 0 ij 0 0

V V
δ δ dV S δ dV dV r x dr dx R x dz dxε θ θ   (24) 

0dV is the volume element. Considering Voigt notation from Eq. (9), the variation of strain energy of cylinder with variable 
thickness can be derived based on non-zero physical components of second Piola–Kirchhoff stress: 

( )/

( )/
( )

( )

+

−

  Π = + + + +    
∫ ∫

h x 2L
zz xx zx

INT zz xx zx
0 h x 2

zδ 2 S δ S δ S δ S R x 1 dz dx
R x

θθ
θθπ ε ε ε δγ   (25) 

The variation of strain tensor components can be calculated by the usage of variational principles: 

) ( )(
( )
( )

( )

( )

, ( )
( )

 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + + + + + +

 + = + + = + + +

+
 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + + + + + + +

2
xx

zz 2

zx

δ δu u δu w δw δ u δ δu w δ δw z δ δ z

δw z δ
δ δ δ δ δ R x z w z

R x z

δ δ u δ δu δw w δ δw δ δ δ δ δ z

θθ

ε ϕ ϕ ϕ ψ ψ ϕ ϕ ψ ψ

ψ
ε ψ ψ ψ ϕ ϕ ε ψ

γ ϕ ϕ ϕ ψ ψ ψ ψ ψ ψ ψ ϕ ϕ ϕ ϕ

  (26) 

The stress resultants are defined as follows: 
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{ } { }
( )/

( )/ ( )

+

−

 
= + 

 
∫

h x 2 TT zz 2
z z z

h x 2

zN M Q S 1 z z 1 dz
R x

  (27) 

{ } { }
( )/

( )/

+

−
= ∫

h x 2 TT 2
θ θ θ

h x 2
N M Q S 1 z z dzθθ   (28) 

{ } { }
( )/

* * *

( )/

( )
( )

+

−

 
=  + 

∫
h x 2T T2

θ θ θ
h x 2

R xN M Q S 1 z z dz
R x z

θθ   (29) 

{ } { }
( )/

( )/ ( )

+

−

 
= + 

 
∫

h x 2 TT xx 2
x x x

h x 2

zN M Q S 1 z z 1 dz
R x

  (30) 

{ } { }
( )/

( )/ ( )

+

−

 
= + 

 
∫

h x 2 TT zx 2
zx zx zx S

h x 2

zN M Q K S 1 z z 1 dz
R x

  (31) 

In the last equation, SK  is shear correction factor which is applying in the stress resultant derived from shear stresses 
because of preventing stress overestimation. We consider /=SK 5 6  in the present study (Ghannad et al. 2013). 
Substituting strain invariants from Eq. (26) into Eqs. (23) and (25), considering Π = ΠEXT INTδ δ  and carrying out the 
integration by parts, the equilibrium equations of nonlinear hyperelastic cylindrical shell with variable thickness under 
non-uniform internal pressure are obtained: 

( )( )( ) ′ ′+ + + = x x zx
d R x N 1 u M N 0
dx

ϕ ϕ   (32) 

( )( ) ( )( )( ) ( ) ′ ′ ′ ′+ + + − + + + = x x zx z zx zx
d R x M 1 u Q M R x N N 1 u M 0
dx

ϕ ϕ ϕ ϕ   (33) 

( )( ) ( )* * ( )( ) ( ) ( )
( )

  ′ ′+ + + − − + = − −    
x x zx i

d 1 h xR x N w M N 1 N N w M P x R x
dx R x 2θ θ θψ ψ ψ   (34) 

( )( ) ( )( )

( )* *

( ) ( )

( ) ( )( ) ( )
( )

 ′ ′ ′ ′+ + + − − + + + 

 − + = − 
 

x x zx z zx zx

i

d R x M w Q M 1 M R x N 1 N w M
dx

1 h x h xM w Q P x R x
R x 2 2

θ

θ θ

ψ ψ ψ ψ

ψ
  (35) 

3 ANALYTICAL SOLUTION 

3.1 Perturbation theory 

In this article, Boundary Layer Method of the perturbation theory which is known as Matched Asymptotic Expansion 
is used for solving the governing equations. The advantages of this method are fast convergence, closed form solution 
and compatibility with physics of shell. MAE can explain the behavior of the shell successfully even near the boundaries. 
The governing equations (32)-(35) for cylinder with variable thickness is a system of four nonlinear coupled differential 
equations with variable coefficients. Preliminary definitions, simplifications and preparations are necessary for using 
MAE. At first, it is necessary to convert the equations into dimensionless form for making use of the characteristic scales. 
The following dimensionless parameters are defined (Eipakchi 2010, Nayfeh 1981): 

, , , , , , , , , ,= = = = = = = = = = =
n

i 0 i i
i i

0 0 0 0 0 0 1

r h P rx h z R u wx h z r R u w P
L h h h h h h L C

ϕ ϕ ψ ψ ε
ε

  (36) 

Dimensionless quantities of parameters are marked with over-bar ( )  from now. Perturbation parameter ε   should 
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be normally considered as the ratio of minimal geometrical dimension of the structure ( )0h to maximal one ( )L in 
order to be small quantity. 0h is known as the characteristic thickness which is commonly consider the smallest thickness 
of shell. The main idea of perturbation theory is that perturbation parameter is so small that coefficients of different 
power of it don’t have the same order which is lead in equality for iε  coefficients. Considering each coefficient result in 
displacement quasi-vector ( ){ }y x . Existence of two boundary layer lead in two region of solution near boundaries (inner 
expansions) and a solution away from boundaries (outer expansion) (Nayfeh 1981). 

In the dimensionless forms, first and second order differential based on x should be rewrite as follows: 

d d d d,
d d d d

= =
2 2

2 2 2
1 1

x L x x L x
  (37) 

In shear deformation theory, the differentials and integrations are with respect to x and z , respectively. Therefore, for 
simplification and abbreviation of representing equations, a dimensionless integral could be defined: 

( ) ji
i+ j+1

( )/(i, j)(i, j) ( ) d
( )/

+
= = +

−
∫

0

h x 2IIII z R x z z
h h x 2

  (38) 

which is the function of geometrical parameters ( )R x , ( )h x and inhomogeneity index n . In order to solve the set of 
governing differential equations in next steps, the inverse of singular coefficient matrices are needed. Two changes 
should be applied in equations to replace these matrices with non-singular ones. We take integrate the first equation in 
the set of Eqs. (32)-(35). The constant of integral )( 0c  should be either dimensionless as other parameters. Therefore, it 
is replaced with its dimensionless equivalent i( ) ( )= n

0 0 1c c r Cε  where ε  is bookkeeping perturbed parameter. Furthermore, 
as there is no u  in governing equations unlike d du x , we define (d d )= u xv ε as new unknown intermediate parameter. 
Therefore, one can calculate u  indirectly from intermediate parameter v by relation ( ) d= +∫ 7u 1 v x cε where 7c  is integral 
constant. The intentional constants 0c  and 7c will be calculated from boundary conditions. The following parameters 
need to be defined based on material constants of internal layer , ,1 2C C k and geometrical parameter of shear correction 
factor sK because of abbreviation in representing inner and outer equations. 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )

, , , , ,

, , , ,
ˆ, , ,

 = = + = + − = + − =
 + − = + − = + − = + − =


+ − = + − = + − = − =

2 1 2 1 1 2 1 12 1 2 1 1 1 2 1 2

1 2 1 3 1 2 1 4 1 2 1 5 1 2 1 6

1 2 1 7 1 2 1 8 1 2 1 9 s s

C C C k C k 2 C C C C 4 C C k C Ck 4 C 2C k C Ck

2 C C 3k C Ck 2 C C k C Ck 4 C C 5k C Ck 4 C C 6k C Ck

8 C 2C 7k C Ck 2 2C 3C k C Ck 2 2C 5C 6k C Ck 1 K K

  (39) 

3.2 Outer expansion 

The outer expansion of solution is considered a uniform series of ε  as ( ) ( ) ( )( ), = +y y yO O1 O2x x xε ε ε . The subscript “O” 
stands for outer solution. Furthermore, the subscript “1” and “2” shows first and second order expansion, respectively. 
Substituting the expansion in governing equations and considering the terms with the same order of ε , result in the first 
and second order equations of outer solution. In this section ( ) ( )′ = d dx . 

[ ]{ } { } [ ]{ } { } { } { } { }O( ) : , O( ) : , ′= = = +A y F A y F F F F1 2 II
O O1 O1 O O 2 O 2 O 2O 2 O 2

IIε ε   (40) 

where [ ] { },A FO O1 and { }FO 2 are coefficient matrices, non-homogeneity vectors of first and second order equation, 

respectively. { }yOi  are unknown displacement vectors in “i”th-order of outer solution. { }FO 2  consist of two vectors { }FO 2
II

and { }′FO 2
II  correspond to ( )II x  and derivative of ( )II x , respectively. These vectors would be defined in the Appendix A. 

Other non-zero components of the mentioned matrix and vectors are 

{ } { } { } { }, , , , , , ,= =y y
TT

O1 O1 O1 O1 O1 O 2 O 2 O 2 O 2 O2v w v wϕ ψ ϕ ψ   (41) 
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[ ] [ ] [ ] [ ]
[ ] [ ] ( ) [ ]
[ ] [ ] [ ] ( )

( , ), ( , ), ( , )

( , ) ( , ) , ( , )

( , ) ( , ), ( , ) ( , ) ( , )

 = + = − + = − = −

 = − = − + + =− −

 = = − − = − + + −


A A A A

A A A

A A A

O O s 12 O O 111 22 13 31

O O 1 O14 41 33

O O 1 O 134 43 44

k II 0 n 1 K C II 0 n 1 Ck II 0 n

Ck II 1 n II 0 n 1 k II 0 n 1

Ck II 0 n k II 1 n 1 Ck II 1 n k II 0 n 1 II 2 n 1

  (42) 

{ } { } { } { }( ) ( ) ( ) ( ), , ( ) ( ) , ( )
  

= = = − − = −       
F F F F

2

O1 0 O1 O1 i O1 i1 2 3 4
h x R x h x h xc 0 P x R x P x

2 2 4
  (43) 

The solutions of the algebraic equations (40) are as follows: 

{ } [ ] { } { } [ ] { },− −= =y A F y A F1 1
O1 O O1 O 2 O O 2   (44) 

3.3 Inner expansion 

As the outer solutions don’t satisfy the B.C., we can conclude existence of boundary layers at ,=x 0 1 . Therefore, fast 
variable ( )xα  should be considered as a new variable for regions around boundaries. Considering fast variables make it 
possible to measure the great variation of mechanical response around boundaries. 

( ), (left boundary), , (right boundary)
−

= → = = = → = = 0 1
x 1xx 0 0 x x 1 1 xα α

ε ε
  (45) 

Subscript “ ,= 0 1α ” shows =x α  in the boundary. Perturbation parameter appears in new definitions of differential based 
on fast variables xα : 

d d d d,
d d d d

= =




2 2
2

2 2x x x xα α
ε ε   (46) 

In cylinder with variable thickness and non-uniform pressure, it is necessary to derive Taylor expansion for all the 
parameters of axial function ( )Λ x as: 

( ) ...Λ = Λ + Λ + x x Dα α αε   (47) 

Taylor expansion with ( )Λ = Λ =xα α and d ( ) d
=

Λ = Λ
x

D x xα α
definition substitutes x  by new fast variable xα  of inner 

expansion. Taylor expansion should be written for the following parameters: 

( )
( ) , ( ) ,

,
( ) , ( )

 = + = + =
= + = +

   

   i i i

h x h x Dh R x R x DR
0 1

P x P x DP II x II x DII
α α α α α α

α α α α α α α

ε ε
α

ε ε
  (48) 

Substitution of inner expansion ( ) ( ) ( )( ), = +y y y  1 2x x xα α α α α αε ε ε  in governing equations with mentioned changes in section 
3.1 and considering terms with the same order of ε  result in inner equations at boundaryα : 

[ ] { } [ ] { } [ ]{ } { }

[ ] { } [ ] { } [ ]{ } { }
{ } { } { } { } { } { }

d d

dd

d d

dd

O( ) :

O( ) :


+ + =



 + + =



= + + + +


A y A y A y F

A y A y A y F

F F F F F F









2
1

1 1 2 1 3 1 12

2
2

1 2 2 2 3 2 22

2 2 2 2 2 2
II DA DII P DP

xx

xx

α α α α α α α
αα

α α α α α α α
αα

α α α α α
α α α α α α

ε

ε   (49) 

[ ] [ ],A A1 2α α and [ ]A 3α  are coefficient matrices at the boundary α . { }F 1α and { }F 2α are non-homogeneity vectors of 

differential equation at the first and second order equation for the boundary α , respectively. Unknown displacement 
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vectors in “i”th-order of inner solution at the boundary α  are { }y iα . { }F 2
IIα
α and { }F 2

DIIα
α , in { }F 2α , are correspond with 

( )II xα  and ( )DII xα  (in Taylor expansion), respectively. { }F 2
DAα
α derive in non-homogeneity of second order equation which 

resulting from Tayler expansion of coefficient matrices in first order equation because of variable thickness. { }F 2
Pα
α and 

{ }F 2
DPα
α , include ( )iP xα α  and ( )iDP xα α (in Taylor expansion), are resulting from variable thickness and non-uniform pressure, 

respectively. Considering too many terms, { }F 2α  vector would be defined in the Appendix A. Other non-zero components 

of the matrices and vectors defined below. In this section ( ) ( )′ = d dxα  at the boundary α . 

{ } { } { } { }, , , , , , ,= =y yT T
1 1 1 1 1 2 2 2 2 2v w v wα α α α α α α α α αϕ ψ ϕ ψ   (50) 

[ ] [ ]
[ ] [ ] [ ]

( , ), ( , )

( , ), ( , )

 = + = +


= = + = +

A A

A A A

1 1 s 1222 33

1 1 s 12 1 s 1234 43 44

k II 2 n 1 K C II 0 n 1

K C II 1 n 1 K C II 2 n 1

α α α α

α α α α α
  (51) 

[ ] [ ] [ ] [ ]
[ ] [ ] ( )

( , ), ( , ) ( , )

( , ) ( , ) ( , )

 = = + = − = − + −


= − = − + − + +

A A A A

A A

2 2 2 2 s 12 112 21 23 32

2 2 s 12 124 42

k II 1 n 1 K C II 0 n 1 Ck II 1 n

K C II 1 n 1 Ck II 2 n II 1 n 1

α α α α α α α

α α α α α
  (52) 

[ ] [ ] [ ] [ ]
[ ] [ ] ( ) [ ]
[ ] [ ] [ ] ( )

( , ), ( , ) , ( , )

( , ) ( , ) , ( , )

( , ) ( , ) , ( , ) ( , ) ( , )

 = + =− + = − = −

= − = − + + =− −

= = − − = − + + −

A A A A

A A A

A A A

3 3 s 12 3 3 111 22 13 31

3 3 1 314 41 33

3 3 1 3 134 43 44

k II 0 n 1 K C II 0 n 1 Ck II 0 n

Ck II 0 n 1 II 1 n k II 0 n 1

Ck II 0 n k II 1 n 1 2Ck II 1 n k II 0 n 1 II 2 n 1

α α α α α α α

α α α α α α

α α α α α α α α








  (53) 

{ } { } { } { }, , ,
  

= = = − − = −       
F F F F

2

1 0 1 1 i 1 i1 2 3 4
h R h hc 0 P R P
2 2 4
α α α α

α α α α α α α   (54) 

Eqs. (49) are systems of coupled non-homogenous differential equations with constant coefficients. Each equation has 
general { }( )gen. and particular { }( )par. solution: 

{ } { } { } { } { } { },= + = +y y y y y y1 1 1 2 2 2gen. par. gen. par.α α α α α α   (55) 

Considering mα and { }Vα  as eigenvalues and eigenvectors, respectively, and substituting general solution of exponential 
form { } { } )=y gen. V exp(m xα α α α in homogenous part of Eqs. (49) lead in an eigenvalue problem: 

[ ] [ ] [ ]( ){ } { }+ + =A A A2
1 2 3m m V 0α α α α α α   (56) 

The necessary condition for existing the solution of Eq. (56) is zero value of the coefficient determinant which is the 
characteristic equation of the system. Six non-zero roots of it are the eigenvalues ( )imα . Substituting roots in Eq. (56) lead 
in corresponding eigenvectors ( )iVα . The eigenvalues and eigenvectors are complex conjugate. Considering Van-Dyke’s 
matching principle (Nayfeh 1981), the solution should be finite at →∞xα . Therefore, in left boundary ( )= 0α  eigenvalues 
with positive real part and in right boundary ( )= 1α  eigenvalues with negative real part are omitted. The general solution 
of the boundary α  could be calculated. 

{ } { } { } { } )
=

= = = ∑y y y 

3
1 2 i i igen. gen. gen.

i 1
c V exp(m xα α α α α α α   (57) 

where ( , , )=ic i 1 2 3α are three constant at each boundary which could be calculated by boundary conditions. The particular 

solution of first order equation in Eq. (49) is simply calculated by { } [ ] { }−=y A F1
1 3 1par.α α α . As { }F 2α is consist of nonlinear 
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polynomial terms { }( )pol.  and exponential terms by the equal roots ))i(exp(m xα α and unequal roots ))j(exp(q xα α with 

characteristic equations based on O( )1ε solution, the particular solution of O( )2ε is calculated by undetermined 
coefficients method as follows: 

{ } { } { } { } { } { } { } { }

{ } { } { } { }( )
{ } { } { } { }( )

mi mi mi

q j q j q j

. exp(mi) exp(q j) .
. . . .

exp(mi)
.

exp(q )
.

,

)

)

 = + + = + +
 = + +

 = + +

∑

∑

y y y y y

y

y

 

  

  

2
2 2 2 2 2 2 1 0

2
2 2 1 0 ii

2
2 2 1 0 jj

pol pol
par. par par par par

par
j

par

B x B x B

B x B x B exp(m x

B x B x B exp(q x

α α α α α

α α α

α α α

  (58) 

where subscript “i” and “j” shows the number of equal and unequal roots with characteristic equations. Substituting 
{ }y 2 par.α in Eq. (49) - O( )2ε  lead in undetermined coefficients { }1B , { }1B and { }2B . 

3.4 Composite solution 

In the MAE method, the composite solution { }( )ycomp. is the summation of three calculated expansions (one outer 

{ }yO and two inner { } { },= =y y0 1α α ) minus the overlapped parts of them. Outer solution at ,→x 0 1  and inner solutions 
at →±∞xα are overlapped and these common parts have to be removed from composite solution. Therefore, 

{ } { } { } { } { } { }= =
= == + + − −y y y y y y0 1

comp. O 0 1 O O
α α

α α   (59) 

where { }=y 0
O
α and { }=y 1

O
α are common parts of inner and outer solutions at two ends of the shell which can be determined 

by definition of intermediate variable or Van-Dyke’s matching principle (Nayfeh 1981). Eight constants, consist of three 
constants in general solution of each boundary and two constants 0c and 7c , should be calculated by the boundary 
conditions. The clamped boundary conditions in “i”th-order perturbation solution are: 

( ), i i i i, , , , i = 1,2= = → =0 1x 0 1 x 0 u w 0 ( )α α α αϕ ψ   (60) 

Finally, the unknown vector { } { } { }, , ,= =y ycomp. u wϕ ψ  which consists of dimensionless displacement field components 
would be obtained in terms of x and z variables. Considering Eq. (4) and , ,=z x z x 0U U h , the dimensionless radial and axial 
displacements can be calculated. Using Eqs. (5-9) would yield [ ] [ ] , ,, , ,F C 1 2 3I J and [ ]E , respectively. The hydrostatic 
pressure, strain energy function and second Piola–Kirchhoff stress distribution could be calculated by using 
Eqs. (14), (18) and (19). The relation [ ] ( )[ ][ ][ ]=σ F S F T1 J  would result in Cauchy stress components. The analytical solution 
has been carried out by writing the program in MAPLE 18 software. 

4 RESULTS AND DISCUSSION 

4.1 FE modeling 

In order to validate presented analytical solution and compare the results for pressurized thick cylinder with variable 
thickness made of nearly compressible FG hyperelastic material, a numerical solution based on Finite Element Method 
is investigated. The ANSYS 16 package is used in the static analysis of thick hollow cylinder with variable thickness under 
non-uniform internal pressure. The PLANE183 element in the axisymmetric mode, which is an element with eight nodes 
and two translational degrees of freedom in the axial and radial directions per each node, has been used to model the 
mechanical part of the analysis. It also has mixed formulation capability for simulating deformations of nearly 
incompressible hyperelastic material. The cylinder with variable thickness consists of some coherent homogeneous 
layers which properties at the contact location of the layers are the average of left and right limit of two layer boundaries. 
In order to model FG hyperelastic cylinder, an innovative application for multilayering the thickness in the axial direction 
has been performed. Homogenous layers which have identical thickness and step-variable properties have been formed 
by this method. In order to consider Mooney-Rivlin elastic model in nearly incompressible condition in each homogenous 
layer, three constants involving ,10 01C C and d should be defined for ANSYS software. 10C and 01C corresponding to 1nC and 
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2nC could be calculated from Eq. (12) in each layer. d is material incompressibility parameter by relation with bulk 
modulus as . =nk d 2  (Montella et al. 2014, Gao et al. 2009) which could be calculated from Eq. (16) in each layer. For non-
uniform internal pressure, the pressure functions have been defined and applied to the internal layer nodes. Clamped 
boundary conditions have been exerted by preventing the nodes around the two ends of the cylinder from movement. 
In the next sections, the numerical results (FEM) and analytical results (MAE) have been investigated for different case 
studies. 

4.2 Case studies 

In order to illustrate the effects of material constant, gradient index, pressure loading distribution and thickness 
profile type on the mechanical behavior of hyperelastic pressure vessel, thick cylinders with various non-uniform 
thickness and internal pressure profiles made of different materials constants and inhomogeneity index have been 
considered. In these example problems, unless noted otherwise, we take constant geometry parameters as: mm=ir 47

and mm=L 400 . Clamped boundary conditions are applying in two ends of the shells. The materials are assumed 
functionally graded hyperelastic with tow-term Mooney-Rivlin model in nearly incompressible conditions. During the 
computation of numerical results, different material contestants according to various references are considered which 
have been presented in Table 1. The material constants are considered based on two state: 1) mentioned directly in 
these articles or 2) computed by authors of current paper from different test results (mentioned in these references). 
The constants of FG Mooney-Rivlin model are considered for material properties at the internal surface. Considering the 
values of 1C  and 2C in Table 1 and Eq. (15) result the variation range of k about −1 100 MPa  in nearly incompressible limit. 
Important remark is that for <k 2 MPa , the eigenvalues of characteristic equation no longer have conjugate complex form 
and MAE solution diverge. Hence, in Table 1, we set =k 10 MPa  for cases with no incompressibility parameter presentation 
(Dias et al. 2014, Kiendl et al. 2015). Internal pressure distribution and thickness profile varies non-uniformly along axial 
direction of shell. Various pressure profiles are applied to the cylindrical shell in the range of kPa kPa−5 13 . Dimensionless 
Cauchy stresses and hydrostatic pressure are defined as: 

,= =
σσ
i0 i0

PP
P P

  (61) 

i0P is considered kPa9 which is the average of maximum and minimum pressure distributions. The variations of thickness 
profiles are in the range of mm mm−6 12 . Tables 2 and 3 show the characteristic of applied non-uniform pressure and 
thickness profiles, respectively. 

Table 1: The characteristic of material constants. 

Material 
Constants ID 

Reference (MPa)1C  (MPa)2C  (MPa)k  Material Sample 

MC1  Selvadurai and Shi (2012) 0.242 0.142 10 Natural gum rubbers 

MC2  Montella et al. (2014) 0.251 0.263 36 TDM 600 

MC3  Sussman and Bathe (1987) 0.177 0.045 10 Rubber bushes 

MC4  Boyce and Arruda (2000) 0.16 0.015 10 Rubbers 

MC5  Batra and Bahrami (2009) 0.1858 -0.01935 10 Rubberlike materials 

MC6  Dias et al. (2014) 0.423 -0.262 10.5 Silicone elastomers 

MC7  Vossoughi and Tozeren (1998) 0.09 0.118 10 polyurethane rubbers 

MC8  Kiendl et al. (2015) 0.1848 0.0264 10 Rubbers 

MC9  Tanveer and Zu (2012) 0.552 0.138 10 Rubber seals 
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Table 2: The characteristic of non-uniform internal pressure profiles. 

Pressure Profile ID Pressure Profile Relation Load Constants 

i0P  i i( ) constant= =0P x P  i kPa=0P 9  

i1P  ( )i ( ) = − −a a bP x P P P x  kPa, kPa= =a bP 13 P 5  

i 2P  ( )i ( ) = − − 2
a a bP x P P P x  kPa, kPa= =a bP 13 P 5  

i 3P  ( )i ( ) = − − 3
a a bP x P P P x  kPa, kPa= =a bP 13 P 5  

i 4P  ( )( )i ( ) = − − − 2
a a abP x P 4 P P x x  kPa, kPa= = =a b abP P 5 P 13  

i 5P  ( ) ( )i ( ) sin= − −a a abP x P P P xπ  kPa, kPa= = =a b abP P 13 P 5  

Table 3: The characteristic of non-uniform thickness profiles. 

Thickness Profile ID Thickness Profile Relation Geometry Constants 

0h  ( ) constant= =0h x h  mm=0h 6  

1h  ( )( ) = − −a a bh x h h h x  mm, mm= =a bh 12 h 6  

2h  ( )( ) = − − 2
a a bh x h h h x  mm, mm= =a bh 12 h 6  

3h  ( )( ) = − − 3
a a bh x h h h x  mm, mm= =a bh 12 h 6  

4h  ( )( )( ) = − − − 2
a a abh x h 4 h h x x  mm, mm= = =a b abh h 6 h 12  

5h  ( ) ( )( ) sin= − −a a abh x h h h xπ  mm, mm= = =a b abh h 12 h 6  

As current research studies the manner of pressurized rubber vessels in dimensionless state, the results of FSDT and 
MAE solution may be suitable for investigating some case studies of blood vessels. In particular, we use an analysis to 
examine the inflation of a cylindrical tube at various internal pressure profiles and to compute the evolution of the inner 
radius (critical layer) with the internal pressure. Although the material models of blood vessels such as arteries have 
commonly exponential form to model the stiffening of the soft tissues, simple model such as neo-Hookean and/or 
Mooney-Rivlin one is considered in some research for isotropic parts of blood vessels (Holzapfel and Gasser 2007, 
Lally et al. 2005). Hence, case studies of variable thickness and pressure are selected similar to that of common elastic 
arteries (as unite layer) in current research in order to cover pressure vessels to blood vessels. The thick and thin part of 
the vessels covers the average thickness of the layers in common elastic arteries. The pressure profiles vary in the range 
of kPa( mmHg) kPa( mmHg)−5 40 13 100  which are the mean blood vessel pressures of human soft tissues. mmHg100 is the mean 
of systolic/diastolic pressure and mmHg40 may be occurred in hypotension pressure of arteries (Abdessamad et al. 2018, 
Humphrey and O’Rourke, 2015). Considering the applicability of the rubber elasticity theory to aortic soft tissues as one 
layer or multilayer vessel with variable material properties along thickness, the behavior of blood vessels under non-
uniform pressure distribution has been investigated from current research. Furthermore, current study will present 
helpful results for estimating the wall degeneration of arteries within the aneurysm wall that affects the thickness profile 
of the tissue, which can be mostly analyzed as variable thickness blood vessels (Xie et al. 1995, Vossoughi and Tozeren 
1998, Holzapfel and Gasser 2007). 

4.3 Effect of material constants and inhomogeneity index 
In order to investigate the material constants effect on the approximation of the current solution and behaviour of 

shell, maximum values of radial and axial displacements for different material constants resulted from FSDT and FEM is 
presented in Tables 4 and 5. As the maximum values of displacements and maximum difference of analytical and 
numerical analysis in pressure vessels occur at the internal layer, the results of Tables 4 and 5 define the validity range 
of the current solution. Material constants, applied pressures and geometry of the cylinder are considered in the range 
of < <5 R 20  and ( )i/ /< + <1 21 200 P C C 1 50  (Batra and Bahrami 2009, Humphrey and O’Rourke 2015, Azar et al. 2018). 
The difference percentage of dimensionless radial and axial displacement resulting from the numerical and analytical 
solution i.e. ( )MAE FEM FEM

,x , , ,Diff (%) = − ×z z x z x z xU U U U 100  for mentioned R and i ( )+1 2P C C  are less than 8%. R values of more 
than 20 (thickness limit for thick cylinder) and less than 4 (very thick shells) may lead in decrease in solution accuracy. It 
is observed that the accuracy of MAE descend for great values of R because of intensifying nonlinear behavior of the 
cylinder while for small R , the accuracy of shear deformation theory decrease in analyzing thick cylindrical shells. The 
main reason of increasing the difference between results of shear deformation theory and other theories (finite element 
or plane elasticity) for small R  are the effect of domination of thickness values to displacement ones which make linear 
(or even more order) distribution of displacements along the thickness of cylinder not to be matched to real state; so 
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shear deformation approximation cylinders lead in less accuracy for very thick (Eipakchi et al. 2003). Ascending R lead in 
higher deformations and lower effect of clamped conditions on deformations and the peak points of displacements 
occurs far away from boundaries. An increase in i ( )+1 2P C C and k or decrease in +1 2C C  ascend the nonlinearity and 
descend the accuracy. 

The longitudinal and circumferential components of Green–Lagrange strain are depicted in Figure 2 for 
homogeneous cylinder. According to Figure 2(a), the longitudinal strain resulted from numerical and analytical solution 
show good agreement along axial direction of different layers. It can be seen that maximum longitudinal strain occurs 
around the boundaries of external layer. However, the position of extremum strains could be different for low range of 
loading. At the middle of the cylinder away from boundaries, no significant difference of longitudinal strain is observed 
along the thickness. As the maximum values of circumferential strain occur at the middle of the cylinder ( ).=x 0 5 , 
distribution of this strain component is shown along thickness of cylinder for different loading in Figure 2(b). Ascending 
the internal pressure causes decrease in accuracy of analytical strain especially around the loading layer with higher 
strain (internal layer). FSDT have acceptable accuracy for indirect calculation of strain components from displacements. 

Table 4: Analytical and numerical values of maximum radial displacements for different material constants. 

Mat. 
ID z max,U  i 1 2P (C + C ) = 1 50   i 1 2P (C + C ) = 1 100   i 1 2P (C + C ) = 1 200  

R = 5  R = 10  R = 20   R = 5  R = 10  R = 20   R = 5  R = 10  R = 20  

MC1  FSDT 0.0734 0.2991 1.2127  0.0363 0.1481 0.5943  0.0182 0.0736 0.2952 
FEM 0.0759 0.3047 1.2699  0.0370 0.1488 0.5970  0.0184 0.0737 0.2930 

MC2  FSDT 0.0691 0.2859 1.1754  0.0339 0.1410 0.5760  0.0169 0.0700 0.2812 
FEM 0.0736 0.2913 1.2210  0.0359 0.1407 0.5746  0.0178 0.0706 0.2780 

MC3  FSDT 0.0701 0.2917 1.1863  0.0347 0.1437 0.5810  0.0173 0.0714 0.2876 
FEM 0.0730 0.2957 1.2319  0.0358 0.1442 0.5812  0.0180 0.0717 0.2847 

MC4  FSDT 0.0685 0.2876 1.1771  0.0340 0.1421 0.5763  0.0169 0.0706 0.2861 
FEM 0.0726 0.2921 1.2234  0.0356 0.1430 0.5766  0.0179 0.0712 0.2830 

MC5  FSDT 0.0681 0.2869 1.1762  0.0338 0.1417 0.5760  0.0168 0.0704 0.2855 
FEM 0.0725 0.2930 1.2214  0.0349 0.1419 0.5742  0.0177 0.0710 0.2824 

MC6  FSDT 0.0676 0.2832 1.1371  0.0336 0.1408 0.5682  0.0167 0.0702 0.2836 
FEM 0.0722 0.2902 1.1780  0.0362 0.1421 0.5683  0.0178 0.0708 0.2812 

MC7  FSDT 0.0696 0.2902 1.1871  0.0345 0.1433 0.5810  0.0172 0.0712 0.2875 
FEM 0.0743 0.2969 1.2375  0.0360 0.1440 0.5813  0.0181 0.0716 0.2850 

MC8  FSDT 0.0697 0.2899 1.1861  0.0346 0.1425 0.5798  0.0172 0.0712 0.2875 
FEM 0.0742 0.2970 1.2360  0.0365 0.1440 0.5799  0.0180 0.0716 0.2846 

Table 5: Analytical and numerical values of maximum axial displacements for different material constants. 

Mat. 
ID x maxU ,  i 1 2P (C + C ) = 1 50   i 1 2P (C + C ) = 1 100   i 1 2P (C + C ) = 1 200  

R = 5  R = 10  R = 20   R = 5  R = 10  R = 20   R = 5  R = 10  R = 20  

MC1  FSDT 0.0147 0.0453 0.1096  0.0073 0.0231 0.0623  0.0037 0.0117 0.0331 
FEM 0.0151 0.0469 0.1089  0.0076 0.0242 0.0621  0.0038 0.0125 0.0332 

MC2  FSDT 0.0138 0.0453 0.1162  0.0069 0.0227 0.0634  0.0035 0.0113 0.0332 
FEM 0.0149 0.0460 0.1080  0.0073 0.0239 0.0611  0.0037 0.0120 0.0333 

MC3  FSDT 0.0138 0.0445 0.1139  0.0069 0.0226 0.0628  0.0034 0.0114 0.0329 
FEM 0.0149 0.0452 0.1068  0.0075 0.0239 0.0611  0.0037 0.0121 0.0331 

MC4  FSDT 0.0136 0.0445 0.1148  0.0068 0.0225 0.0630  0.0034 0.0113 0.0329 
FEM 0.0148 0.0457 0.1069  0.0075 0.0237 0.0603  0.0037 0.0122 0.0332 

MC5  FSDT 0.0135 0.0441 0.1135  0.0068 0.0224 0.0626  0.0034 0.0113 0.0327 
FEM 0.0148 0.0456 0.1050  0.0073 0.0239 0.0602  0.0037 0.0121 0.0329 

MC6  FSDT 0.0134 0.0408 0.0960  0.0066 0.0216 0.0584  0.0034 0.0111 0.0316 
FEM 0.0145 0.0432 0.0973  0.0073 0.0224 0.0587  0.0037 0.0121 0.0318 

MC7  FSDT 0.0139 0.0454 0.1166  0.0069 0.0228 0.0640  0.0034 0.0114 0.0332 
FEM 0.0150 0.0466 0.1085  0.0075 0.0232 0.0613  0.0038 0.0123 0.0335 

MC8  FSDT 0.0137 0.0444 0.1134  0.0068 0.0226 0.0628  0.0034 0.0114 0.0329 
FEM 0.0149 0.0460 0.1063  0.0075 0.0238 0.0610  0.0037 0.0123 0.0328 
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Figure 2: (a) Longitudinal strain distribution along axial direction at different layers ( i i( ) . , ( ) , MC= =0 0 5P x 1 5P h x h ) and 

(b) circumferential strain distribution along thickness for different pressure ( . , ( ) , MC= = 0 4x 0 5 h x h ). 

In order to show the displacements and stresses distribution in FG hyperelastic cylinder with variable thickness 
under non-uniform internal pressure, linear increase of thickness counter x direction is considered proportional to linear 
pressure profile with positive inhomogeneity index ( )=n 2 . The constants of FG Mooney-Rivlin model for rubber are 
considered as 9MC . Figure 3 illustrate displacement contour resulted from FE modeling in 3/4 expansion of the shell 
section. The distribution of dimensionless displacements resulted from FSDT and FEM are plotted in Figure 4 at different 
layers. Boundary conditions and radial direction of applying pressure cause <x zU U  in the current case study. Because of 
greater radial displacements around left boundary, it can be concluded that pressure profile is more effective than 
thickness variation on shell displacement. According to Figure 4(b), the axial displacement at points away from the 
boundaries is nearly independent from radius. Layers close to maximum pressure and clamped conditions are in axial 
tension; therefore, axial compression is dominants at the shell except in ≤z 0  around left boundary. 

Figure 5 show dimensionless Cauchy stresses and hydrostatic pressure at different layers along axial direction. 
Hydrostatic pressure can be considered as average of principal stresses. Considering Figure 5 confirm this fact; so 
hydrostatic pressure can be a suitable equivalent parameter that show shell state from the view point of stresses. 
Circumferential and axial stresses, similar to hydrostatic pressure, have positive values in nearly all points of the shell 
except around boundaries at the outer layer away from loading. The reason is that the elements are in tensile state, but 
clamped conditions near boundaries at the layer away from loading cause resistance against displacement which lead in 
compressive stresses. In this state, inner layer of the shell in contact with pressure load have higher displacements and 
stresses than others. It is obviously observed that the circumferential stress is the largest component of the stress at 
points away the boundaries while at the points near the boundaries, the axial stress is the largest one. Existence of shear 
stress near boundaries reveals the advantage of shear deformation theory respect to theories that neglect shear stress 
effect (Figure 5(c)). Getting away from boundaries, non-uniform peaks of displacements and stresses are observed at the 
points where shear stresses tend to zero values. Difference between MAE and FEM results increase at the points of 
internal and external layers away from boundaries. Although FSDT is suitable for displacement analyzing rather than 
stress one, the results of MAE are more realistic around boundaries respect to FE solution. Considering Eq. (14) and 
hydrostatic pressure distribution lead in . .< <0 993 J 1 010 . Dimensionless radial Cauchy stress distribution in middle layer 
resulted from first and second order MAE solution are depicted in Figure 6. O( )1ε  solution is suitable for linear analysis 
while O( )2ε  is suitable for nonlinear problems. Figure 6 shows that second order solution improves results accuracy 
respect to first order one, especially in the current research that kinematics and constitutive relations are highly 
nonlinear. 



New nonlinear solution of nearly incompressible hyperelastic FGM cylindrical shells with arbitrary 
variable thickness and non-uniform pressure based on perturbation theory 

Gharooni et al. 

Latin American Journal of Solids and Structures, 2019, 16(8), e229 17/28 

 
Figure 3: Contour plot of (a) radial and (b) axial displacement resulted from FEM in ¾ expansion of shell section 

 ( i i1 1 9, ( ) , ( ) , MC= = =n 2 P x P h x h ). 

 
Figure 4: Dimensionless (a) radial and (b) axial displacement distribution along axial direction at different layers 

 ( i i1 1 9, ( ) , ( ) , MC= = =n 2 P x P h x h ). 

 
Figure 5: Dimensionless (a) circumferential (b) axial (c) shear Cauchy stress and (d) hydrostatic pressure distribution along axial 

direction at different layers ( i i1 1 9, ( ) , ( ) , MC= = =n 2 P x P h x h ). 
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Figure 6: Dimensionless radial Cauchy stress distribution at middle layer along axial direction for different MAE order. 

In order to investigate the effect of inhomogeneity index on the response of shell, the distribution of displacements 
and hydrostatic pressure at internal layer (critical layer) are plotted in Figure 7(a-c). The linear thickness and pressure 
profile are assumed for shell with 9MC material constants. Figure 7(d) shows the distribution of dimensionless material 
properties (normalized to internal layer properties) with respect to the radius variation in a heterogeneous cylinder for 
integer values of n  which vary in the range of − ≤ ≤ +4 n 4 . The variations of material properties with power-law 
distribution are continuously and smoothly in the radial direction. The extremum values of properties at outer layer 
points could be determined through intersection of vertical line plotted from radius of the point and graph of arbitrary
n . Positive values of gradient index increase strength of material under mechanical loading toward outer layer of shell, 
while the reverse holds true for negative values of n . Therefore, variation of inhomogeneity index from negative to the 
positive causes displacements, hydrostatic pressure and consequently stresses of cylinder to be reduced. Greater values 
of n  intensify improvement or reduction in response of FG shell respect to homogenous one. Table 6 presents the results 
of maximum displacements and hydrostatic pressure in three layers of shell for different inhomogeneity index. Linear 
decrease in radial displacement and smooth reduction in axial displacement can be observed from internal layer to the 
external one for different values of n . Positive values of n cause more uniform hydrostatic pressure distribution of the 
layers and less maximum values of hydrostatic pressure compared with negative ones. Therefore, It could be concluded 
that internal layer (in contact with loading) is still critical one and positive values of n  are more appropriate from the 
viewpoint of less values and more uniform distribution of displacements and stresses in heterogeneous cylinder. 

However, we are not concerned here with possible manufacture processes of FG materials, as well as experimental 
tests. Authors believe that, when the FG elastomers start to be widely employed in industry or in engineering 
applications, our formulation is a reliable numerical tool to predict their mechanical behavior (in terms of accuracy). But 
it is important to note that method presented here will be useful to material scientists in designing new materials, stress 
analysts, and designers in two states. One can use similar solution procedure to calculate displacements and stresses for 
FG material models with the given constants functions applied instead of Eq. (12) distribution. Furthermore, one can 
control the through-the-thickness distribution of displacements and stresses as objective parameters by tailoring the 
through-the-thickness variation of the material constants by trial and error to achieve appropriate distribution of FGM 
constants. In the material tailoring problem, one has found through-the thickness variation of material constants to 
achieve a desired variation of stress components, frequency of free vibrations, deformation or an objective function to 
be optimized (Batra 2011). This method is going to be extended in FG elastomers and biological tissues. Bilgili (2004) also 
suggest that the presence of material non-homogeneity in test specimens might be reason for the conflicting 
experimental results in the technical literature regarding the nature of the rubber-elastic response functions. Hence, he 
developed comprehensive experimental and theoretical program to characterize the response functions of non-
homogeneous rubber components and introduced a design code based on especial (power variation) material model 
which can explain the essential physics–chemistry behind the intended functionality. The design code yields essential 
information about the grading which in turn can be used as input into the design of a fabrication process. Thus, our 
method along with mentioned studies could direct further research toward the design, optimization, and manufacture 
of graded rubber-like materials. 
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Figure 7: The effect of inhomogeneity index on dimensionless (a) radial displacement (b) axial displacement (c) hydrostatic pressure 

(along axial direction at internal layer) and (d) material properties (along radial direction) ( i i1 1( ) , ( )= =P x P h x h ). 

Table 6: Maximum displacements and hydrostatic pressure of internal, middle and external layer for different inhomogeneity index 
( i i1 1( ) , ( )= =P x P h x h ). 

 zU at x = 0.15   xU at x = 0.65   P at x = 0  

z = -0.5  z = 0  z = +0.5   z = -0.5  z = 0  z = +0.5   z = -0.5  z = 0  z = +0.5  

= +n 4  0.0744 0.0697 0.0650  -0.0224 -0.0222 -0.0219  9.425 2.064 -5.296 
= +n 2  0.0932 0.0873 0.0813  -0.0271 -0.0267 -0.0264  11.177 1.965 -7.247 
=n 0  0.1152 0.1078 0.1004  -0.0325 -0.0320 -0.0315  13.105 1.631 -9.843 
= −n 2  0.1403 0.1312 0.1221  -0.0387 -0.0380 -0.0373  15.201 0.970 -13.262 
= −n 4  0.1685 0.1575 0.1465  -0.0457 -0.0447 -0.0438  17.459 -0.128 -17.715 

4.4 Effect of pressure and geometry profiles 

Figure 8 shows the effect of pressure profile on the distribution of displacements and hydrostatic pressure in FG 
cylinder with linear variable thickness. The material is considered with =n 2  and 9MC . Distribution of non-uniform 
internal pressure functions along axial direction are depicted in Figure 8(d). Investigating the response of cylinder with 
linear thickness profile under i1P , i 2P  and i 3P  in Figure 8(a) and (b) show nearly the same maximum displacements; 
however, variations of radial displacement are proportional to pressure profiles distribution at length of the shell. It is 
observed that linear variation of pressure i1P and thickness 1h  of the shell in same direction counteract each other effect. 
This counterbalance is weakly true for nonlinear pressure profiles with similar range of applied pressure. Figure 8(c) 
expresses that hydrostatic pressure under these three pressure profiles increase by intensifying nonlinearity of pressure 
distribution. Hydrostatic pressure of middle layer has its maximum value near right boundary unexpectedly, because the 
effect of descending thickness is dominant to pressure profile increments. For internal (critical) layer reverse hold true 
(as previous results proved), i.e. the maximum hydrostatic pressure occurs around left boundary with higher pressure. 
Pressure profiles of i 4P  and i 5P  which have higher non-uniformity respect to other profiles lead in larger radial 
displacement and hydrostatic pressure values, but less axial displacement. Fast pressure variation of i 4P  and i 5P  reduce 

zU  and P  around =x 0 . Maximum pressure applied in middle and end of cylinder for i 4P  and i 5P , respectively, in addition 
to descending thickness cause maximum of zU and P near =x 1 . It can be concluded from Figure 8(a) and (c) that zU and 
P  patterns along the length of shell follow the pattern of the applied pressure function. 
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Figure 8: The effect of non-uniform pressure profile on dimensionless (a) radial displacement (b) axial displacement (c) hydrostatic 

pressure along axial direction at middle layer ( 1 9, ( ) , MC= =n 2 h x h ) and (d) internal pressure distribution along axial direction. 

The influences of thickness profile function on the distribution of displacements and hydrostatic pressure under i1P

loading are illustrated in Figures 9-11 for heterogeneous cylinder with =n 2  and 9MC materials properties. Considering 
Figure 9(a) and (c) prove that changes of concave thickness profile to convex one cause reduction in radial displacement 
and hydrostatic pressure. However, zU and P  for 4h  profile intensify near =x 0  because of lower thickness in addition to 
maximum pressure. It is obviously observed that constant thickness ( )0h have the greatest displacements and stresses 
under i1P . No considerable variations in axial displacements are observed between non-uniform thickness profiles. 
Comparison of Figures 8-11 reveal that pressure profiles increment is more effective on the response of shell respect to 
thickness profiles variation; i.e. descending pressure causes more reduction in displacements and stresses respect to 
increasing the thickness. Table 7 represents the numerical results for similar distribution of pressure and thickness in 
different sections of internal layer. The axial sections are selected based on extremum points of displacements and 
hydrostatic pressure distribution. It is observed that similar thickness and pressure patterns lead in uniform distributions 
of displacements, stresses and hydrostatic pressure along length of the shell. According to Table 7, i ,5 5P h and i ,4 4P h

profiles have the least and the most hydrostatic pressure, respectively. In fact, whatever maximum pressure and 
consequently maximum thickness are applied near clamed boundaries, more counterbalance of thickness and pressure 
emerges. It can be concluded that i ,5 5P h  and i ,1 1P h are suitable profiles in designing current hyperelastic FG shell. 

The rupture modes in the aortic specimens are characterized by oblique tears in the circumferential direction, 
indicating that the failure of the aneurismal aortic tissue is mainly governed by the axial stress. The failure stress in the 
axial direction is much higher in the adventitia layer compared to that in the media layer (Kim et al. 2012). This means 
that the failure in the aneurismal aortic tissue may initiate in the media layer; i.e. inner surface of arteries are critical 
one. It is considered that the current methodology could be improved to assess the aortic aneurysm rupture risk based 
on maximal diameter or stress by modeling blood vessels of patients having an aneurysm. In recent years, researchers 
have developed artificial blood vessels made from special elastomer material and the usage of artificial vascular 
prostheses in vascular graft (Łos et al. 2018). Over time, these artificial blood vessels are replaced by endogenous 
material. Some parts of mentioned prostheses don’t have complicated geometries and can be models as regular shells 
with acceptable tolerances and imperfections. Authors believe that current method could have the potential of helping 
researchers in the future to analyze and obtain useful information about (a) more realistic hyperelastic material models 
of blood vessels (artificial or natural, isotropic or anisotropic, homogenous or non-homogeneous); (b) especial variation 
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in internal and /or external profiles of blood vessels (as variable thickness conical shell) resulted from atherosclerotic 
plaque, aortic aneurysm, aging deformation and so on; (c) maybe future non-homogeneous prosthesis with position 
dependent functionality. 
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Figure 9: The effect of thickness profile on dimensionless radial displacement ( i i1 9, ( ) , MC= =n 2 P x P ). 

 

 

 

𝑈𝑈�𝑥𝑥   𝑈𝑈�𝑥𝑥   𝑈𝑈�𝑥𝑥   

�̅�𝑥 �̅�𝑥 
r r r 

ℎ1   ℎ2   ℎ3   

ℎ4   ℎ5   ℎ0   

�̅�𝑥 

𝑈𝑈�𝑥𝑥   𝑈𝑈�𝑥𝑥   𝑈𝑈�𝑥𝑥   

�̅�𝑥 �̅�𝑥 
r r r 

�̅�𝑥 

 
Figure 10: The effect of thickness profile on dimensionless axial displacement ( i i1 9, ( ) , MC= =n 2 P x P ). 
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Figure 11: The effect of thickness profile on dimensionless hydrostatic pressure ( i i1 9, ( ) , MC= =n 2 P x P ). 

Table 7: Numerical results for similar pressure and thickness profiles in various sections at internal layer ( 9, MC=n 2 ). 

 zU   xU   P  

x = 0.15  x = 0.5  x = 0.85   x = 0.05  x = 0.25  x = 0.7   x = 0  x = 0.5  x = 1  

i ,0 0P h  0.1255 0.1214 0.1255  0.0200 0.0067 -0.0053  17.751 5.402 17.751 

i ,1 1P h  0.0921 0.0819 0.0699  0.0155 -0.0099 -0.0268  11.177 3.876 10.419 

i ,2 2P h  0.0924 0.0865 0.0732  0.0167 -0.0067 -0.0283  11.448 4.186 10.893 

i ,3 3P h  0.0920 0.0882 0.0761  0.0173 -0.0040 -0.0265  11.455 4.335 11.325 

i ,4 4P h  0.0809 0.0909 0.0809  0.0205 0.0170 -0.0141  11.743 4.407 11.743 

i ,5 5P h  0.0914 0.0614 0.0914  0.0054 -0.0165 0.0158  3.741 3.407 3.741 

5 CONCLUSIONS 

In current research, the heterogonous hyperelastic hollow cylinders with variable thickness under non-uniform 
internal pressure and clamped boundary conditions have been analyzed by FSDT. Two-term Mooney-Rivlin type material 
in nearly incompressible condition is considered which is a suitable hyperelastic model for rubbers. The material 
properties are graded along the radial direction according to a power law function. Matched Asymptotic Expansion of 
the perturbation theory is used for solving the governing equations analytically. The advantages of this method are fast 
convergence, closed form solution and compatibility with physics of shell. A new ingenious formulation and parameters 
have been defined during current study to simplify and abbreviate the representation of inner and outer equations 
components in MAE. In addition, the terms of variable thickness and non-uniform pressure have been presented in 
separate representation. The results prove the effectiveness of FSDT and MAE combination to derive and solve the 
governing equations of nonlinear problems such as nearly incompressible hyperelastic shells. This approach enables 
insight into the nature of the deformation and stress distribution across the wall of rubber vessels and offers the potential 
for investigation of the mechanical functionality of arteries in physiological pressure range. The points of internal layer 
close to maximum pressure are critical elements in nearly incompressible hyperelastic FG cylinder with variable thickness 
under non-uniform internal pressure. The acceptable range of the current analysis for the geometry, loading and 
materials properties is about < <4 R 20  and ( )i .+ <1 2P C C 0 015  by considering difference percentage of deformations 
resulted from current analytical solution and FEM less than 10%. The accuracy of MAE descend for great values of R
because of intensifying nonlinear behavior of the cylinder while for small R , the accuracy of shear deformation theory 
decrease in analyzing thick cylindrical shells. An increase in i ( )+1 2P C C and k or decrease in +1 2C C  ascend the nonlinearity 
and difference percentage of numerical and analytical solution. Variation of inhomogeneity index from negative to the 
positive values causes reduction in displacements, hydrostatic pressure and consequently stresses of cylinder. Therefore, 
it could be concluded that positive values of gradient index are more appropriate from the viewpoint of less values and 
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more uniform distribution of displacements and stresses in heterogeneous cylinder. It can be concluded that pressure 
profiles increment is more effective on the response of shell respect to thickness profiles variation. Furthermore, changes 
of concave thickness profile to convex one lead in descending maximum displacement, stresses and hydrostatic pressure. 
It can be concluded that radial displacement and hydrostatic pressure patterns follow the pattern of the applied pressure 
function along the length of shell. The behavior of hyperelastic FG vessels under non-uniform pressure distribution shows 
that similar profile of variable thickness and non-uniform applied pressure result in minor displacement and stress 
quantities and uniform distributions which could be a suitable criterion in designing thickness profile of pressurized 
vessels. Applying maximum pressure and consequently maximum thickness near boundaries of shell are suitable profiles 
in designing hyperelastic FG shells. Authors believe that current method along with studies mentioned in the literature 
could direct further research toward the design, optimization, and manufacture of graded rubber-like materials. 
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APPENDIX A 

The non-homogeneity vectors of 2O( )ε equations in outer and inner expansions are as follows: 
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