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Abstract 
In this article, third- and fourth-order accurate explicit time integration methods are developed for effective 
analyses of various linear and nonlinear dynamic problems stated by second-order ordinary differential 
equations in time. Two sets of the new methods are developed by employing the collocation approach in the 
time domain. To remedy some shortcomings of using the explicit Runge-Kutta methods for second-order 
ordinary differential equations in time, the new methods are designed to introduce small period and damping 
errors in the important low-frequency range. For linear cases, the explicitness of the new methods is not 
affected by the presence of non-diagonal damping matrix. For nonlinear cases, the new methods can handle 
velocity dependent problems explicitly without decreasing order of accuracy. The new methods do not have 
any undetermined algorithmic parameters. Improved numerical solutions are obtained when they are applied 
to various linear and nonlinear problems. 
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1 Introduction 

Step-by-step direct time integrations are dominantly used for transient analyses of linear and nonlinear dynamic 
problems described by second-order ordinary differential equations in time. As more sophisticated spatial finite element 
models [1-4] are developed constantly, demands for more accurate time integration methods are also increasing to take 
full advantage of improved spatial models in transient analyses. Recently, numerous implicit [5-9] and explicit [10-16] 
time integration methods have been introduced to effectively analyze challenging dynamic problems. 

Direct time integration methods are often categorized into implicit and explicit methods. Usually, implicit methods 
are unconditionally stable for linear analyses, but they require factorization of non-diagonal system matrices. For large 
systems, factorizing non-diagonal system matrices requires huge computational efforts. On the other hand, explicit 
methods are conditionally stable, but matrix factorization can be avoided if the mass matrix is diagonal. Accordingly, 
computational costs per time step of explicit methods are much lower than implicit methods. Due to this reason, explicit 
methods are more frequently used in analyses of large systems, such as the wave propagation and impact problems, 
where sizes of optimal time steps are slightly smaller than critical time steps of explicit methods. 

According to the past studies [10,17], preferable attributes of explicit time integration methods can be summarized 
as (a) explicit methods should not require iterative solution finding procedures for velocity dependent nonlinear 
problems; (b) at least second-order accuracy should be ensured; (c) number of unspecified algorithmic parameters 
should be minimized; (d) amplification matrices obtained by applying methods to the single-degree-of-freedom problem 
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should not present spurious eigenvalue, or it should be minimized; (e) explicit methods should not involve matrix 
factorization when the mass matrix is diagonal; (f) explicit methods should not involve differential or integral type 
calculus; (g) explicit methods should be applicable to nonlinear problems without any modifications. 

The central difference (CD) method is one of the most widely used single-stage explicit time integration methods. 
The CD method is second-order accurate and non-dissipative. Due to its simplicity and good accuracy, the CD method is 
the standard explicit method of the well-known software packages [18,19]. However, matrix factorization is required in 
the CD method if the damping matrix is not diagonal. The velocity can be treated explicitly to remedy this, but additional 
computation is required to retain second-order accuracy [15]. The CD method cannot satisfy (a) and (b). 

Chung and Lee developed a family of second-order accurate explicit method [10] with dissipation control capability. 
The Chung and Lee (CL) method can maintain explicitness in the presence of the non-diagonal damping matrix. However, 
the amplification matrix of the CL method has a spurious eigenvalue that influences the quality of solutions when large 
time steps are used. Hulbert and Chung also developed a family of second-order accurate explicit method [11]. However, 
the amplification matrix of the Hulbert and Chung (HC) method also has a spurious eigenvalue. The HC method can satisfy 
all the attributes except (d). The HC method can include a full range of dissipative cases, but the non-dissipative case 
becomes unconditionally unstable for any choices of time steps in the presence of the damping matrix. 

Soares developed an explicit time integration method based on the weighted residual method [13]. The Soares 
method can be used for the analysis of wave propagation problems, but it becomes an only first-order accurate implicit 
method in the presence of non-diagonal damping matrix. In addition, it is not easy to use the Soares method for nonlinear 
analyses, because it has been developed by directly integrating the equations of linear structural dynamics in a weighted 
residual sense. The Soares method cannot satisfy (a), (b), (d), (e), (f) and (g). 

Kim and Lee also proposed a family of second-order accurate explicit methods [14]. The Kim and Lee (KL) method 
can include a full range of dissipative cases and remain as a second-order explicit method in the presence of a non-
diagonal damping matrix. The KL method is very effective, but (c) is not satisfied. Recently, a very accurate two-stage 
explicit method was introduced by Kim [16] to more effectively tackle challenging nonlinear problems. 

For more precise and reliable analyses of challenging dynamic problems [20], higher-order accurate methods can 
be considered as a good option. Many of the standard time integration methods used in structural dynamics, such as the 
trapezoidal rule and the central difference method, are second-order accurate, and methods of third- or higher-order 
accuracy are often called higher-order methods [7,21-24]. Computational cost per time step of higher-order methods is 
higher than second-order methods because higher-order methods have more stages, while many of second-order 
methods use only one stage. However, more accurate predictions can be obtained with large time steps in higher-order 
methods, and they may become more efficient in getting the same prediction when compared with second-methods. In 
addition, some challenging nonlinear problems can only be effectively solved by using proper higher-order methods [7,8]. 

One of the most broadly used explicit higher-order methods is the Runge-Kutta (RK) methods. The RK methods have 
been used in numerous engineering areas. Traditionally, the RK methods have been used to solve first-order ordinary 
differential equations numerically. Recently, on the other hand, the RK methods have also been used to obtain higher-
order accurate transient solutions in structural problems [25]. 

For second-order initial value problems, the RK methods can provide more accurate numerical solutions than 
second-order methods if considerably small time steps are used. For example, the convergence rate of the four-stage RK 
method is fourth-order, and numerical solutions of the four-stage RK method converge to the exact solution with the 
rate of ∆𝑡𝑡4  where ∆𝑡𝑡  is the size of the time step. In second-order methods, on the other hand, their numerical 
solutions converge to the exact solution with the rate of ∆𝑡𝑡2 as ∆𝑡𝑡 decreases. However, numerical solutions of the RK 
methods may become inaccurate by the excessive numerical damping if large time steps are used. For this reason, the 
RK methods were not recommended for the analysis of structural dynamics, while many second-order explicit methods 
gained popularity. Adeli, Gere, and Weaver stated that the CD method was more effective than the RK method based on 
their numerical results [26], and many researchers also agreed with that. In the numerical tests of Adeli et al., the fourth-
order RK method introduced too excessive numerical damping in the important low-frequency range when large time 
steps were used. 

In this work, simple and effective third- and fourth-order accurate explicit time integration methods are presented 
to remedy the shortcomings of the RK methods. For a fair comparison, the three-stage third-order accurate RK method 
and the four-stage fourth-order accurate RK method are considered. Higher-order accuracies of the new methods are 
achieved without increasing computational efforts when compared with the equivalent third- and fourth-order RK 
methods. In the development, the displacement vector is approximated over a time domain by using the known 
interpolation functions in time and the weighted sums of acceleration vectors. Then, the semi-discrete equations of 
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structural dynamics are discretized in time by adopting the collocation method. After determining optimal collocation 
points in time, simple difference relations are obtained. 

2 New explicit method 

The governing equations of many dynamic problems can be expressed as 

𝐌𝐌�̈�𝐮(t) = 𝐟𝐟(𝐮𝐮(t), �̇�𝐮(t), t), (1a) 

and the initial conditions are given by 

𝐮𝐮(0) = 𝐮𝐮0, (1b) 

�̇�𝐮(0) = �̇�𝐮0, (1c) 

where 𝐌𝐌 is the mass matrix, 𝐮𝐮(t) is the displacement vector, �̇�𝐮(t) is the velocity vector, �̈�𝐮(t) is the acceleration 
vector, 𝐮𝐮0 is the initial displacement vector, �̇�𝐮0 is the initial velocity vector, and 𝐟𝐟(𝐮𝐮(t), �̇�𝐮(t), t) is the total force 
vector. Eq.(1) is suitable for the description of various linear and nonlinear dynamic problems. In linear structural 
dynamics, 𝐟𝐟(𝐮𝐮(t), �̇�𝐮(t), t) in Eq.(1) is frequently expressed as 

𝐟𝐟(𝐮𝐮(t), �̇�𝐮(t), t) = 𝐪𝐪(t) − 𝐂𝐂�̇�𝐮(t) − 𝐊𝐊𝐮𝐮(t), (2) 

where 𝐂𝐂  and 𝐊𝐊  are the damping and stiffness matrices, respectively, and 𝐪𝐪(t)  is the external force vector. By 
substituting Eq.(2) into Eq.(1a) and rearranging the equation, the equation of linear structural dynamics is expressed as 

𝐌𝐌�̈�𝐮(t) + 𝐂𝐂�̇�𝐮(t) + 𝐊𝐊𝐮𝐮(t) = 𝐪𝐪(t). (3) 

Occasionally, Eq.(3) can also be obtained by spatially discretizing original governing partial differential equations in 
space and time. Then, Eq.(3) is also called the semi-discrete equation. 

In this section, two sets of new higher-order explicit methods are developed to discretize Eqs.(1) and (3) in time. 
The single-degree-of-freedom case of the linear structural dynamics equation given in Eq.(3) is used in the procedures of 
the development. 

2.1 New third-order accurate explicit method 

For the development of the new third-order accurate explicit method, three sets of interpolation functions in time 
are used to approximate the displacement and velocity vectors over the time domain 0 ≤  𝑡𝑡̅ ≤  ∆𝑡𝑡, where 𝑡𝑡̅ = 𝑡𝑡 − 𝑡𝑡𝑠𝑠 is 
the local time, and 𝑡𝑡𝑠𝑠 is the beginning of the (𝑠𝑠 + 1)-th time step or the end of the 𝑠𝑠-th time step. In the new third-
order method, the displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + 𝜏𝜏1∆𝑡𝑡 are approximate as 

𝐮𝐮(𝑡𝑡𝑠𝑠 + 𝜏𝜏1∆𝑡𝑡) ≈ 𝐮𝐮�𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 =  ϕ1 
1 (𝜏𝜏1∆𝑡𝑡)𝐮𝐮𝑡𝑡𝑠𝑠 + ϕ2 

1 (𝜏𝜏1∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠 + 1
2

(𝜏𝜏1∆𝑡𝑡)2α11�̈�𝐮𝑡𝑡𝑠𝑠 , (4) 

�̇�𝐮(𝑡𝑡𝑠𝑠 + 𝜏𝜏1∆𝑡𝑡) ≈ 𝐮𝐮�̇𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 =  ϕ1 
1 (𝜏𝜏1∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠 + ϕ2 

1 (𝜏𝜏1∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠 , (5) 

where 𝜏𝜏1  determines the time point that the first approximated variables are associated with, �̈�𝐮𝑡𝑡𝑠𝑠  is computed 
explicitly by using Eq.(1a) at 𝑡𝑡𝑠𝑠, ϕi 

1 (𝑡𝑡̅)s are the known linear functions, and α11 is the weighting parameter of the 
acceleration vector in the first approximation of the displacement vector. ϕi 

1 (𝑡𝑡̅)s used in Eqs.(4) and (5) are given by 

ϕ1 
1 (𝑡𝑡̅) = 1, ϕ2 

1 (𝑡𝑡̅) = 𝑡𝑡̅. (6) 

The displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + 𝜏𝜏2∆𝑡𝑡 are approximate as 
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𝐮𝐮(𝑡𝑡𝑠𝑠 + 𝜏𝜏2∆𝑡𝑡) ≈ 𝐮𝐮�𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡 =  ϕ1 
2 (𝜏𝜏2∆𝑡𝑡)𝐮𝐮𝑡𝑡𝑠𝑠 + ϕ2 

2 (𝜏𝜏2∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠 + ϕ3 
2 (𝜏𝜏2∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 + 1

2
(𝜏𝜏2∆𝑡𝑡)2�α21�̈�𝐮𝑡𝑡𝑠𝑠 + α22�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡�,

 (7) 

�̇�𝐮(𝑡𝑡𝑠𝑠 + 𝜏𝜏2∆𝑡𝑡) ≈ 𝐮𝐮�̇𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡 =  ϕ1 
2 (𝜏𝜏2∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠 + ϕ2 

2 (𝜏𝜏2∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠 + ϕ3 
2 (𝜏𝜏2∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 , (8) 

where 𝜏𝜏2 determines the time point that the first approximated variables are associated with, �̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 is computed 
explicitly by using Eq.(1a) at 𝑡𝑡𝑠𝑠 + 𝜏𝜏1∆𝑡𝑡, ϕi 

2 (𝑡𝑡̅)s are the known quadratic interpolation functions, and α21 and α22 are 
the weighting parameters of the acceleration vectors in the second approximation of the displacement vector. ϕi 

2 (𝑡𝑡̅)s 
used in Eqs.(7) and (8) are given by 

ϕ1 
2 (𝑡𝑡̅) = 1, ϕ2 

2 (𝑡𝑡̅) = − 𝑡𝑡̅(𝑡𝑡̅−2𝜏𝜏1∆𝑡𝑡)
2𝜏𝜏1∆𝑡𝑡

, ϕ3 
2 (𝑡𝑡̅) = 𝑡𝑡̅2

2𝜏𝜏1∆𝑡𝑡
. (9) 

Finally, the displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 are updated as 

𝐮𝐮(𝑡𝑡𝑠𝑠 + ∆𝑡𝑡) ≈ 𝐮𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  ϕ1 
3 (∆𝑡𝑡)𝐮𝐮𝑡𝑡𝑠𝑠 + ϕ2 

3 (∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠 + ϕ3 
3 (∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 + ϕ4 

3 (∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡 + 1
2

(∆𝑡𝑡)2�α31�̈�𝐮𝑡𝑡𝑠𝑠 +
α32�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 + α33�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡�, (10) 

�̇�𝐮(𝑡𝑡𝑠𝑠 + ∆𝑡𝑡) ≈ �̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  ϕ1 
3 (∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠 + ϕ2 

3 (∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠 + ϕ3 
3 (∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 + ϕ4 

3 (∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡 , (11) 

where �̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡  is computed explicitly by using Eq.(1a) at 𝑡𝑡𝑠𝑠 + 𝜏𝜏2∆𝑡𝑡 , ϕi 
3 (𝑡𝑡̅)s are the known cubic interpolation 

functions, and α31, α32, and α33 are the weighting parameters of the acceleration vectors in the third approximation 
of the displacement vector. ϕi 

3 (𝑡𝑡̅)s used in Eqs.(10) and (11) are given by 

ϕ1 
3 (𝑡𝑡̅) = 1, ϕ2 

3 (𝑡𝑡̅) =
𝑡𝑡̅(2𝑡𝑡̅2 − 3𝜏𝜏1∆𝑡𝑡𝑡𝑡̅ − 3𝜏𝜏2∆𝑡𝑡𝑡𝑡̅ + 6𝜏𝜏1𝜏𝜏2∆𝑡𝑡2)

6𝜏𝜏1𝜏𝜏2∆𝑡𝑡2
, 

ϕ3 
3 (𝑡𝑡̅) = − 𝑡𝑡̅2(−2𝑡𝑡̅+3𝜏𝜏2∆𝑡𝑡)

6𝜏𝜏1(−𝜏𝜏2+𝜏𝜏1)∆𝑡𝑡2
, ϕ4 
3 (𝑡𝑡̅) = 𝑡𝑡̅2(−2𝑡𝑡̅+3𝜏𝜏1∆𝑡𝑡)

6𝜏𝜏2(𝜏𝜏1−𝜏𝜏2)∆𝑡𝑡2
. (12) 

To achieve third-order accuracy, extended stability, and preferable spectral properties, permissible 𝜏𝜏𝑖𝑖  and αij are 
chosen as 

𝜏𝜏1 =
1
3

, 𝜏𝜏2 =
2
3

, 

α11 = 1,α21 = −
2
3

,α22 =
2
3

, 

α31 = 1
3

,α32 = −2
3

,α33 = 1
3
. (13) 

By using the parameters given in Eq.(13) and rearranging the equations, the new third-order method are 
summarized as follow: To start the new third-order explicit method, compute the acceleration vector at 𝑡𝑡𝑠𝑠 as 

�̈�𝐮ts = 𝐌𝐌−1𝐟𝐟�𝐮𝐮ts , �̇�𝐮ts , ts�, (14) 

where 𝐮𝐮ts  and �̇�𝐮ts  are known properties from 𝑠𝑠-th time step. By using Eq.(14), the displacement and velocity vectors 
at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 3⁄  are approximated as 

𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 3⁄ =  𝐮𝐮𝑡𝑡𝑠𝑠 + 1
3
∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + 1

18
∆𝑡𝑡2�̈�𝐮𝑡𝑡𝑠𝑠 , (15) 
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𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 3⁄ =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
3
∆𝑡𝑡�̈�𝐮𝑡𝑡𝑠𝑠 . (16) 

By using 𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 3⁄  and 𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 3⁄  given in Eqs.(15) and (16), the acceleration vector at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 3⁄  is computed as 

�̈�𝐮ts+∆t 3⁄ = 𝐌𝐌−1𝐟𝐟�𝐮𝐮�ts+∆t 3⁄ ,𝐮𝐮�̇ts+∆t 3⁄ , ts + ∆t 3⁄ �. (17) 

By using Eq.(17), the displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + 2∆𝑡𝑡 3⁄  are approximated as 

𝐮𝐮�𝑡𝑡𝑠𝑠+2∆𝑡𝑡 3⁄ =  𝐮𝐮𝑡𝑡𝑠𝑠 + 2
3
∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + 1

27
∆𝑡𝑡2�2�̈�𝐮𝑡𝑡𝑠𝑠 + 4�̈�𝐮ts+∆𝑡𝑡 3⁄ �, (18) 

𝐮𝐮�̇𝑡𝑡𝑠𝑠+2∆𝑡𝑡 3⁄ =  �̇�𝐮𝑡𝑡𝑠𝑠 + 2
3
∆𝑡𝑡�̈�𝐮ts+∆𝑡𝑡 3⁄ . (19) 

By using 𝐮𝐮�𝑡𝑡𝑠𝑠+2∆𝑡𝑡 3⁄  and 𝐮𝐮�̇𝑡𝑡𝑠𝑠+2∆𝑡𝑡 3⁄  given in Eqs.(18) and (19), the acceleration vector at 𝑡𝑡𝑠𝑠 + 2∆𝑡𝑡 3⁄  is computed 
as 

�̈�𝐮ts+2∆t 3⁄ = 𝐌𝐌−1𝐟𝐟�𝐮𝐮�ts+2∆t 3⁄ ,𝐮𝐮�̇ts+2∆t 3⁄ , ts + 2∆t 3⁄ �. (20) 

Finally, the displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 are computed as 

𝐮𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  𝐮𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + 1
6
∆𝑡𝑡2��̈�𝐮𝑡𝑡𝑠𝑠 + �̈�𝐮ts+∆𝑡𝑡 3⁄ + �̈�𝐮ts+2∆𝑡𝑡 3⁄ �, (21) 

�̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
4
∆𝑡𝑡��̈�𝐮𝑡𝑡𝑠𝑠 + 3�̈�𝐮ts+2∆𝑡𝑡 3⁄ �. (22) 

As shown in Eqs.(14)-(22), 𝐌𝐌−1 is the only matrix factorization required through out the entire procedure. This 
trait is commonly found in the existing explicit methods, and total computational effort of analyses can be reduced 
dramatically when 𝐌𝐌 is diagonal. Also, some recent numerical integration techniques [3] can produce diagonal mass 
matrix automatically if low order spatial elements are considered. After computing 𝐮𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 and �̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡, 𝐮𝐮𝑡𝑡𝑠𝑠  and �̇�𝐮𝑡𝑡𝑠𝑠  
are updated as 𝐮𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 and �̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 to advance another step, and procedures can be repeated from Eq.(14) to Eq.(22). 

2.2 New fourth-order accurate explicit method 

The new fourth-order method is developed by considering an additional stage. In the new fourth-order accurate 
method, the first and second approximations of the displacement and velocity vectors take the same forms as the 
approximations used in the third-order method given in Eqs.(4)-(8). The third approximations of the fourth-order method 
at 𝑡𝑡𝑠𝑠 + 𝜏𝜏3∆𝑡𝑡 take the forms of 

𝐮𝐮(𝑡𝑡𝑠𝑠 + 𝜏𝜏3∆𝑡𝑡) ≈ 𝐮𝐮�𝑡𝑡𝑠𝑠+𝜏𝜏3∆𝑡𝑡 =  ϕ1 
3 (𝜏𝜏3∆𝑡𝑡)𝐮𝐮𝑡𝑡𝑠𝑠 + ϕ2 

3 (𝜏𝜏3∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠 + ϕ3 
3 (𝜏𝜏3∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 + ϕ4 

3 (𝜏𝜏3∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡 +
1
2

(𝜏𝜏3∆𝑡𝑡)2�α31�̈�𝐮𝑡𝑡𝑠𝑠 + α32�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 + α33�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡�, (23) 

�̇�𝐮(𝑡𝑡𝑠𝑠 + 𝜏𝜏3∆𝑡𝑡) ≈ 𝐮𝐮�̇𝑡𝑡𝑠𝑠+𝜏𝜏3∆𝑡𝑡 =  ϕ1 
3 (𝜏𝜏3∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠 + ϕ2 

3 (𝜏𝜏3∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠 + ϕ3 
3 (𝜏𝜏3∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 + ϕ4 

3 (𝜏𝜏3∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡 , (24) 

where 𝜏𝜏3  determines the time point that the third approximated variables are associated with, and �̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏3∆𝑡𝑡  is 
computed explicitly by using Eqs.(7)-(8) and Eq.(1a) at 𝑡𝑡𝑠𝑠 + 𝜏𝜏3∆𝑡𝑡. The displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 are 
updated as 

𝐮𝐮(𝑡𝑡𝑠𝑠 + ∆𝑡𝑡) ≈ 𝐮𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  ϕ1 
4 (∆𝑡𝑡)𝐮𝐮𝑡𝑡𝑠𝑠 + ϕ2 

4 (∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠 + ϕ3 
4 (∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 + ϕ4 

4 (∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡 + ϕ5 
4 (∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏3∆𝑡𝑡 +

1
2

(∆𝑡𝑡)2�α41�̈�𝐮𝑡𝑡𝑠𝑠 + α42�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 + α43�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡 + α44�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏3∆𝑡𝑡�, (25) 

�̇�𝐮(𝑡𝑡𝑠𝑠 + ∆𝑡𝑡) ≈ �̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  ϕ1 
4 (∆𝑡𝑡)�̇�𝐮𝑡𝑡𝑠𝑠 + ϕ2 

4 (∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠 + ϕ3 
4 (∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏1∆𝑡𝑡 + ϕ4 

4 (∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏2∆𝑡𝑡 + ϕ5 
4 (∆𝑡𝑡)�̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏3∆𝑡𝑡 , (26) 
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where �̈�𝐮𝑡𝑡𝑠𝑠+𝜏𝜏3∆𝑡𝑡 is computed explicitly by using Eqs.(23)-(24) and Eq.(1a) at𝑡𝑡𝑠𝑠 + 𝜏𝜏3∆𝑡𝑡, ϕi 
4 (𝑡𝑡̅)s are the known quartic 

interpolation functions, and α41, α42, α43, and α44 are the weighting parameters of the acceleration vectors in the 
fourth approximation of the displacement vector. ϕi 

4 (𝑡𝑡̅)s used in Eqs.(25) and (26) are given by 

ϕ1 
4 (𝑡𝑡̅) = 1, 

ϕ2 
4 (𝑡𝑡̅) = −

𝑡𝑡̅�3𝑡𝑡̅3 − 4∆𝑡𝑡𝑡𝑡̅2(𝜏𝜏1 + 𝜏𝜏2 + 𝜏𝜏3) + 6∆𝑡𝑡2𝑡𝑡̅(𝜏𝜏1𝜏𝜏2 + 𝜏𝜏2𝜏𝜏3 + 𝜏𝜏3𝜏𝜏1)�
12𝜏𝜏1𝜏𝜏2𝜏𝜏3∆𝑡𝑡3

+ 𝑡𝑡̅, 

ϕ3 
4 (𝑡𝑡̅) =

𝑡𝑡̅2(3𝑡𝑡̅2 − 4𝜏𝜏2∆𝑡𝑡𝑡𝑡̅ − 4𝜏𝜏3∆𝑡𝑡𝑡𝑡̅ + 6𝜏𝜏2𝜏𝜏3∆𝑡𝑡2)
12𝜏𝜏1(−𝜏𝜏1𝜏𝜏2 + 𝜏𝜏2𝜏𝜏3 − 𝜏𝜏3𝜏𝜏1 + 𝜏𝜏12)∆𝑡𝑡3

, 

ϕ4 
4 (𝑡𝑡̅) =

𝑡𝑡̅2(3𝑡𝑡̅2 − 4𝜏𝜏1∆𝑡𝑡𝑡𝑡̅ − 4𝜏𝜏3∆𝑡𝑡𝑡𝑡̅ + 6𝜏𝜏1𝜏𝜏3∆𝑡𝑡2)
12𝜏𝜏2(−𝜏𝜏1𝜏𝜏2 − 𝜏𝜏2𝜏𝜏3 + 𝜏𝜏3𝜏𝜏1 + 𝜏𝜏22)∆𝑡𝑡3

, 

ϕ5 
4 (𝑡𝑡̅) = 𝑡𝑡̅2(3𝑡𝑡̅2−4𝜏𝜏1∆𝑡𝑡𝑡𝑡̅−4𝜏𝜏2∆𝑡𝑡𝑡𝑡̅+6𝜏𝜏1𝜏𝜏2∆𝑡𝑡2)

12𝜏𝜏3�𝜏𝜏1𝜏𝜏2−𝜏𝜏2𝜏𝜏3−𝜏𝜏3𝜏𝜏1+𝜏𝜏32�∆𝑡𝑡3
. (27) 

To achieve fourth-order accuracy, extended stability, and preferable spectral properties, permissible 𝜏𝜏𝑖𝑖  and αij 
are chosen as 

𝜏𝜏1 =
1
3

, 𝜏𝜏2 =
1
2

, 𝜏𝜏3 = 1, 

α11 = 1,α21 = −
3
5

,α22 =
3
5

, 

α31 =
3
5

,α32 = −
3
5

,α33 = 0, 

α41 = α42 = α43 = α44 = 0. (28) 

With the parameters given in Eq.(28), the new fourth-order method is summarized as follows: To start the new 
fourth-order explicit method, compute the acceleration vector at 𝑡𝑡𝑠𝑠 as 

�̈�𝐮ts = 𝐌𝐌−1𝐟𝐟�𝐮𝐮ts , �̇�𝐮ts , ts�, (29) 

where 𝐮𝐮ts  and �̇�𝐮ts  are known properties from 𝑠𝑠-th time step. By using Eq.(14), the displacement and velocity vectors 
at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 3⁄  are approximated as 

𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 3⁄ =  𝐮𝐮𝑡𝑡𝑠𝑠 + 1
3
∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + 1

18
∆𝑡𝑡2�̈�𝐮𝑡𝑡𝑠𝑠 , (30) 

𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 3⁄ =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
3
∆𝑡𝑡�̈�𝐮𝑡𝑡𝑠𝑠 . (31) 

By using 𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 3⁄  and 𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 3⁄  given in Eqs.(30) and (31), the acceleration vector at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 3⁄  is computed as 

�̈�𝐮ts+∆t 3⁄ = 𝐌𝐌−1𝐟𝐟�𝐮𝐮�ts+∆t 3⁄ ,𝐮𝐮�̇ts+∆t 3⁄ , ts + ∆t 3⁄ �. (32) 

By using Eq.(32), the displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 2⁄  are approximated as 

𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ =  𝐮𝐮𝑡𝑡𝑠𝑠 + 1
2
∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + 1

40
∆𝑡𝑡2�2�̈�𝐮𝑡𝑡𝑠𝑠 + 3�̈�𝐮ts+∆𝑡𝑡 3⁄ �, (33) 
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𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
8
∆𝑡𝑡��̈�𝐮𝑡𝑡𝑠𝑠 + 3�̈�𝐮ts+∆𝑡𝑡 3⁄ �. (34) 

By using 𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄  and 𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 3⁄  given in Eqs.(33) and (34), the acceleration vector at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 2⁄  is computed as 

�̈�𝐮ts+∆t 2⁄ = 𝐌𝐌−1𝐟𝐟�𝐮𝐮�ts+∆t 2⁄ ,𝐮𝐮�̇ts+∆t 2⁄ , ts + ∆t 2⁄ �. (35) 

The interim displacement and velocity vectors at ts + ∆t are approximated as 

𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  𝐮𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + 1
20
∆𝑡𝑡2��̈�𝐮𝑡𝑡𝑠𝑠 + 9�̈�𝐮ts+∆𝑡𝑡 3⁄ �, (36) 

𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
2
∆𝑡𝑡��̈�𝐮𝑡𝑡𝑠𝑠 − 3�̈�𝐮ts+∆𝑡𝑡 3⁄ + 4�̈�𝐮ts+∆𝑡𝑡 2⁄ �. (37) 

By using 𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 and 𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 given in Eqs.(36) and (37), the acceleration vector at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 is computed as 

�̈�𝐮ts+∆t = 𝐌𝐌−1𝐟𝐟�𝐮𝐮�ts+∆t,𝐮𝐮�̇ts+∆t, ts + ∆t�. (38) 

Finally, the displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 are computed as 

𝐮𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  𝐮𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + 1
6
∆𝑡𝑡2��̈�𝐮𝑡𝑡𝑠𝑠 + 2�̈�𝐮ts+∆𝑡𝑡 2⁄ �, (39) 

�̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
6
∆𝑡𝑡��̈�𝐮𝑡𝑡𝑠𝑠 + 4�̈�𝐮ts+∆𝑡𝑡 2⁄ + �̈�𝐮ts+∆t�. (40) 

After computing 𝐮𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 and �̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡, 𝐮𝐮𝑡𝑡𝑠𝑠  and �̇�𝐮𝑡𝑡𝑠𝑠  are updated as 𝐮𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 and �̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 to advance another step, 
and procedures can be repeated from Eq.(29) to Eq.(40). 

3 Review of the Runge-Kutta methods 

The RK Methods are frequently used to analyze various linear and nonlinear dynamic systems described by first-
order differential equations. Traditionally, the RK Methods have been considered unsuitable for the analysis of dynamic 
problems stated by second-order differential equations due to excessive numerical damping. Recently, however, the RK 
Methods have also been employed to develop a more accurate numerical procedure which can be used for the analysis 
of structural dynamics [25]. In this section, the third- and fourth-order Runge-Kutta methods are reviewed briefly. 

3.1 Third-order Runge-Kutta Method 

In the third-order RK method, �̈�𝐮ts  is computed as 

�̈�𝐮ts = 𝐌𝐌−1𝐟𝐟�𝐮𝐮ts , �̇�𝐮ts , ts�. (41) 

The displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 2⁄  are approximated as 

𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ =  𝐮𝐮𝑡𝑡𝑠𝑠 + 1
2
∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 , (42) 

𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
2
∆𝑡𝑡�̈�𝐮𝑡𝑡𝑠𝑠 . (43) 

�̈�𝐮ts+∆t 2⁄  is computed as 

�̈�𝐮ts+∆t 2⁄ = 𝐌𝐌−1𝐟𝐟�𝐮𝐮�ts+∆t 2⁄ ,𝐮𝐮�̇ts+∆t 2⁄ , ts + ∆t 2⁄ �. (44) 

The interim displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 are approximated as 
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𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  𝐮𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡�−�̇�𝐮𝑡𝑡𝑠𝑠 + 2𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡� 

= 𝐮𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡2�̈�𝐮𝑡𝑡𝑠𝑠 , (45) 

𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  �̇�𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡�−�̈�𝐮𝑡𝑡𝑠𝑠 + 2�̈�𝐮ts+∆t 2⁄ �. (46) 

�̈�𝐮ts+∆t is computed as 

�̈�𝐮ts+∆t = 𝐌𝐌−1𝐟𝐟�𝐮𝐮�ts+∆t,𝐮𝐮�̇ts+∆t, ts + ∆t�. (47) 

Finally, the displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 are computed as 

𝐮𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  𝐮𝐮𝑡𝑡𝑠𝑠 +
1
6
∆𝑡𝑡��̇�𝐮𝑡𝑡𝑠𝑠 + 4𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ + 𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡� 

= 𝐮𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + 1
6
∆𝑡𝑡2��̈�𝐮𝑡𝑡𝑠𝑠 + 2�̈�𝐮ts+∆t 2⁄ �, (48) 

�̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
6
∆𝑡𝑡��̈�𝐮𝑡𝑡𝑠𝑠 + 4�̈�𝐮ts+∆t 2⁄ + �̈�𝐮ts+∆t�. (49) 

As shown in Eqs.(41)-(49), computational structures of the new third-order method and the third-order RK method 
are very similar. It can also be observed that each method contains three major computations (i.e., 𝐌𝐌−1𝐟𝐟). Due to this 
reason, computational cost per a step of each method is almost identical. 

3.2 Fourth-order Runge-Kutta Method 

In the fourth-order RK method, �̈�𝐮ts  is computed as 

�̈�𝐮ts = 𝐌𝐌−1𝐟𝐟�𝐮𝐮ts , �̇�𝐮ts , ts�. (50) 

The displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 2⁄  are approximated as 

𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ =  𝐮𝐮𝑡𝑡𝑠𝑠 + 1
2
∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 , (51) 

𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
2
∆𝑡𝑡�̈�𝐮𝑡𝑡𝑠𝑠 . (52) 

𝐮𝐮�̈ts+∆t 2⁄  is computed as 

𝐮𝐮�̈ts+∆t 2⁄ = 𝐌𝐌−1𝐟𝐟�𝐮𝐮�ts+∆t 2⁄ ,𝐮𝐮�̇ts+∆t 2⁄ , ts + ∆t 2⁄ �. (53) 

The displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 2⁄  are approximated as 

𝐮𝐮��𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ =  𝐮𝐮𝑡𝑡𝑠𝑠 +
1
2
∆𝑡𝑡𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄  

= 𝐮𝐮𝑡𝑡𝑠𝑠 + 1
2
∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ + 1

4
∆𝑡𝑡2�̈�𝐮ts , (54) 

𝐮𝐮��̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
2
∆𝑡𝑡𝐮𝐮�̈ts+∆t 2⁄ . (55) 

�̈�𝐮ts+∆t 2⁄  is computed as 
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�̈�𝐮ts+∆t 2⁄ = 𝐌𝐌−1𝐟𝐟�𝐮𝐮��𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ ,𝐮𝐮��̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ , ts + ∆t 2⁄ �. (56) 

The interim displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 are approximated as 

𝐮𝐮�𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  𝐮𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡𝐮𝐮��̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄  

= 𝐮𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + 1
2
∆𝑡𝑡2𝐮𝐮�̈ts+∆t 2⁄ , (57) 

𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  �̇�𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡�̈�𝐮ts+∆t 2⁄ . (58) 

�̈�𝐮ts+∆t is computed as 

�̈�𝐮ts+∆t = 𝐌𝐌−1𝐟𝐟�𝐮𝐮�ts+∆t,𝐮𝐮�̇ts+∆t, ts + ∆t�. (59) 

Finally, the displacement and velocity vectors at 𝑡𝑡𝑠𝑠 + ∆𝑡𝑡 are computed as 

𝐮𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  𝐮𝐮𝑡𝑡𝑠𝑠 +
1
6
∆𝑡𝑡��̇�𝐮𝑡𝑡𝑠𝑠 + 2𝐮𝐮��̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ + 2𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡 2⁄ + 𝐮𝐮�̇𝑡𝑡𝑠𝑠+∆𝑡𝑡� 

= 𝐮𝐮𝑡𝑡𝑠𝑠 + ∆𝑡𝑡�̇�𝐮𝑡𝑡𝑠𝑠 + 1
6
∆𝑡𝑡2��̈�𝐮𝑡𝑡𝑠𝑠 + 𝐮𝐮�̈ts+∆t 2⁄ + �̈�𝐮ts+∆t 2⁄ �, (60) 

�̇�𝐮𝑡𝑡𝑠𝑠+∆𝑡𝑡 =  �̇�𝐮𝑡𝑡𝑠𝑠 + 1
6
∆𝑡𝑡��̈�𝐮𝑡𝑡𝑠𝑠 + 2𝐮𝐮�̈ts+∆t 2⁄ + 2�̈�𝐮ts+∆t 2⁄ + �̈�𝐮ts+∆t�. (61) 

As shown in Eqs.(50)-(61), computational structures of the new fourth-order method and the fourth-order RK 
method are very similar. It can also be observed that each method contains four major computations (i.e., 𝐌𝐌−1𝐟𝐟). Due 
to this reason, computational cost per a step of each method is almost identical. 

4 Analysis of the new methods 

In this section, numerical characteristics of the new methods are analyzed. To investigate numerical characteristics 
of time integration methods, the linear single-degree-of-freedom problem [27-29] is frequently used. The linear single-
degree-of-freedom problem is given as 

ü(t) + 2ξωu̇(t) + ω2u(t) = q(t), (62) 

with the initial conditions 

u(0) = u0, u̇(0) = v0. (63) 

where u(t) is the displacement, u0 is the initial displacement, v0 is the initial velocity, ξ is the damping ratio, ω is 
the natural frequency, and q(t) is the external force. By setting 𝐌𝐌 = 1, 𝐂𝐂 = 2ξω, 𝐊𝐊 = ω2, 𝐮𝐮 = u, and 𝐪𝐪 = q and 
applying Eqs.(14)-(22) to Eqs.(62)-(63), fully discrete relation of the new third-order method at Δt is given by 

𝐱𝐱𝛥𝛥t =  𝐀𝐀 3𝑟𝑟𝑟𝑟  𝐱𝐱0 + 𝐋𝐋 3𝑟𝑟𝑟𝑟  𝐪𝐪 3𝑟𝑟𝑟𝑟 , (64) 

where 𝐀𝐀 3𝑟𝑟𝑟𝑟  is the amplification matrix of the new third-order method, 𝐋𝐋 3𝑟𝑟𝑟𝑟  is the load operator matrix of the new 
third-order method, 𝐱𝐱𝛥𝛥t = {u𝛥𝛥t, v𝛥𝛥t}𝑇𝑇 , 𝐱𝐱0 = {u0, v0}𝑇𝑇 , and 𝐪𝐪 3𝑟𝑟𝑟𝑟 = {q(0), q(𝛥𝛥t 3⁄ ), q(2𝛥𝛥t 3⁄ )}𝑇𝑇. By applying Eqs.(29)-
(40) to Eqs.(62)-(63), fully discrete relation of the new fourth-order method at 𝛥𝛥t is given by 

𝐱𝐱𝛥𝛥t =  𝐀𝐀 4𝑡𝑡ℎ  𝐱𝐱0 + 𝐋𝐋 4𝑡𝑡ℎ  𝐪𝐪 4𝑡𝑡ℎ , (65) 
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where 𝐀𝐀 4𝑡𝑡ℎ  is the amplification matrix of the fourth-order method, 𝐋𝐋 4𝑡𝑡ℎ  is the load operator matrix of the fourth-
order method, and 𝐪𝐪 4𝑡𝑡ℎ = {q(0), q(𝛥𝛥t 3⁄ ), q(𝛥𝛥t 2⁄ ), q(𝛥𝛥t)}𝑇𝑇. 

4.1 Order of accuracy 

To investigate the order of accuracy of the new methods for linear problems, the characteristic polynomial of the 
amplification matrices is used. For a time integration method, the characteristic polynomial of the amplification matrix 
𝐀𝐀 is expressed as 

𝑑𝑑𝑑𝑑𝑡𝑡(𝐀𝐀 − λ𝐈𝐈) = λ2 − 2A1λ + A2, (66) 

where λ is the eigenvalue of 𝐀𝐀, and A1 and A2 are the invariants of 𝐀𝐀. By using A1 and A2, the local truncation 
error [28,29] is defined as 

τ(ts) = 1
𝛥𝛥t2

�u(ts + 𝛥𝛥t) − 2A1u(ts) + A2u(ts − 𝛥𝛥t)�, (67) 

where u(t) is the exact solution of Eq.(62). For the case of q(t) = 0, the exact solution is given by 

u(t) = 𝑑𝑑𝑒𝑒𝑒𝑒(−ξωt)��𝑐𝑐𝑐𝑐𝑠𝑠(ωdt) + ξω
ωd
𝑠𝑠𝑠𝑠𝑠𝑠(ωdt)� u0 + 1

ωd
𝑠𝑠𝑠𝑠𝑠𝑠(ωdt) v0�, (68) 

where ωd = �1 − ξ2  is the damped natural frequency. Then a method is 𝑘𝑘-th order accurate if 

τe(ts) = 𝑂𝑂�𝛥𝛥tk�. (69) 

The new third-order method gives 

τe(ts) 
3𝑟𝑟𝑟𝑟 = 1

108
ξω4�(36ξ2ω − 5ω)u0 + (72ξ3 − 28ξ)v0�𝛥𝛥t3 + 𝑂𝑂(𝛥𝛥t4). (70) 

According to Eq.(69), the new three-stage method is third-order accurate for the damped case (ξ ≠ 0), and it 
becomes forth-order accurate for the undamped case (ξ = 0). Thus, the new third-order method is expected to give 
more accurate solutions for the undamped cases when compared with the equivalent third-order RK method. The new 
four-stage method gives 

τe(ts) 
4𝑡𝑡ℎ = − 1

720
ω5�(−52ξ2ω + 96ξ4ω + ω)u0 + (192ξ5 − 152ξ3 + 16ξ)v0�𝛥𝛥t4 + 𝑂𝑂(𝛥𝛥t5), (71) 

and it is fourth-order accurate for the damped and undamped cases according to Eq.(71). 

4.2 Spectral radius and stability limit 

The spectral radius is frequently used to investigate linear stability of time integration method. The spectral radius 
is defined as 

ρ(𝐀𝐀) = 𝑚𝑚𝑚𝑚𝑒𝑒(|λ1|, |λ2|), (72) 

where λ1 and λ2 are the eigenvalues of 𝐀𝐀. A method is stable if 0 < ρ(𝐀𝐀) ≤ 1 is provided. The spectral radii of the 
methods are presented in Fig.1. For the undamped case, the critical time step of the new third-order method is 
0.574976𝑇𝑇 , where 𝑇𝑇 = 2𝜋𝜋 𝜔𝜔⁄  is the natural period. Thus, the new third-order method is stable if 0 ≤  𝛥𝛥𝑡𝑡 <
0.574976𝑇𝑇 is provided. The critical time step of the new fourth-order method is 0.474023𝑇𝑇. The stability limit slightly 
decreases as 𝜉𝜉 increases from 0.0 to 1.0 in the new methods. However, similar phenomena have been observed in many 
well-accepted explicit methods [10,11,30]. 
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Figure 1: Comparison of spectral radius ρ(𝐀𝐀) for varying values of Δ𝑡𝑡 𝑇𝑇⁄ . 

4.3 Period and damping error 

 
Figure 2: Comparison of period error (𝑇𝑇 − 𝑇𝑇�) 𝑇𝑇⁄  for varying Δ𝑡𝑡 𝑇𝑇⁄ . 
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Figure 3: Comparison of damping error ξ for varying Δ𝑡𝑡 𝑇𝑇⁄ . 

The order of accuracy is one of the most important measurements for accuracy. However, the period elongation 
and the damping ratio are more practical measurements, because they can directly describe important characteristics of 
time integration algorithms. The relative period error is defined as (𝑇𝑇� − 𝑇𝑇) 𝑇𝑇⁄  where, the exact period is 𝑇𝑇 = 2𝜋𝜋 𝜔𝜔⁄ , 
and the numerically obtained period is 𝑇𝑇� = 2𝜋𝜋 𝜔𝜔�⁄ . The algorithmic damping ratio is defined as𝜉𝜉̅ = − 𝑙𝑙𝑠𝑠(𝐴𝐴2) (2𝛺𝛺�)⁄ , 
where 𝛺𝛺� = acrtan ��𝐴𝐴2 𝐴𝐴12⁄ − 1 � �Δ𝑡𝑡�1 − 𝜉𝜉2 ��  and 𝛺𝛺� = 𝜔𝜔Δ𝑡𝑡�����. For more details, please see Ref.[28]. 

The new third- and fourth-order explicit methods have much smaller damping and period errors when compared 
with the third- and fourth-order RK methods as shown in Figs.2 and 3. Based on the results presented in Fig.2, it can be 
expected that the new methods will give very small period error in long-term analyses. This will be verified by using 
various numerical examples in the next section. Fig.3 is showing that the new explicit methods do not introduce excessive 
numerical (or algorithmic) damping into the important low-frequency range, while considerable numerical damping is 
introduced in the RK methods. 

5 Numerical examples 

In this section, six illustrative examples are considered to demonstrate improved performances of the new methods. 
To keep the simplicity of the numerical analysis, only dimensionless problems are considered. Among the examples, two-
degree-of-freedom nonlinear spring-pendulum and double pendulum problems are used to verify the performance of 
the proposed method for multi-degree-of-freedom problems. It should also be noted that the precision of 16 significant 
digits is used for evaluations of variables in the computer code. 

As shown in Table 1, the computation times of the four different higher-order explicit methods are almost identical 
when the number of degree-of-freedoms is less than hundred. As degree-of-freedoms increase, on the other hand, the 
computation times of the third-order methods become approximately 75% of the fourth-order methods. As expected, 
computational times of the new explicit methods and the RK methods are almost the same when the same numbers of 
stages are assumed. 

Table 1: Computation times (in seconds) taken to obtain nonlinear numerical solutions of 10,000-th time step for varying sizes of 
system (i.e., degree-of-freedoms). 

Degree-of -freedoms New(3rd) Runge-Kutta(3rd) New(4th) Runge-Kutta(4th) 
1 9.5 9.4 9.7 9.7 

10 9.8 9.8 10.1 10.0 
100 10.6 10.5 10.9 10.9 

1,000 107.7 107.6 136.2 135.5 
10,000 8186.2 8185.7 10866.2 10865.5 
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5.1 Single-degree-of-freedom problem 

Eqs.(62) and (63) are solved by using the new methods and the RK methods. For undamped cases, 𝑢𝑢0 = 1.0, 𝑣𝑣0 = 0.0, 
𝜉𝜉 = 0.0, 𝑓𝑓(𝑡𝑡) = 0.0, and 𝜔𝜔 = 2𝜋𝜋 are used. For damped cases, 𝑢𝑢0 = 1.0, 𝑣𝑣0 = 0.0, 𝜉𝜉 = 0.1, 𝑓𝑓(𝑡𝑡) = 0.0, and 𝜔𝜔 = 2𝜋𝜋 
are used. 𝛥𝛥𝑡𝑡 = 0.1 and 0.2 are used for both cases. All properties are dimensionless. As shown in Figs.4-7, the new third- 
and fourth-order methods are presenting more accurate solutions when compared with the RK methods. The third-order RK 
method gives very inaccurate predictions when 𝛥𝛥𝑡𝑡 = 0.2 is used as shown in Figs.4 and 6. The reference solution is obtained 
by using the exact solution. 

 
Figure 4: Comparison of displacements the single degree of freedom system ü(t) + 2ξωu̇(t) + ω2u(t) = q(t). 𝑢𝑢0 = 1.0, 𝑣𝑣0 = 0.0, 

𝜉𝜉 = 0.0, 𝑓𝑓(𝑡𝑡) = 0.0, 𝜔𝜔 = 2𝜋𝜋 and 𝛥𝛥𝑡𝑡 = 0.2 are used. 

 
Figure 5: Comparison of displacements the single degree of freedom system ü(t) + 2ξωu̇(t) + ω2u(t) = q(t). 𝑢𝑢0 = 1.0, 𝑣𝑣0 = 0.0, 

𝜉𝜉 = 0.0, 𝑓𝑓(𝑡𝑡) = 0.0, 𝜔𝜔 = 2𝜋𝜋 and 𝛥𝛥𝑡𝑡 = 0.1 are used. 
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Figure 6: Comparison of displacements the single degree of freedom system ü(t) + 2ξωu̇(t) + ω2u(t) = q(t). 𝑢𝑢0 = 1.0, 𝑣𝑣0 = 0.0, 

𝜉𝜉 = 0.1, 𝑓𝑓(𝑡𝑡) = 0.0, 𝜔𝜔 = 2𝜋𝜋 and 𝛥𝛥𝑡𝑡 = 0.2 are used. 

 
Figure 7: Comparison of displacements the single degree of freedom system ü(t) + 2ξωu̇(t) + ω2u(t) = q(t). 𝑢𝑢0 = 1.0, 𝑣𝑣0 = 0.0, 

𝜉𝜉 = 0.1, 𝑓𝑓(𝑡𝑡) = 0.0, 𝜔𝜔 = 2𝜋𝜋 and 𝛥𝛥𝑡𝑡 = 0.1 are used. 

5.2 Elastic hardening spring problems 

The hardening elastic spring problem is considered. The motion of a hardening elastic spring [31-33] is expressed as 

ü + s1(1 + s2u2)u = 0, (73a) 

u(0) = u0, (73b) 

u̇(0) = v0, (73c) 
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where s1 > 0 and s2 > 0. The elastic spring problem given in Eq.(73) is a conservative system. The total energy of the spring 
can be computed exactly by using the initial displacement and velocity. For the numerical test, u0 = 1.5, v0 = 0.0, s1 = 100.0, 
and s2 = 10.0 are used [32]. All properties are dimensionless. The nonlinear period T of the problem is computed by using 
10th-order implicit Kim and Reddy method [7,20] with time step ∆t = 0.000001. The nonlinear period of the problem is 
computed as T = 0.15153. All methods used ∆t = T 32⁄ . 

 
Figure 8: Phase portrait of the hardening spring problem ü + s1(1 + s2u2)u = 0, u0 = 1.5, v0 = 0.0, s1 = 100.0, and s2 = 10.0 
are used with ∆t = T 32⁄  to complete fifty cycles (i.e., until 𝑡𝑡 = 50T). (a) New fourth-order method; (b) New third-order method; 

(c) Fourth-order RK method; (d) Third-order RK method. 

Fifty cycles of displacement and velocity solutions are observed. Since this problem is conservative, the 
displacement-velocity portrait should form a closed cycle as depicted in Fig.8(a) and (b). The results presented in Fig.8 
show that the phase portrait obtained by using the new methods is very accurate. Numerical solutions are forming thirty-
two groups on the exact portrait when ∆t = T 32⁄  is used. However, the phase portraits obtained from the RK methods 
are scatted along the exact phase portrait as shown Fig.8(c) and (d). 
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Figure 9: Displacement solution of the hardening spring problem ü + s1(1 + s2u2)u = 0, u0 = 1.5, v0 = 0.0, s1 = 100.0, and 

s2 = 10.0 are used with ∆t = T 32⁄ . (a) short-term solutions (0 ≤ 𝑡𝑡 ≤ 2𝑇𝑇); (b) long-term solutions (48𝑇𝑇 ≤ 𝑡𝑡 ≤ 50𝑇𝑇). 

The results presented in Fig.9 support the fact that the small period error of the new methods can improve the 
quality of solutions in long-term analyses. 

5.3 Elastic softening spring problems 

The softening equation [31-33] is also solved by using the new methods. The motion of the softening elastic spring 
is expressed as 

ü + s tanh(u) = 0, (74a) 

u(0) = u0, (74b) 

u̇(0) = v0, (74c) 

where s > 0.0. Here we use s = 100.0, u0 = 4.0, and v0 = 0.0 [32]. All properties are dimensionless. Fifty cycles of 
displacement and velocity solutions are observed. This problem is also conservative, and exact displacement-velocity 
portrait should form a closed cycle as depicted in Fig.10(a), (b) and (c). The results presented in Fig.10 show that the 
phase portrait obtained by using the new methods is accurately forming 32 groups on the exact portrait of the 
displacement-velocity when Δt = T 32⁄  is used. The phase portrait obtained from the fourth-order RK method is less 
accurate than the new methods. On the other hand, the phase portrait obtained from the third-order RK method is 
approaching toward the origin. The third-order RK method exhibits the most inaccurate result as shown in Fig.10(d). As 
shown in Fig.10(d), the third-order RK method becomes excessively dissipative when a large time step is used. 

The results presented in Fig.11 also support the fact that the small period and damping errors of the new methods 
can improve the quality of numerical solutions in long-term analyses. 
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Figure 10: Phase portrait of the hardening spring problem ü + s tanh(u) = 0, s = 100.0, u0 = 4.0, and v0 = 0.0 are used with 
∆t = T 32⁄  to complete fifty cycles (i.e., until 𝑡𝑡 = 50T). (a) New fourth-order method; (b) New third-order method; (c) Fourth-

order RK method; (d) Third-order RK method. 

 
Figure 11: Displacement solution of the hardening spring problem ü + s tanh(u) = 0, s = 100.0, u0 = 4.0, and v0 = 0.0 are used 

with ∆t = T 32⁄ . (a) short-term solutions (0 ≤ 𝑡𝑡 ≤ 2𝑇𝑇); (b) long-term solutions (48𝑇𝑇 ≤ 𝑡𝑡 ≤ 50𝑇𝑇). 
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5.4 Nonlinear single pendulum problem 

 
Figure 12: Description of nonlinear single pendulum [5] 

The nonlinear oscillation of single pendulum described in Fig.12 is numerically solved. The motion of the single 
pendulum is described 

θ̈ + ω2 sin(θ) = 0, (75) 

with initial conditions 

θ(0) = θ0, (76b) 

θ̇(0) = θ̇0, (76c) 

where ω  is�𝑔𝑔 𝐿𝐿⁄ , θ(t)  is the angle between the rigid rod and the vertical line at time t, 𝑔𝑔  is the gravitational 
constant, and L is the length of the massless rigid rod. Dimensionless values 𝑔𝑔 = 1.0 and 𝐿𝐿 = 1.0 are used in the 
example. 

This simple nonlinear pendulum problem is suitable for the test of time integration methods, because important 
information regarding motions of the pendulum (such as the period and the maximum angle) can be exactly computed 
by using the initial conditions given in Eqs.(76a) and (76b). For details, please see Refs.[5], [34], and [35]. 

For the test of the new methods, two sets of initial conditions are used. First, the initial conditions that have been 
used in Refs.[5,7,14] are also used in this study to synthesize a highly nonlinear case where the pendulum oscillates 
continuously between two peak points not making complete turns. Second, the initial conditions are chosen as 𝜃𝜃0 = 0.0 
and �̇�𝜃0 = 2.000000761543501 to synthesize a highly nonlinear case where pendulum makes complete turns about 
the point 𝑂𝑂. These initial conditions can synthesize even more challenging problem than the case used in Ref.[14]. 
Mathematically computed period of the first set of the initial conditions is 33.72102056501721, and numerically 
computed period of the second set of the initial conditions is 33.7210. Interestingly, periods of the two cases are almost 
identical. ∆𝑡𝑡 = 𝑇𝑇 400⁄  is used for each set of initial conditions. 
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Figure 13: Angles of the oscillating nonlinear single pendulum problem described in Fig.12(a) for varying values of 𝑡𝑡. The new third-
order explicit method and the third-order Runge-Kutta method are used, and ∆𝑡𝑡 is selected as 𝑇𝑇 400⁄  for both methods, where 

𝑇𝑇 = 33.72102056485366. 

 
Figure 14: Angles of the oscillating nonlinear single pendulum problem described in Fig.12(a) for varying values of 𝑡𝑡. The new 

fourth-order explicit method and the third-order Runge-Kutta method are used, and ∆𝑡𝑡 is selected as 𝑇𝑇 400⁄  for both methods, 
where 𝑇𝑇 = 33.72102056485366. 
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Figure 15: Angles of the rotating nonlinear single pendulum problem described in Fig.12(b) for varying values of 𝑡𝑡. The new third-
order explicit method and the third-order Runge-Kutta method are used, and ∆𝑡𝑡 is selected as 𝑇𝑇 400⁄  for both methods, where 

𝑇𝑇 = 33.7210. 

 
Figure 16: Angles of the rotating nonlinear single pendulum problem described in Fig.12(b) for varying values of 𝑡𝑡. The new fourth-
order explicit method and the third-order Runge-Kutta method are used, and ∆𝑡𝑡 is selected as 𝑇𝑇 400⁄  for both methods, where 

𝑇𝑇 = 33.7210. 
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Figure 17: Comparison of relative error |(𝜃𝜃numerical − 𝜃𝜃exact) 𝜃𝜃exact⁄ | at 𝑡𝑡 = 𝑇𝑇 4⁄ . 𝜃𝜃exact at 𝑡𝑡 = 𝑇𝑇 4⁄  is analytically computed as 

3.13984732433779890888572. 

For the first set of the initial conditions, the numerical solution of the new third-order method is almost superposing 
the exact solution (the dotted red line) as shown in Fig.13. However, the third-order RK method is presenting noticeable 
period error as shown in Fig.13. The numerical solutions of the new fourth-order methods are completely superposing 
the exact solution (the dotted red line) as shown in Fig.14. On the other hand, the fourth-order RK method is showing 
better results when compared with the third-order RK method, but the period error is still noticeable as shown in Fig.14. 

For the second set of the initial conditions, the numerical solution of the new third-order method is almost 
superposing the exact solution (the dotted red line) as shown in Fig.15. However, the third-order RK method is presenting 
huge period error and giving a completely incorrect prediction as shown in Fig.15. The result of the third-order RK method 
indicates that the pendulum is oscillating between the two peak points instead of making complete turns. The numerical 
solution of the new fourth-order method is completely superposing the exact solution (the dotted red line) as shown in 
Fig.16, while the fourth-order RK method is showing noticeable period error. 

To investigate convergence rate of the nonlinear solutions obtained from various methods, the first set of the initial 
conditions is used. Errors |(𝜃𝜃numerical − 𝜃𝜃exact) 𝜃𝜃exact⁄ | at 𝑡𝑡 = 𝑇𝑇 4⁄  are computed and plotted as shown in Fig.17. The 
order of accuracies expected in the linear single-degree-of-freedom problem as given in Eqs.(70) and (71) are also 
achieved in this nonlinear problem. 

5.5 Spring-pendulum problem 

The two-degree-of-freedom spring-pendulum problem [10] is used for the test of the new methods. The 
configuration of the two-degree-of-freedom spring-pendulum problem is described in Fig.18. The governing equations 
are given by 

mr̈ − m(L0 + r)θ̇2 − mg cos θ + kr = 0, (76b) 

mθ̈ + m�2ṙθ̇+g sinθ�
L0+r

= 0, (76c) 

and the initial conditions are 

r(0) = r0, θ(0) = θ0, ṙ(0) = ṙ0, θ̇(0) = θ̇0  (76b) 
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where r and θ are the displacements in the radial and circumferential directions, respectively, m is the mass of the 
pendulum, 𝑔𝑔 is the gravitational constant, L0 is the length of the undeformed spring, and k is the spring constant. In 
this numerical test, m = 1.0, g = 9.81, L = 0.5, k = 98.1, 𝑟𝑟0 = 0.25, θ0 = π 2⁄ = 1.570796326794896, ṙ0 = 0.0 
and θ̇0 = 0.0 are used. All properties are dimensionless. 

 
Figure 18: Description of spring pendulum [5]. 

 
Figure 19: Comparison of angles of spring-pendulum. 0.1 is used for ∆t in all methods. 
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Figure 20: Comparison of angles of spring-pendulum. 0.05 is used for ∆t in all methods. 

 
Figure 21: Comparison of relative error |(𝑟𝑟numerical − 𝑟𝑟reference) 𝑟𝑟reference⁄ | at 𝑡𝑡 = 0.1. 𝑟𝑟reference is computed by using the 10th-

order accurate method of Kim and Reddy [7,20]. 

In this particular problem, the new fourth-order method is presenting accurate solutions while the new third-order 
method and the third- and fourth order RK methods are not as presented in Figs.19-20. Interestingly, the convergence 
rate of the new third-order explicit method for the spring-pendulum is third-order as shown in Fig.21. This is due to the 
velocity dependent nonlinearity included in the governing equations. The results presented in Fig.21 are in good 
agreement with the order of accuracy computed by using the linear single-degree-of-freedom problem given in Eqs.(70) 
and (71). 
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5.6 Double pendulum problem 

A double pendulum problem described in Fig.22 is solve to test the new methods. This double pendulum problem 
can also be used to investigate chaos dynamics [36]. 

 
Figure 22: Description of double pendulum. 

 
Figure 23: Comparison of 𝑒𝑒1 for 90 ≤ 𝑡𝑡 ≤ 95. 
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Figure 24: Comparison of 𝑦𝑦1 for 90 ≤ 𝑡𝑡 ≤ 95. 

 
Figure 25: Comparison of 𝑒𝑒2 for 90 ≤ 𝑡𝑡 ≤ 95. 
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Figure 26: Comparison of 𝑦𝑦2 for 90 ≤ 𝑡𝑡 ≤ 95. 

The governing equations of the double pendulum [37] is given by 

θ̈1 −
m2l2θ̇2

2
sin(θ2−θ1)−(m1+m2) g sin(θ1)

l1 (m1+m2)−m2l1 cos2(θ2−θ1) = 0, (79a) 

θ̈2 + (m1+m2)l1θ̇1
2
sin(θ2−θ1)+(m1+m2) g sin(θ2)

l2 (m1+m2)−m2l2 cos2(θ2−θ1) = 0, (79b) 

�θ1(0),θ2(0), θ̇1(0), θ̇2(0)�
T

= �ϑ1,ϑ2, ϑ̇1, ϑ̇2�
T

, (79c) 

where θ1 and θ2 are angle of the first and second pendulums, respectively, m1 and m2 are masses of the first and 
second pendulums, respectively, l1 and l2 are weightless rigid rods connected to pendulums as shown in Fig.22, and 
ϑ1 and ϑ2 are the initial angles. By using θ1 and θ2, positions of the pendulum are computed as follows: 

x1 = l1 sin θ1, (80a) 

y1 = −l1 cos θ1, (80b) 

x2 = x1 + l2 sin θ2, (80c) 

y2 = y1 − l2 cos θ2, (80d) 

Dimensionless properties m1 = 1.0 , m2 = 1.0 , l1 = 1.0 , l2 = 1.0 , and g = 1.0  are used, and the initial 
conditions are chosen as �ϑ1,ϑ2, ϑ̇1, ϑ̇2�

T
= {0.0,π 2⁄ , 0.0, 0.0}T . All properties are dimensionless. In this particular 

problem, the new fourth-order method and the fourth-order RK method are presenting accurate solutions while the new 
third-order method and the third-order RK method are not as presented in Figs.23-26. The new fourth-order method is 
presenting slightly more accurate result when compared with the fourth-order RK method. The convergence rates of the 
new explicit methods for the double-pendulum problem are presented in Fig.27. 
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Figure 27: Comparison of relative error |(𝑦𝑦2numerical − 𝑦𝑦2reference) 𝑦𝑦2reference⁄ | at 𝑡𝑡 = 1.0. 𝑦𝑦2reference is computed by using the 

10th-order accurate method of Kim and Reddy [7,20]. 

6 Concluding remarks 

The new third- and fourth-order explicit methods presented in this paper could provide accurate numerical solutions 
when applied to various linear and nonlinear test problems. Simple but meaningful examples were selected from the 
existing studies where various methods have been developed and tested. The selected illustrative examples were also 
used to verify improved performances of the new methods. Due to the computational structures of the new methods 
which are similar to those of the equivalent RK methods, various nonlinear problems of structural dynamics were 
successfully solved. The new explicit methods could provide more accurate numerical solutions when compared with the 
well-known third- and fourth-order RK methods. 

The advantages of the new explicit methods can be summarized as: 

(a) The new methods could be applied to linear and nonlinear problems in a consistent and unified manner. 

(b) The final forms of the new methods did not have any undetermined parameters, which reduced the efforts of a 
user. 

(c) For velocity independent nonlinear problems and undamped linear problems, the new third-order method could 
provide improved solutions with less computational efforts when compared with the fourth-order accurate RK 
method. 
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