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Abstract 
In the present work, a layerwise trigonometric shear deformation 
theory is used for the analysis of two layered (90/0) cross ply lami-
nated simply supported and fixed beams subjected to sinusoidal load. 
The displacement field of the present theory consists of trigonometric 
sine function in terms of thickness coordinate to take into account 
the effect of transverse shear deformation. Theory satisfies the trans-
verse shear stress free boundary conditions at top and bottom surfac-
es of the beam. This model satisfies the constitutive relationship 
between shear stress and shear strain in both the layers and the axial 
displacement compatibility at the interface. Virtual work principle is 
employed to obtain governing equations and boundary conditions. 
Closed form solution technique has the limitation of simply supported 
boundary condition. In the present work general solution technique is 
developed, which can be used for any type of boundary and loading 
conditions. The transverse shear stresses are obtained using constitu-
tive relation as well from the use of equilibrium equations. The re-
sults of displacements and stresses obtained by present theory are 
compared with the available results in the literature.  
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Shear deformation; cross-ply laminated beam; trigonometric shear 
deformation theory. 
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1 INTRODUCTION 

Structural elements made up of fiber reinforced composite material are being used in the aeronau-
tical and aerospace industries as well as in the other fields of modern technology, primarily due to 
their high strength to weight ratio and stiffness to weight ratios and also due to their anisotropic 
material properties that can be achieved through variation of the fiber orientation and stacking 
sequence. The ratio of transverse shear modulus to elastic modulus is low for composites, hence 
shear deformation effects are more pronounced in the composite beams subjected to transverse 
loads. Analytical and numerical methods can be employed for the analysis of structural systems 
composed of laminated composite components. 
 The classical beam theory developed by Euler–Bernoulli (ETB) is used only for thin beams 
because this theory has neglected both transverse shear and normal strains. Timoshenko [1] has 
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Nomenclature  

 b = Width of beam 
 D  = Modified flexural rigidity coefficient as defined in Appendix 

  D1,D2,D3,D3  = Constants as defined in Appendix 

 D  = Flexural rigidity 

  E(1) ,   E(2)  = Young’s moduli of layer 1and layer 2, respectively 
h    = Depth (i.e. thickness) of beam 
L = Span of the beam 
S   = Aspect ratio (i.e. ratio of span to depth of beam) 
x, y, z   = Rectangular coordinates 
 α    = Neutral axis coefficient as defined in Appendix 
 u  = Non-dimensional axial displacement 
 w    = Non-dimensional transverse displacement 

  σx  = Non-dimensional axial stress 

  τzx
CR  = Non-dimensional transverse shear stress obtained from the constitutive rela-

tionship 

  τzx
EE  = Non-dimensional transverse shear stress obtained from the equilibrium equa-

tions 
 
 
Abbreviat ions    

Superscripts 
 
CR Constitutive relationships 
EE  Equilibrium equations 

 
Acronyms 
 
ETB  Elementary theory of beam bending 
FSDT   First-order shear deformation theory 
HSDT  Higher order shear deformation theory 
FEM   Finite element method 
LTSDT Layerwise trigonometric shear deformation theory,  
HOSTB5 Higher order shear deformation theory 
HST  Higher order shear deformation theory 
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developed a thick beam theory to include the effect of the transverse shear deformation. This 
theory is widely known as first order shear deformation theory (FSDT). This theory assumes a 
constant shear strain across the thickness of the beam and requires a shear correction factor. 
However, this factor is problem dependent which is influenced by boundary conditions, loading 
conditions and stacking sequence of plies in the laminated beams.   
 In order to overcome the drawbacks of classical and Timoshenko beam theories, higher order 
or equivalent shear deformation theories have been developed. Research on analytical and numer-
ical modeling of laminated composites has been very active in order to achieve accurate represen-
tation of the actual behavior of this kind of structures. Ghugal and Shimpi [2], Reddy [3] and 
Kreja [4] provided comprehensive reviews of shear deformation theories for laminated beams and 
plates including merits and demerits of equivalent single layer and layerwise shear deformation 
theories. 
 A higher-order beam model formulated by Kant and Manjunatha [5] does not require any 
shear correction factor, where the model is based on a non-linear variation of longitudinal dis-
placements through the beam thickness. Soldato [6] presented higher order model for cylindrical 
bending of cross-ply laminated plate with various boundary conditions subjected to single sinus-
oidal transverse load. Zenkour [7] has developed higher order shear deformation beam theory. 
Analytical solution of theory is obtained using the Navier solution for simply supported boundary 
conditions. 
 Manjunatha and Kant [8], Maiti and Sinha [9], Vinayak et al. [10] used the equivalent single 
layer, displacement based, higher-order shear deformation theories (HSDT) in the analysis of 
symmetric and unsymmetric laminated beams and obtained the results using finite element meth-
od. These theories are the special cases of Lo et al [11] higher-order theory.  
 Park and Lee [12] presented a new laminated plate theory in which the inplane displacements 
vary exponentially through plate thickness. The results based on this theory are obtained for 
symmetric / antisymmetric cross-ply, angle-ply and unsymmetric laminates under cylindrical 
bending.   Khdeir and Reddy [13] used the state space concept in conjunction with the Jordan 
canonical form to solve the governing equations for the bending of cross-ply laminated composite 
beams. The classical, first-order, second-order and third-order theories have been used in the 
analysis.            
 Tahani [14] presented a displacement based layerwise beam theory and applied it to the lami-
nated (0/90 and 0/90/0) beams subjected to a sinusoidal load. Liu and Li [15] compared different 
laminate theories based on displacement hypothesis emphasizing the importance of layerwise the-
ories and also presented a series of quasi-layerwise theories. Li and Liu [16] presented results of 
single-layered, two-layered, three-layered cross-ply laminates for cylindrical bending The theory is 
layer dependent and the number of degrees of freedom involved is very 
high and hence it is computationally complicated. Icardi [17] and Arya [18] presented zig-zag 
layerwise theories for the analysis of thick laminated beams.        
 It is proved that layerwise higher-order theories based on assumed displacements for individual 
layers yield more accurate results for the transverse stress in the flexural analysis of thick lami-
nates. Such theories were developed and used by Li and Liu [16], Reddy and Robbins [19 and Lu 
and Liu [20].  Catapano et al. [21] presented static analysis of laminated beams via a unified for-
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mulation and obtained results for un-symmetric cross-ply laminated beams using closed form ana-
lytical solution. Shimpi and Ghugal [22] developed a simple layerwise trigonometric shear defor-
mation theory which satisfies zero transverse shear stress condition at the top and bottom of the 
beam. The theory also satisfies the shear stress continuity condition at the interface between the 
layers. The theory includes a minimum number of displacement variables.  A closed form analyti-
cal solution is presented to obtain the results for beams with simply supported boundary condi-
tions. 
 In the present paper a previously developed layerwise theory [22] is used and results are ob-
tained for two layered cross ply laminated beams subjected to sinusoidal load with simply sup-
ported and fixed-fixed boundary conditions. A general solution technique is developed which can 
be applied to beam with any type of loading and boundary conditions. 
 
 
2 THEORETICAL FORMULATION 

The variationally correct forms of differential equations and boundary conditions, based on the 
assumed displacement field, are obtained using the principle of virtual work. The beam under 
consideration consists of two layers: layer 1 and layer 2. 
Layer 1 (900 layer) occupies the region: 
 

0 ≤ x ≤ L; –b/2 ≤ y ≤ b/2; –h/2 ≤ z ≤ 0 (1) 
  
Layer 2 (00 layer) occupies the region: 
 

0 ≤ x ≤ L; –b/2 ≤ y ≤ b/2; 0 ≤ z ≤ h/2 (2) 
 
where x, y, z are Cartesian coordinates, L is the length, b is the width and h is the total depth of   
beam. The beam can have meaningful boundary conditions and loading conditions.  
 The beam subjected to transverse load and geometry of the cross-section is shown in Fig.1. 
 

 
                                                                                                                    

Figure 1   Composite beam with a transverse distributed load and geometry of the cross- section, 
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2.1 Displacement f ie ld 

The displacement field of the present beam theory is of the form [22] as given below: 
 

    
u(1)(x,z) = −(z − αh)

dw
dx

+ h C1 +C2 sin
π
2

z / h − α
0.5 + α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥φ(x)  (3) 

 

    
u(2)(x,z) = −(z − αh)

dw
dx

+ h C3 + sin
π
2

z / h − α
0.5− α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥φ(x) (4) 

 

   w (x,z) = w (x)                                                                             (5) 
 
 Here u(1) and u(2) are the axial displacement components in the x direction, superscripts 1 and 
2 refer to layer 1 and layer 2; w(x) is the transverse displacement in the z direction and C1, C2, C3 
and α are the constants as given in Appendix. The function    φ(x) is a rotation function or the 
warping function of the cross-section of the beam. 
 
2.2 Strains 

Normal and transverse shear strains for layer 1 and 2 are as follows: 
 

    
εx
(1) =

du(1)

dx
= −(z − αh)

d2w

dx 2
+ h C1 +C2 sin

π
2

z / h − α
0.5 + α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dφ
dx

                                                                            (6) 

 

    
εx
(2) =

du(2)

dx
= −(z − αh)

d2w

dx 2
+ h C3 + sin

π
2

z / h − α
0.5− α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dφ
dx

                                                                            (7) 

 

    
γzx

(1) =
du(1)

dz
+

dw
dx

=
πC2

1 + 2α
cos
π
2

z / h − α
0.5 + α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟φ                                                                             (8) 

 

    
    
γzx

(2) =
du(2)

dz
+

dw
dx

=
π

1− 2α
cos
π
2

z / h − α
0.5− α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟φ                                                                         (9) 

 
2.3 Stresses 

One dimensional constitutive law are used to obtain the normal bending and transverse shear 
stresses for layer 1 and layer 2 as given below: 
 

    
σx

(1) = E(1)εx
(1) = E(1)(z − αh)

d2w

dx 2
+ E(1)h C1 +C2 sin

π
2

z / h − α
0.5 + α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dφ
dx

                                                                            (10) 
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σx

(2) = E(2)εx
(2) = −E(2)(z − αh)

d2w

dx 2
+ E(2)h C3 + sin

π
2

z / h − α
0.5− α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dφ
dx

                                                                            (11) 

 

    
τzx

(1) = G(1)γzx
(1) = G(1) πC2

1 + 2α
cos
π
2

z / h − α
0.5 + α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟φ                                                                             (12) 

 

    
τzx

(2) = G(2)γzx
(2) = G(2) π

1− 2α
cos
π
2

z / h − α
0.5− α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟φ                                                                             (13) 

 
2.4 Governing Equations and Boundary Condit ions 

Using the expressions (6) to (13) for strains and stresses and principle of virtual work, variation-
ally consistent differential equations and boundary conditions for the beam under consideration 
are obtained. The principle of virtual work applied to beam is as follows: 
 

    

b σx
(1)δεx

(1) + τzx
(1)δγzx

(1)( )
z=−h/2

z=0

∫
x=0

x=L

∫ dxdz + b σx
(2)δεx

(2) + τzx
(2)δγzx

(2)( )
z=0

z=h/2

∫
x=0

x=L

∫ dxdz − q δwdx
x=0

x=L

∫ = 0                                                                             (14) 

 
where the symbol  δ  denotes the variational operator. Integrating the Eq. (14) by parts and col-
lecting the coefficients of the primary variables (i.e. w and φ ), we obtain the governing equations 
and the associated boundary conditions. The governing equations are as follows: 
 

    

d 4w

dx 4
−D1

d3φ
dx 3
−

q
D

= 0                                                                             (15) 

 

    

dw3

dx 3
−D2

d2φ
dx 2

+ D3φ = 0                                                                             (16) 

 
 The associated boundary conditions are of the following form: 
 

    

d3w

dx 3
−D1

d2φ
dx 2

= 0  or  w   is   prescribed                                                                            (17) 

 

    

d2w

dx 2
−D1

dφ
dx

= 0  or  dw
dx

  is  prescribed                                                                       (18) 

 

    

d2w

dx 2
−D2

dφ
dx

= 0    or f   is prescribed (19) 

 
where D, D1, D2, D3 are the constants as defined in Appendix. 
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 Thus, the static behavior of beam is given by the solution of these variationally consistent 
governing differential equations and simultaneously satisfaction of the associated boundary condi-
tions. 
 
2.5 The general solut ion for stat ic f lexure of beams 

Using governing equations (15) and (16); general solution for w (x) and    φ(x) can be obtained. By 
integrating and rearranging the equation (15), one can get the following equation: 
 

    

d3w

dx 3
−D1

d2φ
dx 2

=
Q x( )

D
 (20) 

 
where Q(x) = 

   
q dx +∫ K1  is the generalized shear force resulting from the support and loading 

conditions for the beam under consideration. Using Eqs. (16) and (20), a single differential equa-
tion in terms of  φ can be obtained as follows: 
 

    

d2φ
dx 2
−λ2φ =

Q x( )
ηD

 (21) 

 
where the constants  η  and  λ  used in Eq.(21) are given in Appendix. The general solution of 
above Eq. (21) is given by: 
 

    
 φ(x) = K2 coshλx  +  K3  sinhλx  − 

Q(x)
ηD

     (22) 

 
 The general solution for transverse displacement (w) can be obtained by substituting the ex-
pression for  φ  in Eq. (16) and integrating thrice with respect to x. The solution is 
 

    
Dw x( ) = q dx dx dx dx +

K1x
3

6∫ +
K4x

2

2∫∫∫ +
DD1

D3

K2 coshλx + K3 sinhλx⎡
⎣

⎤
⎦ + K5x + K6      (23) 

 
where   K1,K2,K3,K4,K5  and 6K are the constants of integration and can be obtained using 
boundary conditions of the beam under consideration. 
 
2.6 Axia l stress and Transverse shear stresses 

Final solutions for 
   
φ x( )  and w (x) can be obtained using Eqs. (22) and (23) depending upon the 

loading and boundary conditions of the beams. Substituting the final solution for w (x) and 
   
φ x( )

in the displacement field, the final displacement can be obtained. Finally, the axial stress   σx  
could be obtained by using stress-strain relationship (constitutive relation) as given in Eqs. (10) 
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and (11). The transverse shear stress   τxz  can be obtained either by using the constitutive relation 
[Eqs. (12) and (13)] or by integrating equilibrium equation with respect to the thickness coordi-
nate. Two-dimensional elasticity equilibrium equations by ignoring body forces can be used to 
obtain transverse shear stress. The equation is: 
 

    

∂σxx

∂x
+
∂τxz
∂z

= 0      (24) 

 
 Integrating Eq. (24), with respect to the thickness coordinate z and imposing the following 
boundary condition at top surface of the beam 
 

    
τxz

(1)⎡
⎣⎢
⎤
⎦⎥z=−h/2

= 0      (25) 

 
 Expression for    τxz

(1)  can be obtained. To maintain the continuity at interface, another bounda-
ry condition is applied, i.e. 
 

    τxz
(1) = τxz

(2)  at    z = 0     (26) 
 
 From this condition expression for    τxz

(2)  is obtained for layer 2 which satisfies the requirement 
of zero transverse shear stress condition on the bottom surface of the beam. 
 
3. ILLUSTRATIVE EXAMPLES 

To verify the accuracy of the theory two examples of two layered un-symmetric cross ply lami-
nated beams with simply supported and fixed boundary conditions and subjected to  sinusoidal 
loading are analysed. From the analysis the effect of shear deformation and stress concentration 
on the displacements and stresses is investigated. The material of the beam layers is graph-
ite/epoxy uni-directional composite. The following has been assumed: 
 

                                 
   

E 2( )

E 1( ) = 25,
G 1( )

E 1( ) = 0.20,
G 2( )

E 2( ) = 0.02  

 
 Superscripts (1) and (2) refer to layer-1 and layer-2 respectively.  
 
3.1 Example1: Simply supported beam with s inusoidal load 

    
q = q0 sin πx / L( )  

A simply supported beam with rectangular cross-section (b ×h) is considered. The beam is   sub-
jected to a sine load 

    
q = q0 sin πx / L( )  over the span L at surface z = − h/2 acting in the down-

ward z direction. The associated boundary conditions for this beam are as follows: 
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D

d3w

dx 3
= D

d2φ
dx 2

=
dw
dx

= φ = 0     at   x = L/2 (27) 

 

    
D

d2w

dx 2
= D

dφ
dx

= w = 0    at   x = 0, L 

 
(28) 

 The boundary condition,  φ= 0 at x = L/2 is used from the condition of symmetry of defor-
mation, in which the middle cross-section of the beam must remain plane without warping (Gere 
and Timoshenko [23]). From the general solution of beam, expression for  φ  and w are obtained 
as follows: 
 

    
φ(x)=

q0L
πDD3

cos πx / L( )
Ω

 (29) 

 

    
w =

q0L
4

π4D

χ
Ω

sin
πx
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟  (30) 

 

 where,       
    

Ω = 1 +
π
λL

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
    and     

    
χ = 1 +

π2

L2

D2

D3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

 The expressions for displacements and stresses of the beam are obtained using this solution, 
which are as follows: 
 The axial displacement for Layer 1 is expressed as: 
 

    
u 1( ) =

q0

D
− z − αh( )L3

π3

χ
Ω

+
Lh
πD3Ω

C1 +C2 sin
π
2

z / h − α( )
0.5 + α

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
cos
πx
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟  (31) 

 
 The axial displacement for Layer 2 is expressed as: 
 

    
u 2( ) =

q0

D
− z − αh( )L3

π3

χ
Ω

+
Lh
πD3Ω

C3 + sin
π
2

z / h − α( )
0.5− α

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
cos
πx
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟  (32) 

 
 The axial stress for Layer 1 is expressed as: 
 

    
σx

1( ) =
E 1( ) z − αh( )q0L

2

π2D

χ
Ω

sin
πx
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟−

E 1( )q0h
DD3Ω

C1 +C2 sin
π
2

z / h − α( )
0.5 + α

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
sin
πx
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟  (33) 

 
 The axial stress for Layer 2 is expressed as: 
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σx

2( ) =
E 2( ) z − αh( )q0L

2

π2D

χ
Ω

sin
πx
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟−

E 2( )q0h
DD3Ω

C3 + sin
π
2

z / h − α( )
0.5− α

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
sin
πx
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟  (34) 

 
 The transverse shear stress using constitutive relationship for Layer 1 is expressed as: 
 

    
τzx

1( ) =
q0L

DD3Ω
G 1( )C2

1 + 2α( )
cos
π
2

z / h − α
0.5 + α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos
πx
L

 (35) 

 
 The transverse shear stress using constitutive relationship for Layer 1 is expressed as: 
 

    
τzx

2( ) =
q0L

DD3Ω
G 2( )

1− 2α( )
cos
π
2

z / h − α
0.5− α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos
πx
L

 (36) 

 
 The transverse shear stress using equilibrium equation for Layer 1 is expressed as: 
 

    

τzx
1( ) =

q0

D

E 1( )χL
Ωπ

z2

2
− αhz +

h2

8
+
αh2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cos
πx
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

+
E 1( )h π
ΩLD3

zC1 +C2

h 1 + 2α( )
π

cos
π
2

z / h − α( )
0.5 + α

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+
hC1

2

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
cos
πx
L

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

 (37) 

 
 The transverse shear stress using equilibrium equation for Layer 2 is expressed as: 
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 (38) 

 
  
The results of simply supported beam subjected to sinusoidal load, for maximum non-dimensional 
transverse displacement, axial or normal bending stresses and transverse shear stresses are pre-
sented in Table 1 and Table 2 and graphically presented in Fig.2 through 10. 
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Table 1   Non-dimensional maximum transverse displacement ( w ) at   (x = 0.5L,z = 0) , axial displacement ( u ) at

   (x = 0,z = ±h / 2) , axial stress (  σx ) at    (x = 0.5L,z = ±h / 2) , and transverse shear stresses (  τxz ) at (x = 0.0, z = ha ) for 

simply supported beam subjected to sinusoidal load 
    
q = q0 sin πx / L( ) with aspect ratio, S = 4 (Example: 1) 

 
Source 
(Model)  w   u    σx  

  τxz
CR    τxz

EE  
-‐ h/2 h/2 -‐ h/2 h/2 

Present (LTSDT) 4.7437 5.0353 -‐ 1.5574 3.9547 -‐ 30.5650 2.9895 2.6784 
Bernoulli- Euler (ETB) 2.6281 3.8574 -‐ 1.4216 3.0386 -‐ 27.9540 -- 2.9453 
Timoshenko [1] (FSDT) 4.7967 3.8574 -‐ 1.4216 3.0386 -‐ 27.9540 1.8189 2.9453 
Ghugal and Shimpi [22], (LTSDT-II) 4.7437 5.0353 --- 3.9547 -‐ 30.5650 2.9895 2.6784 
Kant and Manjunatha [5] (FSDT/FEM) 4.2828 4.8611 --- 3.7490 -‐ 27.0500 1.9270 2.8240 
Lu and Liu [20] (HSDT) 4.7773 4.7143 --- 3.5714 -‐ 30.0000 2.7925 -- 
Maiti and Sinha [9] (HST/FEM) 3.5346 --- --- 2.3599 -‐ 25.7834 --- 2.4252 
Maiti and Sinha [9] (FSDT/ FEM) 4.7898 --- --- 3.1514 -‐ 29.1144 2.8467 --- 
Vinayak et al. [10] (HSDT/ FEM) 4.5619 --- --- 4.0000 -‐ 27.0000 --- 2.7500 
Catapano et al [21] for N = 3   4.5733 4.4228 --- 3.7491 -‐ 28.757 2.1854 

(0.25L) --- 

Ghugal [24] (Exact Solution) 4.6616 4.5685 -‐ 1.5288 3.8381 -‐ 30.0190 2.7212 --- 
 

Figure in parenthesis indicate the distance x from left end of the beam. 
 

Table 2   Nondimensional maximum transverse displacement 
  
w( )  

at    (x = 0.5L,z = 0) axial displacement ( u ) at

   (x = 0,z = ±h / 2) , axial stress (  σx ) at   (x = 0.5L,z = ±h / 2) , and transverse shear stresses (  τxz ) at (x = 0.0, z = ha )   for 

simply supported beam subjected to sinusoidal load
    
q = q0 sin πx / L( )  with aspect ratio, S = 10 (Example: 1) 

 

Source 
(Model) w  

u  xs  CR
xzt  EE

xzt  
-‐ h/2 h/2 -‐ h/2 h/2 

Present (TSDT) 2.9744 63.305 -‐ 22.563 19.888 -‐ 177.14 7.6948 7.2609 
Bernoulli- Euler (ETB) 2.6281 60.354 -‐ 22.213 18.935 -‐ 174.71 -- 7.3643 
Timoshenko [1] (FSDT) 2.9730 60.354 -‐ 22.213 18.935 -‐ 174.71 4.5473 7.3643 
 Ghugal and Shimpi [22] (LTSDT-II) 2.9744 63.305 -- 19.888 -‐ 174.71 7.6948 7.2638 
Manjunatha and Kant 
[8] (HOSTB5/ FEM) 2.8986 -- -- 19.710 -‐ 173.00 4.9130 7.2820 

Lu and Liu [20] 
(HSDT) 3.0000 61.666 -- 20.000 -‐ 175.00 7.3000 -- 

Catapano et al [ 21 ] 
for N = 3   2.9332 61.637 --- 19.693 -‐ 175.31 

 
5.5649 
(0.25L)  

Ghugal[24] 
(Exact Solution) 2.9613 62.326 -‐ 22.476 19.830 -‐ 176.53 7.2678 --- 

    
Figure in parenthesis indicate the distance x from left end of the beam. 
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Figure 2   Variation of maximum transverse displacement (w ) of simply supported beam at (x = L/2, S) when subjected to  
sinusoidal load 

 
 

 

 
 

Figure 3   Variation of axial displacement ( u ) through the thickness of simply supported beam at ( 0,x z= ) when subjected to 
sinusoidal load for aspect ratio 4 
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Figure 4   Variation of axial displacement ( u ) through the thickness of simply supported beam at ( 0,x z= ) when subjected to 
sinusoidal load for aspect ratio 10 

 
 

 

 
 

Figure 5   Variation of axial stress (  σx ) through the thickness of simply supported beam at (   x = L / 2,z ) when subjected to sinus-
oidal load for aspect ratio 4 
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Figure 6   Variation of Axial stress (  σx ) through the thickness of simply supported beam at (   x = L / 2,z ) when subjected to sinus-
oidal load for aspect ratio 10 

 
 

 
 
 

Figure 7   Variation of transverse shear stress (  τzx ) through the thickness of simply supported beam at ( 0.0 ,x L z= ) when sub-

jected to sinusoidal load and obtained using constitutive relations for aspect ratio 4 
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Figure 8   Variation of transverse shear stress (  τzx ) through the thickness of simply supported beam at(   x = 0.0L ,z ) when sub-

jected to sinusoidal load and obtained  using constitutive relations for aspect ratio 10 
 
 
 

 
 
 
 

Figure 9   Variation of transverse shear stress (  τzx ) through the thickness of simply supported beam at  ( 0,x z= ) when subjected 

to sinusoidal load and obtained using equilibrium equations for aspect ratio 4 
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Figure 10   Variation of transverse shear stress (  τzx ) through the thickness of simply supported beam at ( 0,x z= ) when subject-

ed to sinusoidal load and obtained using equilibrium equations for aspect ratio 10 
 
 

3.2 Example 2: Fixed beam with s inusoidal load 
    
q = q0 sin πx / L( )  

A fixed-fixed beam with rectangular cross-section (b ×h) is considered. The beam is subjected to 
sinusoidal load over the span L at surface z = – h/2. The origin of the beam is at left end sup-
port, i.e. at x = 0. The boundary conditions associated with fixed beam are as follows: 
 

   
D

dw
dx

= Dw = 0        at    x = 0  

 

(39) 
 

    
D

d3w

dx3
= D

d2φ

dx2
=D

dw
dx

= 0 atx =
L
2

 (40) 

 

    
φ = 0 at x = 0,

L
2

 (41) 

 
 Thus, the general solution for  φ  and  w  are obtained as follows: 
 

    
φ(x) = ξ sinhλx − coshλx + cosπx / L( )        when         0 ≤ x ≤ L / 2  (42) 

 

where 
    
ξ =

q0L
πDD3Ω
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w (x) =

q0L
4

π4D

χ
Ω

sin(πx / L)− πx / L( ) + πx2 / L2( )⎡
⎣⎢

⎤
⎦⎥ +

q0L
2

πD
D1

D3Ω
coshλx − sinhλx −1

λL
+

x
L
−

x2

L2

⎡

⎣
⎢
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⎤

⎦
⎥
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 (43) 

 

when     0 ≤ x ≤ L / 2       where 
    
Ω = 1 +

π2

λ2L2

⎛

⎝
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,                  

 The expressions for displacement and stresses of the beam are obtained using this solution, are 
as follows:  
 The axial displacement for Layer 1 is expressed as: 
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 (44) 

 
 
 The axial displacement for Layer 2 is expressed as: 
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 (45) 

 
 
where  

    
f1(x) = sinhλx − coshλx + cos πx / L( )  

 The axial stress for Layer 1 is expressed as: 
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 (46) 
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where 
    
f2(x) = coshλx − sinhλx −

π
λL

sin πx / L( )  

 The axial stress for Layer 2 is expressed as: 
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 (47) 

 
 
 The transverse shear stress using constitutive relationship for Layer 1 is expressed as: 
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 The transverse shear stress using equilibrium equations for Layer 1 is expressed as: 
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 The transverse shear stress using equilibrium equations for Layer 2 is expressed as: 
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 (51) 

 
 The results of fixed beam in Example 2 subjected to sinusoidal load, for maximum non-
dimensional transverse displacement, axial or normal bending stress and transverse shear stress 
are presented in Table 3 and graphically presented in Figs.11 through 20. The results of axial 
stresses are presented at    x = 0  and     x = α0L  from left end support. 
 

Table 3   Non-dimensional maximum transverse displacement 
  
w( )  at (x = L/2, z = 0.0), axial displacement (u ) at (x =0.25L, 

z=± h/2), axial stress (  σx ) at (x =0.0L, z =± h/2), and transverse shear stresses (  τxz ) at (x = 0.0, z = ha ) for fixed beam 

subjected to sinusoidal load 
    
q = q0 sin πx / L( ) with aspect ratio, S = 4, 10 (Example: 2) 

    
Source 
(Model) S  w   u    σx  

  τxz
CR    τxz

EE  
/ 2h-‐  / 2h  / 2h-‐  / 2h  

Present  
(TSDT) 
Present 
(TSDT) 

 
 
 
 
4 

1.9361 
 

-- 

2.6059 
(0.25L) 
1.5602 

(0.3758L) 

-0.69562 
(0.25L) 
-0.43169 
(0.3758L) 

9.2343 (0.00) 
3.0137 

(0.0745L) 

-182.54 (0.00) 
-38.279 

(0.0745L) 

2.2796 
(0.1L) 
2.3120 
(0.20L) 

-4.9815 
(0.00) 
1.8942 
(0.20L) 

Bernoulli- Euler  
(ETB) 0.5634 1.5602 

(0.25L) 
-0.57502 
(0.25L) 

3.0137 
(0.00) 

-27.757 
(0.00) 

-- 
 

2.9503 
(0.00) 

Timoshenko [1]  
(FSDT) 1.9530 1.5602 

(0.25L) 
-0.57506 
(0.25L) 

3.0137 
(0.00) 

-27.757 
(0.00) 

2.2736 
(0.00) 

2.9503 
(0.00) 

Present  
(TSDT) 
Present 
(TSDT) 

 
 
 
 
1
0 

0.9124 
 

-- 

14.625 
(0.25L) 
12.482 

(0.3143L) 

-4.8476 
(0.25L) 
-4.1818 

(0.3143L) 

24.706 (0.00) 
12.0547  

(0.03937L) 

- 440.59 (0.00) 
-141.01 

(0.03937L) 

7.1983 
(0.1L) 
6.2222 
(0.20L) 

-12.532 
(0.00) 
5.1749 
(0.20L) 

Bernoulli- Euler 
(ETB) 

0.5634 12.482 
(0.25L) 

- 4.6002 
(0.25L) 

12.0547 (0.00) - 111.03 
(0.00) 

-- 7.3757 
(0.00) 

Timoshenko [1]  
(FSDT) 0.9108 12.482 

(0.25L) 
- 4.6005 
(0.25L) 

12.0547 
(0.00) 

111.03 
(0.00) 

4.5473 
(0.00) 

7.3757 
(0.00) 

Figures in parenthesis indicate the distance x from left end of the beam. 
 
 



694      S. B. Shinde et al/ Flexural analysis of cross-ply laminated beams using layerwise trigonometric shear deformation theory 

	  

 
Latin American Journal of Solids and Structures 10(2013) 675 – 705 

                                           
 

Figure 11   Variation of maximum transverse displacement ( w ) of fixed beam at    (x = L / 2,S)  when subjected to sinusoidal load 
 

 
 

 
 
 

Figure 12   Variation of axial displacement (u) through the thickness of fixed beam at (   x = 0.25L ,z ) when subjected to sinusoidal  
load for aspect ratio 4 
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Figure 13   Variation of axial displacement (u) through the thickness of fixed beam at (   x = 0.25L ,z ) when subjected to sinusoidal 
load for aspect ratio 10 

 
 
 

                                       
 

Figure 14   Variation of Axial stress (  σx ) through the thickness of fixed beam at (   x = 0,z ) when subjected to sinusoidal load for 
aspect ratio 4 
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Figure 15   Variation of axial stress (  σx ) through the thickness of fixed beam at (   x = 0,z ) when subjected to sinusoidal load for 
aspect ratio 10 

 
 
 

 
 

Figure 16   Variation of transverse shear stress (  τzx ) through the thickness of fixed beam at (   x = 0.1L ,z ) when subjected to 
sinusoidal load and obtained using constitutive relations for aspect ratio 4 
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Figure 17   Variation of transverse shear stress(  τzx ) through the thickness of fixed beam at (   x = 0.1L ,z ) when subjected to sinus-
oidal load and obtained  using costitutive relations for aspect ratio 10 

 
 
 

                                                       
 

 
Figure 18   Variation of transverse shear stress (  τzx ) through the thickness of fixed beam at(    x = α0L ,z ) when subjected to sinus-

oidal load and obtained using equilibrium equations for aspect ratio 4 
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Figure 19   Variation of transverse shear stress (  τzx ) through the thickness of fixed beam at (    x = α0L ,z ) when subjected to sinus-
oidal load and obtained  using equilibrium equations for aspect ratio 10 

 
 
 

                         
 
 

Figure 20   Variation of transverse shear stress (  τzx ) through the thickness of fixed beam at(   x = 0,z ) when subjected to sinusoidal 
load and obtained  using equilibrium equations for aspect ratios  (S=4,10,15,20) 
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% error =

value by a particular model −  value by present theory 
value by present theory 

×100  

 

4. DISCUSSION OF RESULTS 

The results for axial displacement, transverse displacement, axial stresses and transverse stresses 
in this paper are presented in the following non-dimensional form for the purpose of comparison: 
 

   
u =

E(1)bu
qh

;        
   
w =

100E 1( )bh3w

qL4
;
       

 
    
σxx =

bσxx

q
;
      

 
    
τxz =

bτxz
q

.  

                
        The results obtained by present theory (TSDT) for displacement and stresses are compared 
with the ETB, FSDT of Timoshenko, Kant and Manjunatha, Maiti and Sinha, and Vinayak et 
al., LTSDT of Shimpi and Ghugal [22] and exact elasticity solution [24] wherever applicable for 
composite laminated beam subjected to single sinusoidal load. The exact solution for fixed cross-
ply laminated beam subjected to sinusoidal load is not available; hence the results are compared 
with ETB and FSDT.  
 
4.1 Transverse displacement ( w ):  

The results of maximum non-dimensionalised transverse displacements for the aspect ratio of 4 
and 10 are presented in Tables 1 and 2 for a simply supported beam subjected to sinusoidal load. 
The transverse displacement values by present theory using general solution and the values by 
closed form analytical solution of Ghugal and Shimpi [22] are identical. Present theory overesti-
mates this value by 1.761% compare to exact solution for aspect ratio 4 and by   0.44% for aspect 
ratio 10. The results of higher order model by Lu and Liu and results of first order shear defor-
mation theory using finite element solution by Maiti and Sinha [overestimate this value by 2.48% 
and 2.75% respectively for aspect ratio 4. The higher model by Maiti and Sinha underestimates 
the value by 24.17% compared to the value of exact solution for aspect ratio 4. The results of 
present solution, Shimpi and Ghugal (LTSDT), HOSTB5 of Manjunatha  and Kant, Lu and Liu 
(HSDT) are closed to each other for aspect ratio 10, whereas the ETB underestimates the maxi-
mum transverse deflection by 43.62 % for aspect ratio 4 and 11.25% for aspect ratio 10 and 
FSDT overestimates it by 2.89 % compared to exact value for aspect ratio 4 and is in close 
agreement with the value of  present theory for aspect ratio 10. The graphical presentation of this 
displacement is shown in Fig. 2.   
 The transverse displacement results of fixed beam subjected to sinusoidal load are presented in 
Table 3 for aspect ratios 4 and 10. Compared to present theory; ETB underestimates the trans-
verse deflection by 70.90%, whereas FSDT overestimates the value by 0.873 % for aspect ratio 4. 
For aspect ratio 10, ETB underestimates the transverse deflection value by 38.25 % and FSDT 
underestimates it by 0.175 % when compared to the value given by present theory. The graphical 
presentation of this displacement is shown in Fig. 11. 
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4.2 Axia l d isplacement ( u ): 

The results of axial displacement u are presented in Tables 1 and 2 for simply supported beam 
for aspect ratio 4 and 10, respectively. In case of simply supported beam, maximum u occurs at 
simply supported end (x = 0 or x = L) at / 2z h= ± . The value of u  given by present theory is 

higher by 10.21% compared to exact value. ETB and FSDT yield identical values of this dis-
placement. ETB and FSDT underestimate the values by 15.56% and 3.16% for aspect ratio 4 and 
10, respectively compared to exact values. The theories of Kant and Manjunatha and Lu and Liu 
overestimate this value by 6.40% and 3.19% respectively, for aspect ratio 4 when compared to 
exact values. The variation of this displacement through the thickness is graphically presented in 
Fig.3 and Fig.4 for aspect ratio 4 and 10 respectively, which shows the realistic variation indicat-
ing the effect of shear deformation on the deformation of transverse normal. 
 In the case of fixed beam, maximum u occurs at quarter span of the beam from the fixed end 
support and it diminishes at fixed ends and at the middle span of the beam. The graphical 
presentation of this displacement is shown in Figs. 12 and 13. At quarter span (x = 0.25L) it 
shows considerable departure from the distributions given by ETB and FSDT at the same loca-
tion. However, according to present theory, values of this displacement matches with the one 
given by ETB and FSDT at (x = 0.3758L) from the support for aspect ratio 4 and at (x = 
0.3143L) for aspect ratio 10. 
 
4.3 Axia l stress (  σx ): 

The results of maximum non-dimensional axial stress are given in Tables 1 and 2 for simply sup-
ported beam subjected to sinusoidal load for aspect ratio 4 and 10, respectively. ETB and FSDT 
yield the identical values for this stress. ETB and FSDT underpredict axial stress value by 
20.83 % and 4.51% at top compared to exact values for aspect ratio 4 and 10, respectively. The 
results by Kant and Manjunatha and Lu and Liu underestimate the axial stress by 2.32% and 
6.94% compared to exact value for aspect ratio 4. For aspect ratio 10, Manjunatha and Kant 
underestimate the value by 0.605%, whereas Lu and Liu overestimate it by 0.857% compared to 
exact value. The distributions of this stress are shown in Figs. 5 and 6. Axial stress variation 
through the thickness shows the severe influence of shear deformation effect for aspect ratio 4. 
(see Fig.5) as compared to the variation for aspect ratio 10.  
 The results of maximum non-dimensional axial stresses obtained by the present theory, ETB, 
FSDT are presented in Table 3 for fixed beam subjected to sinusoidal load for aspect ratio 4 and 
10. The results of the maximum non-dimensional stress by present theory match to those of ETB 
and FSDT at 0.0745L and 0.03937L from the left end support for aspect ratio 4 and 10 respec-
tively. Present theory yields very high value at the fixed support which may be attributed to high 
stress concentration at this end. These stresses are presented graphically in Figs.14 and 15 which 
show realistic variation of this stress indicating the effects of both shear deformation and stress 
concentration at the fixed end. 
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4.4 Transverse shear stresses (  τxz ): 

The transverse shear stresses are obtained directly by constitutive relation and, alternatively by 
integration of equilibrium equation of two dimensional elasticity and are denoted by (  τ

CR
zx ) and 

(  τ
EE
zx ) respectively. The transverse shear stress satisfies the stress free boundary conditions on 

the top 
   
z = − h / 2( ) and bottom 

   
z = + h / 2( )  surfaces of the beam when these stresses are ob-

tained by both the above mentioned approaches. 
 The non-dimensional transverse shear stress values for simply supported beam subjected to 
sinusoidal load are presented in Table 1 and 2 for aspect ratio 4 and 10 respectively. Transverse 
shear stress value obtained by present theory according to constitutive relation is 10.40 % higher 
for aspect ratio 4 and 5.63 % higher for aspect ratio 10, compared to values obtained by equilibri-
um equations. The results obtained by present theory using constitutive relations are in good 
agreement with exact results, whereas the results obtained by equilibrium equations are in excel-
lent agreement with those of exact elasticity solution. The higher order model by Maiti and Sinha 
underestimates the value by 10.87% compared to the exact value,   whereas the value obtained 
by Vinayak et al. using higher order model is on higher side by 1.05% for aspect ratio 4. The 
through the thickness variations of this stress using constitutive relation are shown in Figs. 7 and 
8. and those given by equilibrium equation are given in Figs.9 and 10.   
 The non-dimensional transverse shear stress values for fixed beam subjected to sinusoidal load 
are presented in Table 3 for aspect ratio 4 and 10. According to present theory, the  transverse 
shear stress value by constitutive relation is 22.05 % higher for aspect ratio 4 and 20.24 % higher 
for aspect ratio 10 at (x = 0.2L) compared to the corresponding values obtained by equilibrium 
equation. ETB and FSDT yield identical values of this stress at fixed end when obtained using 
equilibrium equation. In case of fixed beam, through the thickness distribution of   τzx

EE  , as shown 
in Figs. 18 and 19, given by present theory according to equilibrium equation shows the consider-
able deviation from the distributions given by ETB and FSDT at the fixed end (x = 0) with 
change in sign. The maximum negative value of this stress occurred at neutral axis and maximum 
positive value occurred at interface (z = 0, centroidal axis). This anomalous behavior is attribut-
ed to heavy local stress concentration at this end. However, this behavior can not be captured by 
use of constitutive relation.  The effect of stress concentration diminishes at other locations away 
from the fixed end (see Figs. 18 and 19). The graphical representation of transverse shear stress 
using equilibrium equation shows the effect of stretching bending coupling in the bottom layer, in 
which fiber orientation is 00  that is along the x- axis. This effect can not be captured by ETB and 
FSDT. Thus the present theory gives the realistic variation of this stress at the fixed end. The 
effect of variation of aspect ratio on through the thickness distribution of this stress is shown in 
Fig. 20. 
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5. CONCLUSIONS  

A layerwise shear deformation theory is used for the static flexural analysis of cross ply laminated 
(90/0) simply supported and fixed beams subjected to sinusoidal load. Euler–Bernoulli’s and Ti-
moshenko’s classical theories are employed in a layerwise manner to obtain results. A general 
solution technique is developed for the static flexure of beams based on present theory. The re-
sults by present theory for simply supported beam subjected to sinusoidal load are validated by 
comparing with the results by exact solution. However, the exact solution for fixed-fixed beam 
subjected to sinusoidal load is not available; hence results are compared with those of Euler–
Bernoulli and Timoshenko classical theories. The present theory is capable to capture the effect of 
stress concentration at fixed end and account for the shear deformation effect in un-symmetric 
cross-ply laminated beams. The results obtained by present theory are in good agreement with 
exact elasticity solution of laminated beam. The present theory can be applied to the laminated 
beams with various loading and boundary conditions by developing general solution of the prob-
lem. 
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Appendix 

The constants Ai and Bi appeared in flexural rigidities   D,D1,D2  and D3  of governing differential 
equations and boundary conditions [Eqs. (15) through (19)] are defined as follows:  
 
(a) Layer 1 integration constants A1, A2, A3, A4 
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1 + 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos

−πα
1 + 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

  

 

    
A3 = bh3E(1) C1

2

2
− 2C1C2

1 + 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos

−πα
1 + 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+

C2
2

4
1 +

1 + 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟sin

πα
0.5 + α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪  
 

    
A4 =

bhG(1)

4
C2π

1 + 2α

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

1 +
1 + 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟sin

−πα
0.5 + α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  
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(b) Layer 2 integration constants B1, B2, B3, B4 
 

    
B1 = bh3E(2) 1

24
−
α
4

+
α2

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

 

    

B2 = bh3E(2) C3
1
8
−
α
2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+

1− 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

1 + sin
πα

1− 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ − α

1− 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos

−πα
1− 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪  

 

    
B3 = bh3E(2) C3

2

2
+ 2C3

1− 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos

−πα
1− 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+

1
4

1−
1− 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟sin

πα
0.5− α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
   

                                   

 
    
B4 =

bhG(2)

4
π

1− 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

1−
1− 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟sin

−πα
0.5− α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

 
(c)  Constants C1, C2, C3 are as follows: 
 

    

C1 =
E(2)

E(1) + E(2)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

sin
−πα

1− 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟−C2 sin

−πα
1 + 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+ 2C2

E(1)

E(2)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

1 + 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos

πα
1 + 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−2
1− 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos

πα
1− 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

    

                                             

 

    

C2 =
G(2)(0.5 + α)cos −πα

1− 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

G(1)(0.5− α)cos −πα
1 + 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
 

 

    

C3 =
E(1)

E(1) + E(2)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

−sin
−πα

1− 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+C2 sin

−πα
1 + 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+ 2C2

1 + 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos

πα
1 + 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−2
E(2)

E(1)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

1− 2α
π

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟cos

πα
1− 2α

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

 

 
 
(d) Constants    D,D,D1,D2,D3,D3,α  are as follows: 
 

   D = (A1 + B1) = DE(2)bh3 ,    
 

    
D =

E(1)

E(2)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

1
24

+
α
4

+
α2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+
1
24
−
α
4

+
α2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
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D1 =
A2 + B2

A1 + B1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
,D2 =

A3 + B3

A2 + B2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
,

D3 =
A4 + B4

A2 + B2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
,D3 = D3h

2

 
 

    
α =

1
4

E(2) −E(1)

E(2) + E(1)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
 

 
(e) The constants  λ  and  η appeared in Eq. (21) are defined as follows. 
 

    
λ2 =

β
η

, η = D2 −D1 with β = D3            
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