
10(2013) 523 – 547	  

Abstract 
A study on the finite element (FE) analysis of laminated compo-
site plates is described in this paper. In order to investigate struc-
tural behavior of laminated composite plates, a four-node lami-
nated plate element is newly developed by using a higher order 
shear deformation theory (HSDT). In particular, assumed natural 
strains are introduced in the present FE formulation to alleviate 
the locking phenomenon. Several numerical examples are carried 
out and its results are then compared with the existing reference 
solutions. It is found to be that the proposed FE is very effective 
to remove the locking phenomenon and produces reliable numeri-
cal solutions for most laminated composite plate structures. 
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1 INTRODUCTION 

Laminated composite plates have been extensively used in many engineering disciplines such as civil 
engineering, marine engineering and aerospace engineering due to its high strength to weight ratio 
and excellent corrosion resistance. With the growing use of laminated composite material, it be-
comes very important to conduct numerical analysis and to use the resulting information in the 
structural design process. This situation clearly has demanded the development of efficient and 
accurate numerical analysis techniques which are necessarily required to predict the behaviors of 
laminated plates.  
 In the early days, classical laminated plate theory (CLPT) has been mainly used with negligence 
of the effect of transverse shear deformation. However, due to the increasing use of thick laminated 
plate in construction, thick plate theories such as the first order shear deformation theory (FSDT) 
and the higher order shear deformation theory (HSDT) are needed to take into account transverse 
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shear deformation through the thickness direction of the plates. In particular, The HSDTs do not 
required shear correction factor and it can generally guarantee zero transverse shear stress values on 
the top and bottom surfaces of the plate. Some important and early works on HSDT can be found 
in the open literatures [1-5] where more realistic representation of transverse shear deformation were 
generally tried to be provided. Later, Zhang and Yang [6] described some recent developments of 
the FEs based on various laminated composite plate theories. Reddy [1] suggested a simple but very 
useful HSDT for laminated composite plates. His version of HSDT is based on equivalent single 
layer plate theory and it allows parabolic variation of transverse shear stress and also satisfies zero 
shear stress boundary conditions at the top and bottom surfaces of the plate. Moreover, it does not 
involve any unknown fields which do not have any physical meaning. Bose and Reddy [7, 8] ana-
lyzed laminated plates by using a unified third-order laminate plate theory that contains classical, 
first-order and third-order theories and they presented analytical method using the Navier and Levy 
equations and the FE method using the unified third order laminate plate theory. A review on the 
various methods used in the estimation of transverse and inter-laminar stresses for laminated com-
posite plates and shell including both analytical and numerical methods was provided by Kant and 
Swaminathan [9]. Kant and Manjunatha [10] provided the FE based on HSDT having twelve de-
grees of freedom per node. They presented three-dimensional stress and strain states to investigate 
the flexure-membrane coupling behavior of unsymmetrical laminated plate. Akhars and Li [11] de-
veloped a spline finite strip method for static and free vibration analysis of composite plates using 
Reddy’s HSDT. Pervez et al [12] developed a two dimensional serendipity FE based on a refined 
HSDT having seven degrees of freedom per node to perform the linear static analysis of laminated 
orthotropic composite plates. Latheswary et al [13] studied the behavior of laminated composite 
plates under static loading by using a four-node nonconforming element based on HSDT. Goswami 
[14] presented a simple C^0 FE formulation for nine-node FE with six degrees of freedom based on 
HSDT.  
 From literature review, the previous FE developments using HSDT have mostly depended on 
the standard strain definition. From this context, as shown in a recent work [15] laminated compo-
site plate FEs based on HSDT can produce the shear locking phenomenon. However, this problem 
has not been paid much attention and uniform or selective reduced integration technique is just 
adopted to rectify locking phenomenon although the assumed strain method becomes very popular 
for the FE analysis of single-layered isotropic plate structures. So far, there have been a few re-
search works on the free vibration analysis of laminated plate using HSDT together with assumed 
strain method [16, 17]. However, we found that there is no introduction of assumed strains in the 
formulation of laminated composite plate element based on the HSDT for FE stress analysis, alt-
hough the stress evaluation at the layer and inter-layer of the laminated plate is very crucial. 
Therefore, we here propose a new assumed strain laminated composite plate FE based on the 
HSDT and provide a series of benchmark tests to prove its capability. More specifically, we provide 
the description on the four-node lower order laminate composite plate FE with assumed strains and 
its numerical results as benchmark test suites for an application of assumed strains into the lami-
nated composite structures. 
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2 REVIEWS ON HSDT 

2.1  Displacement definition 

The total domain ( Ω ) of laminated plate consists of the mid-surface and the thickness as shown 
in Figure 1 and it can be defined as 
 

 

    
Ω = x1,x2,x3( ) x1,x2( ) ∈ Ω0, x3 ∈ −

h
2
,
h
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where  is the xy-plane and  h  is denoted as thickness of plate.  
In order to represent the shape of transverse shear deformation in realistic way, the displacement 
fields may include higher order terms as follows [1] 
 
 

    
u1 x1,x2,x3( ) = u1 x1,x2( ) + x3θ2 + c1x3
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u3 x1,x2,0( ) = u3 x1,x2( ) = u3  

 
 
where   u1 ,   u2 ,   u3  are the translational displacements in the   x1 ,   x2 ,   x3  direction respectively, 

  u1 ,   u2 ,   u3  are the in-plane displacement,   u3  is the transverse displacement of a point on the 

mid-surface,   θ2  is the normal rotation in    x1 − x3  plane,   θ1  is the normal rotation in    x2 − x3  

plane,    ∂u3 / ∂x1,∂u3 / ∂x2  are the slopes of the tangents of the deformed mid-surface in the    x1 , 

  x2  direction and    c1 = −4 / 3h2
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Figure 1   Geometry and sign convention of laminated composite plate 
 
2.2  Strain definition 

The strains in the plate are defined by linear strain-displacement relationship as follows 
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in which 
  
εp  is the in-plane strain term,   εs  denotes the transverse shear strain term, and the pa-

rameters   c1  and   c2  are    −4 / 3h2  and    −4 / h2  respectively and the individual strain terms are 
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2.3  Constitutive equation 

In this study, each layer of laminate plate is assumed as orthotropic material and the normal 
transverse stress   (σ3

' )  is assumed to be negligible. Therefore, the constitutive equation for the  kth  

layer with respect to the material coordinate system 
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in which 

 
Cij  are the components of rigidity matrix for the  kth  layer as follows 
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where   E1

' ,    E2
'  are the Young’s modulus in ' '

1 2,x x  direction respectively,   G12
' ,    G13

' ,   G23
'  are the 

shear modulus and   ν12
' ,    ν21

'  are the Poisson ratios.  
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 If the angle  ϑ  between the material coordinate system 
   
x1

'( )  and the global coordinate system 

is once determined as shown in Figure 1, the transformation can be possible between two coordi-
nate systems.  
 Therefore, stresses and strains   {σ} ,   {ε}  in global coordinate system can be obtained by using 

the transformation matrix 
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 where     c = cosϑ  and     s = sinϑ  in which  ϑ  is the fiber’s angle as shown in Figure 1.  
The stress-strain relationship in the global coordinate system can be written by using (6) and (8) 
as follows 
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2.4  Stress resultants 

The stress resultants are calculated by integration of the stresses through thickness direction of 
laminated plate and five stress resultant terms such as 
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obtained as follows 
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where nlayer  is the number of layers in laminated plate.  
 The above stress resultant terms can be rewritten in the matrix form: 
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 Where the components of the rigidity matrices 
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and the above equation can be explicitly rewritten in the following form: 
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3 FINITE ELEMENT FORMULATION 

3.1 Kinematics and displacement field 

In this study, a four-node plate element having seven degrees of freedom per node is formulated 
using the isoparametric formulation. Therefore the geometry and displacement fields of the pre-
sent FE can be defined in the following form: 
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where  Na  is the bilinear Lagrange shape function associated with node  a ,  xi  is the position vec-

tor of the plate and the nodal displacement vector 
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where    ∂u3

a / ∂x1 ,    ∂u3
a / ∂x2  are two additional degrees of freedom related to the higher order 

terms of (2) which do not appear in the FE based on the FSDT. 
 
 
3.2 Strain-displacement relationship matrix 

Using (15), the strains of (4) can be rewritten in the form of the strain-displacement relation ma-
trix  as follows 
 
 

    

εp{ } = B0
a⎡

⎣⎢
⎤
⎦⎥ + B1

a⎡
⎣⎢
⎤
⎦⎥ + c1 x3( )3 B2

a⎡
⎣⎢
⎤
⎦⎥( ) ua{ }

a=1

4

∑

γs{ } = B3
a⎡

⎣⎢
⎤
⎦⎥ + c2 x3( )2 B4

a⎡
⎣⎢
⎤
⎦⎥( ) ua{ }

a=1

4

∑   

 (17) 

 
 
where the sub-matrices of 

   
B 

a⎡
⎣⎢
⎤
⎦⎥  are 
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B0
a⎡

⎣⎢
⎤
⎦⎥ =

∂Na

∂x1

0 0 0 0 0 0

0
∂Na

∂x2

0 0 0 0 0

∂Na

∂x2

∂Na

∂x1

0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

, B1
a⎡

⎣⎢
⎤
⎦⎥ =

0 0 0 0
∂Na

∂x1

0 0

0 0 0 −
∂Na

∂x2

0 0 0

0 0 0 −
∂Na

∂x1

∂Na

∂x2

0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

B2
a⎡

⎣⎢
⎤
⎦⎥ =

0 0 0 0
∂Na

∂x1

∂Na

∂x1

0

0 0 0 −
∂Na

∂x2

0 0
∂Na

∂x2

0 0 0 −
∂Na

∂x1

∂Na

∂x2

∂Na

∂x2

∂Na

∂x1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

B3
a⎡

⎣⎢
⎤
⎦⎥ =

0 0
∂Na

∂x1

0 Na 0 0

0 0
∂Na

∂x2

−Na 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

, B4
a⎡

⎣⎢
⎤
⎦⎥ =

0 0 0 0 Na Na 0

0 0 0 −Na 0 0 Na

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

 

 
 
 
3.3 Total potential energy of plate 

The total potential energy of the laminated plate can be written by using the stress resultants 
and the corresponding strains as follows 
 

    

Π =
1
2

dA
∫ N{ }T

ε 0( ){ } + M{ }T
ε 1( ){ } + c1 P{ }T

ε 3( ){ } + Q{ }T
γ 0( ){ } + c2 R{ }T

γ 2( ){ }( )dA−P  (18) 

  
In the discretized FE domain, total potential energy can be written as 

 

    
Π =

1
2

u{ }T
KN
⎡
⎣
⎤
⎦ + KM
⎡
⎣

⎤
⎦ + KP
⎡
⎣
⎤
⎦ + KQ
⎡
⎣⎢
⎤
⎦⎥ + KR
⎡
⎣
⎤
⎦( ) u{ }− u{ }T

f{ }  (19) 

 
 By minimization of the total potential energy, with respect to the nodal values u  we obtain 
 

  
K⎡⎣
⎤
⎦ u{ } = f{ }  (20) 

 
where 

  
u{ }  is global vector of nodal displacements with typical nodal displacement sub-vector for 
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node a 
    
ua{ } = u1

a,u2
a,u3

a,θ1
a,θ2

a,
∂u3

a

∂x1

,
∂u3

a

∂x2

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
, 
  

f{ }  is the global vector of nodal forces with typical 

nodal force sub-vector for node a 
    

f a{ } = f
u1

a , f
u2

a , f
u3

a , f
θ1

a , f
θ2

a , f
∂u3 /∂x1

a , f
∂u3 /∂x2

a{ }  and 
  
K⎡⎣
⎤
⎦  is the 

global stiffness matrix where 
 

    
K⎡⎣
⎤
⎦ = ∧nel

e=1

K (e)⎡
⎣⎢

⎤
⎦⎥  

(20) 

 

where 
    
∧
nel

e=1

[]  is the finite element assembly operator and the element stiffness matrix is divided into 

five contributions 
 

  
K e( )⎡
⎣⎢

⎤
⎦⎥

= KN
e( )⎡

⎣⎢
⎤
⎦⎥
+ KM

e( )⎡
⎣⎢

⎤
⎦⎥
+ KP

e( )⎡
⎣⎢

⎤
⎦⎥
+ KQ

e( )⎡
⎣⎢

⎤
⎦⎥
+ KR

e( )⎡
⎣⎢

⎤
⎦⎥
 (22) 

 
in which 

   
KN

(e)⎡
⎣⎢

⎤
⎦⎥ , KM

(e)⎡
⎣⎢

⎤
⎦⎥ , KP

(e)⎡
⎣⎢

⎤
⎦⎥ , KQ

(e)⎡
⎣⎢

⎤
⎦⎥ and KR

(e)⎡
⎣⎢

⎤
⎦⎥  are 

 

   

K
N

(e)⎡
⎣⎢

⎤
⎦⎥ =

dA
(e)

∫ B0
a⎡

⎣⎢
⎤
⎦⎥
T

A⎡⎣
⎤
⎦ B0

b⎡
⎣⎢
⎤
⎦⎥ + B1

a⎡
⎣⎢
⎤
⎦⎥
T

B⎡⎣
⎤
⎦ B0

b⎡
⎣⎢
⎤
⎦⎥ + c1 B2

a⎡
⎣⎢
⎤
⎦⎥
T

E⎡⎣
⎤
⎦ B0

b⎡
⎣⎢
⎤
⎦⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟dA , 

K
M

(e)⎡
⎣⎢

⎤
⎦⎥ =

dA
(e)

∫ B0
a⎡

⎣⎢
⎤
⎦⎥
T

B⎡⎣
⎤
⎦ B1

b⎡
⎣⎢
⎤
⎦⎥ + B1

a⎡
⎣⎢
⎤
⎦⎥
T

D⎡⎣
⎤
⎦ B1

b⎡
⎣⎢
⎤
⎦⎥ + c1 B2

a⎡
⎣⎢
⎤
⎦⎥
T

F⎡⎣
⎤
⎦ B1

b⎡
⎣⎢
⎤
⎦⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟dA ,

K
P

(e)⎡
⎣⎢

⎤
⎦⎥ =

dA
(e)

∫ c1 B0
a⎡

⎣⎢
⎤
⎦⎥
T

E⎡⎣
⎤
⎦ B2

b⎡
⎣⎢
⎤
⎦⎥ + c1 B1

a⎡
⎣⎢
⎤
⎦⎥
T

F⎡⎣
⎤
⎦ B2

b⎡
⎣⎢
⎤
⎦⎥ + c1

2
B2

a⎡
⎣⎢
⎤
⎦⎥
T

H⎡⎣
⎤
⎦ B2

b⎡
⎣⎢
⎤
⎦⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟dA  ,

K
Q

(e)⎡
⎣⎢

⎤
⎦⎥ =

dA
(e)

∫ B3
a⎡

⎣⎢
⎤
⎦⎥
T

G⎡⎣
⎤
⎦ B3

b⎡
⎣⎢
⎤
⎦⎥ + c2 B4

a⎡
⎣⎢
⎤
⎦⎥
T

S⎡⎣
⎤
⎦ B3

b⎡
⎣⎢
⎤
⎦⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟dA ,

K
R

(e)⎡
⎣⎢

⎤
⎦⎥ =

dA
(e)

∫ c2 B3
a⎡

⎣⎢
⎤
⎦⎥
T

S⎡⎣
⎤
⎦ B4

b⎡
⎣⎢
⎤
⎦⎥ + c2

2
B4

a⎡
⎣⎢
⎤
⎦⎥
T

T⎡⎣
⎤
⎦ B4

b⎡
⎣⎢
⎤
⎦⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟dA  .

 (23) 

 
3.4 Substitute strain-displacement matrix via assumed strain method 

In this study, the assumed strain method is employed to alleviate the possible locking phenome-
non. Therefore, assumed strains are derived by using the interpolation functions based on La-
grangian polynomial and the strain values at the sampling points where the locking does not ex-
ist.  

 For natural assumed transverse shear strains     γ13
0( ) A( )  and     γ23

0( ) A( ) , the following sampling 
points [18] are employed as shown in Figure 2:  
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     γ13
0( ) A( ) → (0,1)1 : (0,−1)2 , γ23

0( ) A( ) → (1,0)1 : (−1,0)2 .  (24) 
 
 Using (24), the assumed natural strains can be defined in the following form: 
 

     
γ13

0( ) A( ) =
a=1

2

∑Pδ ξ2( ) γ13δ ,     γ23
0( ) A( ) =

a=1

2

∑Qδ ξ1( ) γ23
δ  (25) 

 
where  δ  denotes the position of the sampling point as shown in Figure 2 and the interpolation 
functions  P ,  Q  are employed as follows 
 

    

P1 =
1
2

1 + ξ2( ),    P2 =
1
2

1− ξ2( ),

Q1 =
1
2

1 + ξ1( ),    Q2 =
1
2

1− ξ1( ).
 (26) 

 
 

 
 

Figure 2   The position of sampling point; (left) 
     
γ13

0( ) A( ) and (right) 
     
γ23

0( ) A( )  

 
 
 Transverse shear strain-displacement relationship produced by assumed strain method can be 
written in the following matrix form: 
 

    
γs{ } =

a=1

4

∑ B3
a A( )⎡

⎣⎢
⎤
⎦⎥
+ c2 x3( )2 B4

a⎡
⎣⎢
⎤
⎦⎥( ) ua{ }  (27) 

 
where   B3

a(A)  is the assumed natural strain-displacement relationship matrix and explicitly can be 
written as 
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B3
a(A)⎡

⎣⎢
⎤
⎦⎥ =

1
4

0 0 Ξ1 α1Ξ2 + β1Ξ3 α2Ξ2 + β2Ξ3 0 0

0 0 Ξ4 γ1Ξ5 + β1Ξ6 γ2Ξ5 + β2Ξ6 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (28) 

 
in which the   Ξ1,  Ξ2,Ξ3,Ξ4,  Ξ5,Ξ6,αi ,   βi ,   γi  are 
 

   

Ξ1 =
1
4
ξ1

a 1 + ξ2
aξ2( ),  Ξ2 =

Ξ1

ξ1
a

=
1
4

1 + ξ2
aξ2( ),  Ξ3 =

1
4
ξ2

a + ξ2( ),

Ξ4 =
1
4
ξ2

a 1 + ξ1
aξ1( ),Ξ5 =

Ξ1

ξ2
a

=
1
4

1 + ξ1
aξ1( ),  Ξ6 =

1
4
ξ1

a + ξ1( ),

αi =
1
4
−xi

1 + xi
2 + xi

3 − xi
4( ),  β i =

1
4

xi
1 − xi

2 + xi
3 − xi

4( ),  γi =
1
4
(−xi

1 − xi
2 + xi

3 + xi
4)

 (29) 

 
where   xi

a,ξi
a  are the coordinates of nodal point  a  in global coordinate system and natural coor-

dinate system respectively. 
 
3.5 Substitute element stiffness matrix for transverse shear 

In previous section, the assumed strains are defined in natural coordinate system and so trans-
verse shear rigidity matrix of (13) can be also defined in the natural coordinate system as follows 
 

     

Gij =
∂ξi
∂xα

∂ξj
∂xβ

Gαβ,                         

Sij
Q =

∂ξi
∂xα

Sαj ,  Sij
S =

∂ξj
∂xβ

Siβ  .

 (30) 

 
Consequently, transverse shear stiffness terms of (23) can be rewritten as follows 
 

    

KQ
(e)⎡

⎣⎢
⎤
⎦⎥ =

d A
∫ B3

A( )⎡
⎣⎢

⎤
⎦⎥
T
G⎡⎣
⎤
⎦ B3

A( )⎡
⎣⎢

⎤
⎦⎥
+ c2 B4
⎡
⎣
⎤
⎦
T SQ⎡
⎣⎢
⎤
⎦⎥ B3

A( )⎡
⎣⎢

⎤
⎦⎥

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟d
A ,

KR
(e)⎡

⎣⎢
⎤
⎦⎥ =

d A
∫ c2 B3

A( )⎡
⎣⎢

⎤
⎦⎥
T
SS⎡
⎣⎢
⎤
⎦⎥ B4
⎡
⎣
⎤
⎦ + c2

2 B4
⎡
⎣
⎤
⎦
T

T⎡⎣
⎤
⎦ B4
⎡
⎣
⎤
⎦

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟d
A .

 (31) 

 
 In this study, (31) will be used instead of the terms 

   
KQ

(e)⎡
⎣⎢

⎤
⎦⎥  and 

   
KR

(e)⎡
⎣⎢

⎤
⎦⎥  in (23). Note that the 

standard FE (HAD4) is derived by using the original terms in (23). 
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4 NUMERICAL EXAMPLES 

In order to investigate the accuracy and reliability of the newly developed laminated plate ele-
ment HSA4, a series of numerical test for symmetric and unsymmetric laminated plates are con-
sidered. The square plates with the simply supported boundary conditions are used in the test. 
More specifically, two sets of boundary conditions, 1SS  and 2SS  are employed in numerical tests 
as follows 
 

    

SS1 : u1 = 0, u3 = 0, θ2 = 0,
∂u3

∂x1

= 0   at  x2 = 0, x2 = a  ,

        u2 = 0, u3 = 0, θ1 = 0,
∂u3

∂x2

= 0   at  x1 = 0, x1 = a  ,

SS2 : u2 = 0, u3 = 0, θ2 = 0,
∂u3

∂x1

= 0   at  x2 = 0, x2 = a  ,

         u1 = 0, u3 = 0, θ1 = 0,
∂u3

∂x2

= 0   at  x1 = 0, x1 = a

 (32) 

 
 and the three sets of material properties are used as follows 
 

    

M1 : E1 / E2 = 25.0, G12 = G13 = 0.5E2,G23 = 0.2E2,ν12 = 0.25,

M2 : E1 / E2 = 40.0, G12 = G13 = 0.6E2,G23 = 0.5E2,ν12 = 0.25,

M3 :  Facesheets : E1 = 19×106,E2 = 1.5×106,G12 = G13 = 1×106,

G23 = 0.9×106,ν12 = ν13 = 0.22,ν23 = 0.49,

Core isotropic( ) : E = 1×103,G = 5×102,ν = 0.0 .

 (33) 

 
 In this study, the laminated plates are also assumed to be subjected to sinusoidal load or uni-
form load as follows 
 

    

L1 = q x1,x2( ) = q0 sin
πx1

a
sin
πx2

a
L2 = q x1,x2( ) = 1  uniform load( ) .

 (34) 

 
 All the numerical results provided in Tables and Figures are described as non-dimensionalized 
values by using the following form 
 

    

w = u3 100×
E2h

3

qa4

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
,    σ1 = σ1

h2

qa2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,    σ2 = σ2

h2

qa2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,

τ12 = τ12
h2

qa2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,   τ13 = τ13

h

qa2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
,   τ23 = τ23

h

qa2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
. 

 (35) 
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 Note that the deflection  w  is calculated at the center of the plate and the stresses are pro-
duced at the nearest Gauss point to the following locations 
 
 

    

u3 :
a
2
,
a
2
,0

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟,   σ1 :

a
2
,
a
2
,±

h
2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟,   σ2 :

a
2
,
a
2
,±

h
2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟,

τ12 : 0,0,±
h
2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟,   τ13 : 0,

a
2
,0

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟,   τ23 :

a
2
,0,0

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 (36) 

 
 
where  a  is the width of the plate and  h  is the thickness of the plate. 
 It should be noted that Reddy’s displacement function definition of (2) can reserve zero shear 
stress boundary condition at the top and bottom of the laminated plate but this condition cannot 
be reserved anymore when assumed strain method is adopted with the HSDT. Therefore, the 
following modified strain definition is used when we calculate transverse shear stress value to-
gether with (10): 
 
 

    
γs{ } = B3

a A( )⎡
⎣⎢

⎤
⎦⎥
+ c2 x3( )2 B3

a A( )⎡
⎣⎢

⎤
⎦⎥( ) ua{ }

a=1

4

∑ ,where c2 = 4 / h2. (37) 

 
 
With (37), we can enforce the values of   γs  to zero at top (   x3 = h / 2 ) and bottom (   x3 = −h / 2 ) 
of laminated plates and eventually the zero shear stress values can be achieved at the top and 
bottom of the plates. 
 
4.1 Symmetric cross-ply (  0° / 90° / 90° / 0° ) square laminated plate 

(a) Convergence rate test: A four-layer symmetric cross-ply (  0° / 90° / 90° / 0° ) laminated com-
posite plate is analyzed to check the convergence rate of the present FE (HSA4) and its perfor-
mance for the variation of thickness values. In this test, material property, boundary condition 
and load case such as   M1, SS1, L1  are used. Five cases with   4× 4 ,   8×8 ,   12×12 ,   16×16  and 
  32×32  FE meshes are employed in the test. Two aspect ratios    a / h = 10 , 100 are used in FE 
analysis to show the applicability of the present plate element to both thin and thick plates. The 
center deflection and stresses are calculated for both thick and thin plates and summarized in 
Tables 1 and 2. The present solutions are compared with the exact elasticity solution [19] and a 
FE solution [14]. The convergence test result is plotted in Figure 3. 
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Figure 3   The convergence test results of the present FE (HSA4) for    a / h = 10 and 100. 
 
  

The present plate element shows a good convergence rate. In particular, we can see that the 
present FE solution has a good agreement with the elasticity solution [19] and achieves a certain 
level of convergence with the case of   16×16  FE mesh for both thin and thick plates. We there-
fore decided to use the   16×16  FE mesh with 256 four-node elements for numerical test through-
out this study. Note that FE reference solution [14] was produced by a nine-node plate element so 
that the reference solution with   n×n  FE mesh is compared to the present solution with the 
  2n×2n  FE mesh.  
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Table 1   Convergence test of a simply supported (  SS1 ) symmetric cross-ply (  0° / 90° / 90° / 0° ) laminated plate under sinusoidal 
transverse load (   a / h = 10 ). 

 
Solution Mesh Size  w   σ    σ2    τ12    τ13    τ23  

Present 

  4× 4  
0.6975 0.4691 0.3336 0.0231 0.2318 0.1392 

Present* - 0.5001 0.3556 0.0246 0.2471 0.1483 
Goswami[14] 0.7286 0.5714 0.3172 0.0266 0.1977 0.0978 
Present 

  8×8  
0.7147 0.5367 0.3759 0.0262 0.2701 0.1540 

Present* - 0.5454 0.3820 0.0266 0.2745 0.1565 
Goswami[14] 0.7274 0.5683 0.3287 0.0275 0.2642 0.1014 
Present 

  12×12  
0.7179 0.5500 0.3842 0.0268 0.2779 0.1569 

Present* - 0.5541 0.3871 0.0270 2800 0.1581 
Goswami[14] 0.7261 0.5626 0.3266 0.0272 0.2993 0.1188 
Present 

  16×16  
0.7190 0.5547 0.3872 0.0270 0.2807 0.1580 

Present* - 0.5570 0.3888 0.0271 0.2818 0.1586 
Goswami[14] 0.7250 0.5591 0.3244 0.0269 0.3169 0.1231 
Present 

  32×32  
0.7200 0.5593 0.3901 0.0272 0.2834 0.1590 

Present* - 0.5599 0.3905 0.0273 0.2837 0.1591 
Elasticity[19] - 0.7430 0.5590 0.4010 0.0275 0.3010 0.1960 
Note: Present*: Stresses are extrapolated from Gauss point to the point of (36). 
 
Table 2   Convergence test of a simply supported (  SS1 ) symmetric cross-ply (  0° / 90° / 90° / 0° ) laminated plate under sinusoidal 

transverse load (   a / h = 100 ). 
 

Solution Mesh Size  w   σ    σ2    τ12    τ13    τ23  

Present  
  4× 4  

0.4124 0.4556 0.2291 0.0181 0.2575 0.1000 
Present* - 0.4856 0.2442 0.0192 0.2745 0.1063 
Goswami[14] 0.4366 0.5430 0.2422 0.0201 0.1859 0.0912 
Present  

  8×8  
0.4291 0.5170 0.2599 0.0205 0.2997 0.1112 

Present* - 0.5254 0.2641 0.0208 0.3046 0.1130 
Goswami[14] 0.4354 0.5458 0.2464 0.0203 0.2022 0.1288 
Present  

  12×12  
0.4320 0.5291 0.2659 0.0210 0.3083 0.1134 

Present* - 0.5329 0.2679 0.0211 0.3106 0.1143 
Goswami[14] 0.4347 0.5421 0.2451 0.0202 0.2210 0.1356 
Present  

  16×16  
0.4331 0.5333 0.2681 0.0211 0.3114 0.1142 

Present* - 0.5355 0.2692 0.0212 0.3127 0.1147 
Goswami[14] 0.4343 0.5352 0.2432 0.0200 0.2291 0.1414 
Present  

  32×32  
0.4340 0.5375 0.2702 0.0213 0.3144 0.1150 

Present* - 0.5380 0.2704 0.0213 0.3147 0.1151 
Elasticity[19] - 0.4347 0.5390 0.2760 0.0216 0.3370 0.1410 
Note: Present*: Stresses are extrapolated from Gauss point to the point of (36). 
 
 
(b) Locking test: The same plate is also used to investigate the possible appearance of locking 
phenomenon again. For this purpose, we use four different aspect ratios such as  

   a / h = 4, 10, 20, 100  with the   16×16  FE mesh. Numerical results such as central deflection and 
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stresses of the plate are summarized in Table 3 and it is compared with the solutions produced by 
elasticity solution [19], Reddy [1], Akhras and Li [11] and Pervez et al [12]. It is found to be that 
both the present FE HAS4 and the standard FE HSD4 have a good agreement with reference 
solutions for thick plate situations such as    a / h = 4  and 10. However, if the aspect ratio becomes 
a larger value, i.e. the plate becomes thin, the four node standard plate element HSD4 has some 
discrepancies with reference solutions. Specifically, for the aspect ratio    a / h = 100 , the HSD4 has 
around 50% of error compare to the reference solutions. It can be considered as the evidence that 
HSD4 exhibits the shear locking phenomenon when the plate becomes thinner. However, the pre-
sent plate element alleviates the shear locking phenomenon very effectively with full integration 
and enhances its performance in great manner as shown in Table 3. We provide the distributions 
of in-plane stresses   σ1,σ2  and transverse shear stresses   τ13,τ23 , through the thickness direction in 
Figures 4-7 for    a / h = 10 and  100 .  
 

Table 3   The non-dimensionalized deflection and stresses of a simply supported (  SS1 ) symmetric cross-ply 
(  0° / 90° / 90° / 0° ) laminated plate under sinusoidal transverse load. 

 

  a / h  Theory  w   σ    σ2    τ12    τ13    τ23  

4 

Present(HSA4) 1.9014 0.6973 0.6245 0.0456 0.2112 0.2439 
HSD4 1.8997 0.6965 0.6225 0.0455 0.2114 0.2430 
Elasticity[19] 1.9540 0.7200 0.6630 0.0467 0.2190 0.2920 
Reddy[1] 1.8937 0.6651 0.6322 0.0440 0.2064 0.2389 
Aknas and Li [11] 1.8941 0.6800 0.6338 0.0444 0.2064 0.2390 
Pervez et al [12] 1.8910 0.7180 0.6420 0.0467 0.2090 0.2410 

10 

Present(HSA4) 0.7090 0.5547 0.3872 0.0270 0.2807 0.1580 
HSD4 0.7122 0.5482 0.3824 0.0267 0.2782 0.1540 
Elasticity[19] 0.7430 0.5590 0.4010 0.0275 0.3010 0.4960 
Reddy[1] 0.7147 0.5456 0.3888 0.0268 0.26040 0.1531 
Aknas and Li [11] 0.7149 0.5576 0.3896 0.0270 0.2642 0.1530 
Pervez et al [12] 0.7190 0.5700 0.3970 0.0276 0.2780 0.1570 

20 

Present(HSA4) 0.5065 0.5379 0.3021 0.0227 0.3028 0.1267 
HSD4 0.4877 0.5164 0.2900 0.0218 0.2900 0.1150 
Elasticity[19] 0.5170 0.5430 0.2080 0.0230 0.3280 0.1560 
Reddy[1] 0.5060 0.5393 0.3043 0.0228 0.2825 0.1234 
Aknas and Li [11] 0.5061 0.5513 0.3053 0.0230 0.2829 0.1226 
Pervez et al [12] 0.5080 0.5520 0.3090 0.0232 0.2990 0.1260 

100 

Present(HSA4) 0.4331 0.5333 0.2681 0.0211 0.3114 0.1142 
HSD4 0.2215 0.2720 0.1367 0.0108 0.1267 -0.0228 
Elasticity[19] 0.4347 0.5390 0.2760 0.0216 0.3370 0.1410 
Reddy[1] 0.4343 0.5387 0.2708 0.0213 0.2897 0.1117 
Aknas and Li [11] 0.4345 0.5508 0.2765 0.0215 0.2947 0.1076 
Pervez et al [12] 0.4340 0.5460 0.2740 0.0216 0.3070 0.1170 

Note: HSD4: four-node standard laminated plate element based on HSDT 
 
 



540      S. J. Lee et al / FE analysis of laminated composite plates using a higher order shear deformation theory with assumed strains      

	  

Latin American Journal of Solids and Structures 10(2013) 523 – 547 

 

 
Figure 4   Variation of the in-plane stress (

  
σ1 ) through the thickness direction (  z / h ) of a simply supported (  SS1 ) cross-ply 

(  0° / 90° / 90° / 0° ) laminated composite plate under sinusoidal transverse load (   a / h = 4  and 100) 

 

 
Figure 5 Variation of the in-plane stress (

  
σ2 ) through the thickness direction (  z / h ) of a simply supported ( 1SS ) cross-ply 

(  0° / 90° / 90° / 0° ) laminated composite plate under sinusoidal transverse load (   a / h = 4  and 100) 
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Figure 6   Variation of the transverse shear stress (

  
τ13 ) through the thickness direction (  z / h ) of a simply supported ( 1SS ) 

cross-ply (  0° / 90° / 90° / 0° ) laminated composite plate under sinusoidal transverse load (   a / h = 4  and 100) 

 

 
Figure 7   Variation of the transverse shear stress (

  
τ23 ) through the thickness direction (  z / h ) of a simply supported (  SS1 ) 

cross-ply (  0° / 90° / 90° / 0° ) laminated composite plate under sinusoidal transverse load (   a / h = 4  and 100) 
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 The stress values produced by the present HSA4 have also good agreements with reference 
solution for in-plane stress 𝜎! and transverse shear stress   τ13 . However, the standard FE HSD4 
has a huge discrepancy with the present solution for thin plate with the aspect ratio    a / h = 100 . 
From direct comparison between the present solution and the solution produced by the standard 
FE, we can identify the locking disappear in the present solution. We here provide numerical 
results for    a / h = 100  as a benchmark solution for future study since the stress distributions pro-
duced by a FE based on HSDT is few in literatures. 
 
4.2 Unsymmetric cross-ply (  0° / 90° ) square laminated plate 

This example is used to investigate the performance of the present FE HSA4 on the analysis of 
unsymmetric composite plate. A two-layer unsymmetric cross-ply ( 0 / 90º ) laminated plate is 
analyzed in the test. The material property, boundary condition and load case such as 

  M1, SS1,  L1  are used. The central deflection and stresses are calculated for four aspect ratios 
=/ 4, 10, 20, 100a h  and summarized in Table 4.  

 
Table 4   The non-dimensionalized deflection and stresses of a simply supported (  SS1 ) unsymmetric cross-ply ( 0 / 90º ) laminated 

plate under sinusoidal transverse load. 
 
/a h  Theory w    σ1    σ2    τ12  

5 

Present(HSA4) 1.6836 -0.7847 0.7847 -0.0540 
Elasticity[19] 1.7287 -0.7723 0.8036 -0.0586 
HSDT *[9] 1.6800 -0.7510 0.7720 -0.0557 
HSDT **[9] 1.7037 -0.7662 0.7662 -0.0572 
Reddy[1] 1.6760 -0.8385 0.8385 -0.0558 
Latheswary et al [13] - - - - 

10 

Present(HSA4) 1.2168 -0.7228 0.7228 -0.0525 
Elasticity[19] 1.2318 -0.7317 0.7353 -0.0540 
HSDT *[9] 1.2192 -0.7269 0.7273 -0.0533 
HSDT **[9] 1.2274 -0.7286 0.7286 -0.0539 
Reddy[1] 1.2161 -0.7468 0.7468 -0.0533 
Latheswary et al [13] 1.2161 0.7517 0.7517 0.0532 

20 

Present(HAS4) 1.0995 -0.7136 0.7136 -0.0521 
Elasticity[19] 1.1060 -0.7200 0.7206 -0.0529 
HSDT *[9] 1.1025 -0.7189 0.7186 -0.0527 
HSDT **[9] 1.1078 -0.7185 0.7185 -0.0530 
Reddy[1] 1.1018 -0.7235 0.7235 -0.0527 
Latheswary et al [13] - - - - 

100 

Present(HSA4) 1.0619 -0.7087 0.7087 -0.0520 
Elasticity[19] 1.0742 -0.7219 0.7219 -0.0529 
HSDT*[9] 1.0651 -0.7161 0.7161 -0.0525 
HSDT**[9] 1.0695 -0.7152 0.7152 -0.0527 
Reddy[1] 1.0651 -0.7161 0.7161 -0.0525 
Latheswary et al [13] 1.0647 0.7206 0.7206 0.0524 
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The numerical results are compared with the exact elasticity solution [19], analytical solutions [2, 
8] and the FE solution [20]. In this example, we found that the present solutions have good 
agreements with the reference solutions regardless of aspect ratios. In specific, stress values are 
reasonably accurate for all aspect ratios =/ 4, 10, 20, 100a h . 
 

4.3 Unsymmetric angle-ply (
  
45° /−45°⎡
⎣⎢

⎤
⎦⎥n ) square laminated plate 

(a) Uniform load (  L2 ): The unsymmetric angle-ply (
  
45° /−45°⎡
⎣

⎤
⎦n ) laminated plate are analyzed 

with four aspect ratios    a / h = 4, 10, 20, 100  with three different numbers of layers such as n=2, 
4, 8. Material properties, boundary condition and load case are used as   M2, SS2, L2  respectively. 
The numerical results are non-dimensionalized and summarized in Table 5. From numerical re-
sults, both the present HSA4 and the standard HSD4 have good agreements with reference solu-
tion [9] for the aspect ratio    a / h = 4 . However, for the aspect ratio / 100a h =  the standard FE 
HSD4 shows a great discrepancy with the reference solution although it exhibit reasonably good 
performance up to    a / h = 20 . However, the present FE HSA4 does not show any shear locking 
phenomenon for thin angle-ply unsymmetric laminated plate. In this section, we also investigate 
the effect of different of layer number on the central deflection with the assumption that plates 
keep the same total thickness value. From numerical result, when we double the number of layers 
from n=2 to n=4, the center deflection is reduced up to 60% in case of the aspect ratio 

   a / h = 100  and 25 % for aspect ratio    a / h = 4  respectively. In other words, thick laminated 
plate is very sensitive to variation of the number of layers than thin laminated plate. We also 
found that the increase of the number of layers in laminated plate generally tends to reduce the 
deflection of laminated plate when the plate has the same thickness value. 
 
Table 5   The non-dimensionalized deflection of a simply supported (  SS1 ) unsymmetric angle-ply (

  
45° / -45°⎡
⎣

⎤
⎦4 ) laminated plate 

under uniform load. 
 

  a / h  Number  
of layers 

Using the 17 nodes per side Akhras and 
Li [11] Present(HSA4) HSD4 

4 
2 1.5999 1.5981 1.5398 
4 1.2997 1.2995 1.2986 
8 1.2274 1.2272 1.2223 

10 
2 0.8710 0.8597 0.8645 
4 0.4499 0.4480 0.4493 
8 0.4065 0.4051 0.4062 

20 
2 0.7666 0.7234 0.7656 
4 0.3247 0.3177 0.3246 
8 0.2856 0.2804 0.2856 

100 
2 0.7332 0.2835 0.7338 
4 0.2845 0.1769 0.2847 
8 0.2468 0.1617 0.2470 
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(b) Sinusoidal load (  L1 ): In this example, the analysis of unsymmetric angle-ply (

  
45° /−45°⎡
⎣

⎤
⎦4 ) 

laminated plate is carried out with two aspect ratios   a / h = 10, 100  and sinusoidal load. This 
example provides the results of more detailed investigation on the performance of the present FE 
HSA4 for unsymmetric angle-ply plate. Material properties, boundary condition and load case are 
used as   M1,SS2,L1 respectively. The non-dimensionalized deflection and stresses are summarized 
in Table 6. From numerical results, the HSA4 has excellent agreements with the reference solu-
tions [10, 13]. However, the standard FE HSD4 has the error of 35% compared to the reference 
solutions for aspect ratio   a / h = 100 . Figures 8 and 9 show the variation of non-dimensionalized 
in-plane stress   σ1  and transverse shear stress   τ13  through the thickness direction for the aspect 
ratios   a / h = 10 and 100 . In particular, the present element HSA4 can produce a good parabolic 
shape than that of HSD4 for the transverse shear stress   τ13  as shown in Figures 8 and 9. The 
present FE shows also a good performance to predict the maximum stress value of in-plane stress 

  σ1  and transverse shear stress   τ13 . 
 
 
Table 6   The non-dimensionalized deflection of a simply supported ( SS2 ) unsymmetric angle-ply (

  
45° / -45°⎡
⎣

⎤
⎦4 ) laminated plate 

under sinusoidal transverse load. 
 

 

  a / h  Theory w    σ1    σ2    τ12  
  τ13    τ23  

10 

Present(HSA4) 0.4206 0.1612 0.1612 0.1545 0.2361 0.2361 

HSD4 0.4190 0.1603 0.1603 0.1536 0.2349 0.2349 

Latheswary et al [13] 0.4208 0.1627 0.1627 0.1547 0.2400 0.2400 

Kant and Pandya [20] 0.4193 0.1633 0.1633 0.1601 0.2347 0.2347 

100 

Present(HSA4) 0.2475 0.1439 0.1439 0.1379 0.2398 0.2398 

HSD4 0.1604 0.0930 0.0930 0.0891 0.1320 0.1320 

Latheswary et al [13] 0.2479 0.1456 0.1456 0.1377 0.2395 0.2395 

Kant and Pandya [20] 0.2469 0.1462 0.1462 0.1430 0.2344 0.2344 
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Figure 8   Variation of the in-plane stress (
  
σ1 ) through the thickness (  z / h ) of a simply supported   𝑺𝑺𝟐  unsymmetric angle-ply 

(
  
45° / -45°⎡
⎣

⎤
⎦4 ) laminated composite plate under sinusoidal transverse load ( a / h = 10 and 100 ) 

 

 
 
Figure 9   Variation of transverse shear stress (

  
τ13 ) through the thickness ( /z h ) of a simply supported   𝑺𝑺𝟐  unsymmetric angle-

ply (
  
45° / -45°⎡
⎣

⎤
⎦4 ) laminated plate under sinusoidal transverse load ( a / h = 10 and 100 ) 
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4.4 Unsymmetric cross-ply (  0° / 90° / core / 0° / 90° ) square sandwich plate 

The analysis of a five-layer unsymmetric and unbalanced sandwich plate with isotropic core is 
carried out and its numerical results are presented. Material properties, boundary condition and 
load case are used as   M3,SS1,L1 respectively. The thickness of core is equal to total thickness of 
four face sheets which have all the same thickness. The non-dimensionalized deflection and in-
plane stresses are summarized in Table 7. From numerical results, both HSD4 and HSA4 have a 
good agreements with the reference solutions up to the aspect ratio   a / h = 10 . For the aspect 
ratio   a / h = 100 , the present element HSA4 have approximately the 1-8 % of differences with 
reference solutions [1, 21] but the standard HSD4 have almost the 60 % of difference with the 
reference solutions because of locking phenomenon. 
 

Table 7   The non-dimensionalized deflection and stresses of a simply supported   𝑺𝑺𝟏  unsymmetric cross-ply 
(  0° / 90° / core / 0° / 90° ) sandwich plate under sinusoidal transverse load. 

 
/a h  Theory  w    σ1    σ2    τ12  

4 

Present(HSA4) 12.9278 -1.4673 1.4673 0.1970 
HSD4 13.2060 -1.4773 1.4773 0.1992 
HSDT*[9] 14.1627 -1.6445 1.4931 0.2031 
HSDT**[9] 14.3440 -1.5328 1.5328 0.2196 
Reddy[1] 8.7941 -0.9937 0.9937 0.1291 

10 

Present(HSA4) 3.0264 -0.7504 0.7504 0.0874 
HSD4 3.0260 -0.7310 0.7310 0.0855 
HSDT*[9] 3.3032 -0.8140 0.7606 0.0946 
HSDT**[9] 3.3197 -0.7771 0.7771 0.0951 
Reddy[1] 2.3075 -0.6815 0.6815 0.0787 

100 

Present(HSA4) 1.0105 -0.6029 0.6029 0.0649 
HSD4 0.4306 -0.2558 0.2558 0.0275 
HSDT*[9] 1.0697 -0.6231 0.6226 0.0691 
HSDT**[9] 1.0763 -0.6216 0.6216 0.0696 
Reddy[1] 1.0595 -0.6214 0.6214 0.0690 

 
 
5 CONCLUSIONS 

A four-node laminated composite plate element having seven degrees freedom per node is newly 
developed by using the HSDT and assumed strains to perform the FE stress analysis. The accu-
racy and reliability of new laminated composite plate element is thoroughly tested by using five 
numerical tests for both symmetric and unsymmetric situations. From numerical results, the pre-
sent FE does not produce any locking phenomenon for the cases with very small aspect ratio of 
the plate and it can be applicable to most types of laminated composite plate structures. Further 
investigation into the performance of the present FE for the case subjected to concentrated or line 
loads is underway and the vibration, stability and transient response of laminated plates are also 
of prime importance as future investigations. 
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