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Abstract 
In this paper a most promising scope of the exact quasiconvex energy envelope in modeling the granular 
materials with microstructures is presented. This study shows that it is possible to observe both the 
extended microstructures and localized deformations in granular materials using a variational model based 
on the mathematical relaxation theory. The variational model is derived within the framework of Cosserat 
continuum. The computational algorithm based on finite element method is used to carry out numerical 
computations. The features of the proposed model are studied for three representative examples: the 
Couette shear cell, the rectangular specimen in compression and the indentation of a granular structure. 
The obtained results demonstrate on the possible applications and features of exact quasiconvex energy 
envelops in modeling the granular materials. 
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1 INTRODUCTION 

Energy relaxation methods in analysis of materials with microstructures have been extensively studied for a large 
number of engineering problems in mechanics in the context of elasticity (Ball, 1976; Ball and James, 1987; DeSimone 
and Dolzmann, 2002; Govindjee et al., 2007; Khan and Hackl, 2018; Kohn, 1991; Kohn and Strang, 1986a,b; Raoult, 
2010), elasto-plasticity (Conti and Theil, 2005; Dret and Raoult, 1995; Gürses and Miehe, 2011; Hackl and Heinen, 2008) 
and plasticity (Carstensen etal., 2008, 2002; Conti et al., 2009, 2007; Conti and Ortiz, 2005). In modeling the mechanical 
behavior of such materials it isalways important to construct a relaxed energy envelope of the corresponding non-
quasiconvex energy potential. So far, there are very few studies (Conti et al., 2007; Conti and Ortiz, 2005; Conti and 
Theil, 2005; DeSimone and Dolzmann, 2002; Dret and Raoult, 1995; Khan and Hackl, 2018; Kohn, 1991; Kohn and 
Strang, 1986a), (Kohn and Strang, 1986b; Kohn and Vogelius, 1987; Raoult, 2010) in literature where the computation 
of exact quasiconvex envelope was possible. 

Quasiconvex energy envelopes in energy minimization problems are of interest in every physical situation where 
there arefine scale oscillations of gradients of the infimizing deformations. Fluctuations of these infimizing 
deformations at fine scale leads to the development of material microstructures. Development and formation of these 
microstructures in granular materials is a debatable subject and have attracted a great interest within the framework 
of Cosserat continuum Alsaleh et al. (2006); Alshibli et al. (2006); Bardet(1994); deBorst (1991); Lambrecht et al. (2003); 
Miehe et al. (2004); Oda and Kazama (1998), (Sulem and Derrolaza, 2002; Tejchman and Bauer, 1996; Tejchman and 
Gudehus (1993); Tordesillas et al., 2004), (Tordesillas et al., 2005; Trinch and Hackl (2014)) in the past. 
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Cosserat elasticity Forest and Sievert (2006); Kafadar and Eringen (1976); Khan and Hackl (2012); Schaefer (1967); 
Steinmann (1994) in comparison to Boltzmann continuum theory incorporates independent rotational degrees of 
freedom at eachmaterial point. Forthis reason it can adequately describes the microstructural behavior of granular 
materials which are discrete in nature whereeach grain has micro-rotations independent of its macro-rotations. It is 
therefore widely acceptable and successfully usedtheory for modeling the microstructural behavior of granular 
materials in literature Altenbach et al. (2012); Sawada et al. (2006); Tejchman and Bauer (1996); Tejchman and 
Gudehus (1993); Trinch and Hackl (2014). In this work, the description of granular material deformation is based on the 
Cosserat continuum theory. For a review on the applications of Cosserat continuum theory the reader is referred to 
Altenbach et al. (2012) and the references therein. 

Research has shown an agreement on the fact that formation of these microstructures can be extended 
microstructures Gajo et al. (2004); Gudehus and Nübel (2004) or it can appear in the form of localized deformations 
deBorst (1991); Trinch and Hackl (2014). In both the cases the development of these microstructural zones are highly 
influenced by grain rotations at the microscale Sawada et al. (2006); Tordesillas et al. (2005). In the zones of localized 
deformations and extended microstructures the particles organize themselves in non-permanent meso-scale structures 
Oda and Kazama (1998). To understand different features of particle rotations in the deformation mechanisms of 
granular materials the reader is referred to Bardet (1994); Oda and Kazama (1998) and the references therein. 
Although efforts have been made to observe and predicton the extended microstructures and localized deformations 
in granular materials both by experimental Aranson and Tsimring (2009); Debregeas et al. (2001); Kaus and 
Podladchikov (2006); Latzel et al. (2003); Savage and Sayed (1984); Sawada et al. (2006), (Howell et al., 1999; Tejchman 
and Gudehus, 1993); Utter and Behringer, 2009) and numerical simulations Sawada et al. (2006); Tejchman and Bauer 
(1996); Tordesillas et al. (2004), there is no unified variational approach available in literature that allows to compute 
and observe both the extended microstructure and localized deformations with the same model. However, in past the 
phenomena of extended microstructure formation and localized deformations have been studied as bifurcation 
phenomena. This study presents a relaxed computational algorithm using the finite element method that enables to 
predict on the formation and development of both the granular material microstructural phenomena with the same 
variational model in the framework of Cosserat elasticity. Moreover, this approach allows to elaborate on the different 
features of exact quasiconvex energy envelop in a number of physical situations. 

The rest of the paper is organized as follows. In Section 2, a relaxed variational model for granular materials is 
presented where non-microstructural and microstructural material regimes are explicitly characterized and a formula 
for the relaxed energy is given. In section 3, a two field variational formulation of the proposed method is presented. In 
section 4, finite element descretization of the proposed method is presented and the solution algorithm to compute 
the deformation microstructures of granular materials is given. In Section 5, numerical results and discussion is 
presented demonstrating on the possible applications of the proposed methodology and the characterization of 
different material microstructural phases. Finally, conclusions are drawn in Section 6. 

2 A RELAXED COSSERAT CONTINUUM MODEL FOR GRANULAR MATERIALS 

Let : d du Ω ⊂   
be the displacement and ( ) : d daxlϕ = Φ Ω ⊂    where 

{ }: ( ) : |d d d Tso d R R R×Φ Ω ⊂ = ∈Μ = − 

be the micro rotation vector field in dimension ,d of the granular 

particles of the material bounded byΩwith Lipschitz boundary .∂Ω Here d dM × is the set of d d×  second order 
tensors. Further assume that an external force potential is defined with the considerations of external body force b, 
couple m, traction force tu and traction moments tϕ such that 

( , ) ( . . ) .  .  ,
u

uu b u m dV t u dS t dS
ϕ

ϕϕ ϕ ϕ
Ω ∂Ω ∂Ω

= + + +∫ ∫ ∫   (1) 

then the deformed configuration of materials can be completely determined from the following minimization problem 

{ }, ,
inf ( , , ) ( , ),  u = u  at  and  =  at ,uu

W u dV u ϕϕ
ϕ ϕ ϕ ϕ

ΩΦ
∇ Φ ∇ − ∂Ω ∂Ω∫  

  (2) 
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where 1, 1, 1,( , , )  W ( , ) W ( , ( ) W ( , ).p d p p du so dϕΦ ∈ Ω × Ω × Ω   Here 1,W p is the Sobolev space of admissible 
deformations with (1, )p∈ ∞ related to growth of the energy function W.  Within the framework of generalized 
elasticity the ansatz for the energy potential W in (2) is taken as 

1 1( , , ) : : : : . . ,
2 2

W u e e i e pϕ κ κ∇ Φ ∇ = + +   (3) 

Where . .i e p  is energy potential ( )22 22 dev α κ β ε− derived in Khan and Hackl (2018) and due to counter 

rotations of granular particles at the continuum scale. Here, α and β are non-negative constants. Where, the 
macroscopic deformation tensor and the rotational strain tensor are defined as e u= ∇ −Φ andκ ϕ= ∇ respectively. 
The fourth order constitutive tensors C and C of elastic constants are determined as 

2 2( , , ) ( , , )( , )  and ( , ) .W u W uu u
u u

ϕ ϕϕ ϕ
ϕ ϕ

∂ ∇ Φ ∇ ∂ ∇ Φ ∇
∇ ∇ = ∇ ∇ =

∂∇ ⊗∂∇ ∂∇ ⊗∂∇
   (4) 

Within the framework of an isotropic elastic Cosserat medium the enhanced energy function in (3) takes the form 

( )

2 22 2

22 2 2 22

 (tr ) dev  u - (  )
2 2( , , )

  dev 

c

c

asy tr
dW u

sym asy

λ µ λε µ ε µ κ
ϕ

µ κ µ κ α κ β ε

 + + + ∇ Φ +  ∇ Φ ∇ = 
+ + + −

 (5) 

whereλ is the classical dilatancy parameter, µ is the classical elastic shear modulus, cµ is the Cosserat shear modulus,

λ is the Cosserat material dilatancy parameter, µ  is the bending modulus, cµ is the coupled shear modulus, ε is the 
Cauchy strain tensor, andκ is the curvature strain tensor. 

The energy potential in equation (5) is non-quasiconvex, hence leading to non-attainment of the minimizers in the 
energy minimization problem (2). These non-attainments of the minimizers are essentially due the possible fluctuations 
in the displacement and microrotation fields at the fine scales. Physically, these field fluctuations can be seen Gürses 
and Miehe (2011); Miehe et al. (2004) as distortions of the finite element meshes. The fine scale oscillations of the 
minimizing displacement and microrotation field variables will lead to the development of micro-structures in the 
material. Formation of such internal structures can be extended microstructures Gajo et al. (2004); Gudehus and Nübel 
(2004) which is distributed through the material domain or the localized deformation microstructures deBorst (1991); 
Trinch and Hackl (2014) that appear in the form of narrow shearing bands. Hence to guarantee the existence of the 
unique minimizing translational and microrotational deformations in this case an exact relaxed energy envelope of 
energy potential (5) is computed in our previous papers Khan and Hackl (2013, 2018). The result is summarized below 

Relaxed Energy 

The relaxed energy corresponding to energy function in (5) is divided into three different material phases each of 
which is characterized as follows 
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{ }

2 22
2

2 22
2

2 22

phase 1       if   dev 
2

, is in  phase 2       if    dev 
2 2

phase 3       if   dev 
2

u

µκ β ε
αβ

µ µϕ κ β ε
α αβ

µκ β ε
α

 ≥ +


− ≤ − ≤



≤ −






 

Phase 1 is corresponding to the material regime where there is a microstructure in micro-rotations. Phase 2 is 
corresponding to the material regime where there is no internal structure of the material. Phase 3 is corresponding to 
the material regime where there is a microstructure in translational motions of the particles. The relaxed energy thus 
reads 

2 22
1 2

2 22
2 2

2 22
3

W        if   dev 
2

W  = W        if    dev 
2 2

W        if   dev 
2

rel

rel rel

rel

µκ β ε
αβ

µ µκ β ε
α αβ

µκ β ε
α

 ≥ +


− ≤ − ≤



≤ −






 (6) 

where 1 2W , Wrel rel and 3W rel are explicitly given as 

2
22

4

2 22
2

1 2
22

4

2 22
2

    (tr )  u - .
2 4

              if ,
  (tr ) ( )  ( )

2
 W

    (tr )  u - .
2 4

  (  ) ( ) asy ( )
2

c

c

c
rel

c

c

asy
d

sym

asy
d

tr

λ µ µε µ ϕ
αβ

µ µ
λ µκ µ µ κ µ κ

β

λ µ µε µ ϕ
αβ

λ µκ µ µ κ µ κ
β

  + + ∇ −  
  ≥

 + + − + +=
  + + ∇ −  

 


+ + − + +


E

E





              if ,cµ µ










 <



 (7)

( )

2 22 2

2
22 2 2 2 22

    (tr ) dev  u - . (tr )
2 2 W    

      dev 

c
rel

c

asy
d

sym asy sym asy

λ µ λε µ ε µ ϕ κ

µ κ µ κ α κ κ β ε

  + + + ∇ +    = 
 + + + + −

E
 (8) 

and 
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22 2

2
2 22

3
22 2

2
2 22

    (tr )  u - . (tr )
2 2               if ,

  ( )  ( ) dev 
4 W

    (tr )  u - . (tr )
2 2

  -( )  ( ) dev 
4

c

c

c
rel

c

c

asy
d

sym

asy
d

asy

λ µ λε µ ϕ κ
µ µ

µµ µ κ µ β µ ε
α

λ µ λε µ ϕ κ

µµ µ κ µ β µ ε

  + + ∇ +     ≥
 + − + + −=

 + + ∇ + 
 

− + + −

Ε

Ε









              if ,cµ µ

α









 <



 (9) 

respectively. 
The computation of this analytical expression for the relaxed energy corresponding to non-quasiconvex energy 

function in (5) enable to predict all microstructural features of the material which are carried safely from the 
microscopic to macroscopic computational scale. Hence it is possible to extract information regarding the development 
of microstructural regimes in the granular materials pertinent to observing its macro-mechanical behavior. For practical 
applications it is now more efficient and effective to reformulate the original non-quasiconvex problem in (2) to a 
relaxed energy minimization problem using this relaxed potential. 

3 A TWO-FIELD VARIATIONAL FORMULATION 

In the quasi-static case the balance equations for the motion of a granular particle in the framework of Cosserat 
continumm can be derived from the variational principle (2). Taking variations of equation (2) with respect to u andϕ
yields the equation for balance of linear and angular momentum respectively. The local form of these equations are 
thus stated as 

. 0,bσ∇ + =  (10) 

. : 0,mµ σ∇ + + =E  (11) 

Where E is the third order permutation tensor, b is the body force and m is the body moment, subjected to certain 
Drichlet boundary conditions of the type u uN tσ ⋅ = and N tϕ ϕµ ⋅ = . The Cosserat force-stress tensorσ and couple 

stress tensorµ are computed as the derivatives of the strain energy function with respect to the Cosserat strain tensor
e and curvature strain tensor ,κ respectively 

,            = .
rel relW W

e
σ µ

κ
∂ ∂

=
∂ ∂

 (12) 

To derive weak balance equations or variational formulation of (10) the arbitrary variations in displacement and 
micro-rotation fields are chosen as uδ ,δϕ  respectively. Further, let u ut Nσ= ⋅ be the applied traction on the surface

uΓ of the continuum body B having a volume ,Ω with uN being the normal unit vector to uΓ . Let ut and tϕ be the 

traction and moment forces on the surface uΓ and ,ϕΓ respectively, of the body, where un and nϕ are the normal unit 

vectors, then by using the divergence theorem and the properties ( ) ( ) : ( )µ δϕ µ δϕ µ δϕ∇⋅ ⋅ = ∇ ⋅ ⋅ + ∇⊗ and

: :σ σ=E E the final set of variational equations for (10) and (11), that must be satisfied for the equilibrium 
configuration of a body by its each material point in a Cosserat continuum in an integrated sense, can be written, 
respectively as 
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: ( )  u ,
u

u uu d b u d t dσ δ δ δ
Ω Ω Γ

∇⊗ Ω = ⋅ Ω+ ⋅ Γ∫ ∫ ∫  (13) 

and 

( : ( ) - ( : ) ) m   .d d t d
ϕ

ϕ ϕµ δφ σ δφ δφ δφ
Ω Ω Γ

∇⊗ ⋅ Ω = ⋅ Ω+ ⋅ Γ∫ ∫ ∫E  (14) 

4 NUMERICAL IMPLEMENTATION 

In the absence of body force b and body couple m the system of linear and angular momentum weak-balance 
equations (13) and (14) are solved numerically using finite element descretization of the material domainΩ as 

1

,               for  
en

e i j

e

i j
=

Ω = Ω Ω ∩ Ω =∅ ≠


 (15) 

where en is the total number of elements in .Ω  It is convenient to define a local coordinate system ( )1 2 3, ,ξ ξ ξ in each 

element eΩ such that 1 21 1, 1 1ξ ξ− ≤ ≤ − ≤ ≤ and 31 1.ξ− ≤ ≤  The field variables in eΩ can be interpolated using the 
nodal shape functions defined in the local coordinate system. In the context of Cosserat continuum these field 
variables are the displacement and micro-rotation which together contains a total number of nine degrees of freedom 
at a single material point in an element .eΩ  The three displacement{ }; 1, 2,3e

iu i = and three microrotation

{ }; 1, 2,3e
i iϕ = degrees of freedoms are approximated on nodal points in each element eΩ by matrices of their 

corresponding nodal shape functions as 

1 2 3 1 2 3
1 1

( , , )                ( , , ) ,    ;  1, 2,3.
N N

e m e e m e
i i i i

m m
u N u and N iξ ξ ξ ϕ ξ ξ ξ ϕ

= =

≈ ≈ =∑ ∑  (16) 

here{ }1 2 3 1
( , , )

Nm

m
N ξ ξ ξ

=
are the nodal shape functions. Associated to these displacements and micro-rotations are the 

strain measures called Cosserat strains and curvature strains, respectively. These strains are computed in each eΩ as 

, , - ,               e e e e e
ij j i ijk k ij j ie u E andϕ κ ϕ= =  (17) 

herein ijkE is the Cartesian permutations, takes a value of zero if any of the indices ijk is repeating, takes 1 if ijk is a 

cyclic permutation and -1 otherwise, wherein 

3 3

, ,,            
m mN N

e e e en n
j i j j i j

m n m nn i n i

N Nu u
X X
ξ ξϕ ϕ

ξ ξ
∂ ∂∂ ∂

≈ ≈
∂ ∂ ∂ ∂∑∑ ∑∑   (18) 

with iX being the physical coordinate in each direction .i  Conjugate to the Cosserat and curvature strains are the 
Cosserat force-stresses and the coupled stresses, respectively. In vector notation these quantities are expressed as 

11, 22, 33, 12, 21, 13, 31, 23, 32[ ] ,e e e e e e e e e e Tσ σ σ σ σ σ σ σ σ σ=  (19) 

11, 22, 33, 12, 21, 13, 31, 23, 32[ ] .e e e e e e e e e e Tµ µ µ µ µ µ µ µ µ µ=  (20) 
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where e
ijσ and e

ijµ are computed in each of the material phase as follows 

In phase 1 

( ), ,2 2
2

e e e e e
ij kk ij c j i i j c ijk ku u E

d
λ µσ ε δ µ µ ϕ = + + − − 

 
 (21) 

( )

( )

2

2

( ) 2          ,     

( ) 2          .

e e e e
c ckk ij ij ji ij

e
ij

e e e e
c ckk ij ij ji ij

if

if

µλκ δ µ µ κ κ µ κ µ µ
β

µ
µλκ δ µ µ κ κ µ κ µ µ
β

  
+ − + + + ≥  

  = 
  − − − + + <   





 (22) 

In phase 2 

, ,

2 2 2 2

( ) ( ) 2    

1 14 ( ) ( )

e e e e
kk ij c j i c i j c ijk k

e
ij e e e e e

ij ij kk ij ij kk ij

u u

d d

λε δ µ µ µ µ µ ϕ
σ

αβ κ β ε ε δ ε ε δ

 + + + − −
=    − − − −   

  

E
 (23) 

2 2 21( ) ( ) 4 ( ) ( )e e e e e e e e
c cij kk ij ij ji ij ij kk ij ijd

µ λκ δ µ µ κ µ µ κ α κ β ε ε δ κ = + + + − + − − 
 

 (24) 

In phase 3 

2
, ,

1( ) ( ) 2 2e e e e e e e
ij kk ij c j i c i j c ijk k ij kk iju u

d
σ λε δ µ µ µ µ µ ϕ µ β ε ε δ = + + + − − + − 

 


E  (25) 

( )
( )

( )      if    ,     

( )      if    .

e e e
c ckk ij ij jie

ij e e e
c ckk ij ij ji

λκ δ µ µ κ κ µ µ
µ

λκ δ µ µ κ κ µ µ

 + − + ≥= 
− − − <

 (26) 

Hence, using the representations of field vectors and tensor in matrix notation one can rewrite the weak-balance 
equations (13) and (14) in the following form 

, ,( ) ( ) 0.
u

e T T e e T T e
u u u uu d u N dδ σ δ

Ω ∂Ω
Ω− Γ =∫ ∫B t    (27) 

, ,( ) ( ) 0.e T T e T e e T T ed N d
ϕ

ϕ ϕ ϕ ϕδϕ σ µ δϕ
Ω ∂Ω

− + Ω− Γ =∫ ∫H B t    (28) 

Above the matrices ,uB H and ϕB are computed according to the following 

u u u ϕ ϕ ϕB = D N ,         B = D N   (29) 

and the transformation matrix 
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( ) ( ) ( ) ( ) ( )1 2 3 1 1 2 3 2 1 2 3 3 1 2 3 1 2 3, ,   , ,     , ,     , ,       ....     , , ,NNξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ =  H H H H H  (30) 

where 

( )1 2 3

0      0     0      0       0        0          0             -
, , 0      0     0      0       0        -           0         0

0      0     0         -     0         0         0     

m m

T m m
m

m m

N N
N N

N N
ξ ξ ξ =H

     0

 
 
 
 
 

 (31) 

The matrices of nodal shape function ,ϕ ϕN N and the differential operator matrices ,u ϕD D are given by 

( ) ( ) 1 2 3
1 2 3 1 2 3, , , ,                 ....     ,    ; , 1, 2,3.N

u ij i jN N N N e e i jϕξ ξ ξ ξ ξ ξ δ = = = ⊗ = N N I I I I I  (32) 

and 

1 2 3

2 1 3

3 1

      0      0       0              0              0          0
0            0              0       0         0        0         
0       0            0         0              0   

u ϕ

∂ ∂ ∂

= = ∂ ∂ ∂

∂ ∂

D D { }
2

; ,   1, 2,3
             0

T

i
i

i
X

 
∂  ∂ = =  ∂

 ∂ 

 (33) 

By using the principle of variational calculus and knowing the fact that ,e Tuδ  and ,e Tδϕ are arbitrarily chosen 
vectors one arrives at the following set of residual equations 

 0,
u

e T e T e
lin u u u ud dσ

Ω ∂Ω
ℜ = Ω− Γ =∫ ∫B N t  (34) 

( ) 0.e T e T e T e
ang d d

ϕ
ϕ ϕ ϕ ϕσ µ

Ω ∂Ω
ℜ = − + Ω− Γ =∫ ∫H B N t  (35) 

Thus the solution variables at the elemental level are obtained by solving these two equations. In order to do so 
the above set of nonlinear equations are linearized with respect to the elemental nodal vectors eu and ,eϕ i.e. 

0,
e e

e elin lin
e eu

u
δ δϕ

ϕ
∂ℜ ∂ℜ

+ =
∂ ∂





 (36) 

0.
e e
ang ange e
e eu

u
δ δϕ

ϕ
∂ℜ ∂ℜ

+ =
∂ ∂





 (37) 

The terms , ,
ee e
anglin lin

e e eu uϕ
∂ℜ∂ℜ ∂ℜ

∂ ∂ ∂ 

and
e
ang
eϕ

∂ℜ

∂ 
here contributes to the tangent modulus operator as follows 

,
e

e Tlin
uu u ee ue K d

u Ω

∂ℜ
= = Ω

∂ ∫ B K B


 (38) 
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( )2 ,
e
ang e T T T

c ek kke K d
u ϕϕ ϕ ϕ ϕµ

Ω

∂ℜ
= = − + Ω

∂ ∫ H H H K B B K B


 (39) 

( )2 ,
e

e Tlin
u u c eke K dϕ ϕµ

ϕ Ω

∂ℜ
= = − + Ω

∂ ∫ B H K B


 (40) 

( ) ,
e
ang e T T

u ee ke ue K dϕ ϕϕ Ω

∂ℜ
= = − + Ω

∂ ∫ H K B K B


 (41) 

The matrices , ,ee ek keK K K and kkK are to be computed from the fourth order tensors , ,ee ek ke   and ,kk
respectively. These are defined according to the formulae 

2 2 2 2

,         ,        ,         .
rel rel rel rel

ee ek ke kk
W W W W

u u u uϕ ϕ ϕ ϕ
∂ ∂ ∂ ∂

= = = =
∂∇ ⊗∂∇ ∂∇ ⊗∂∇ ∂∇ ⊗∂∇ ∂∇ ⊗∂∇

      (42) 

The resulting expressions for these fourth order tensors are computed in Phase 1 as 

2 + ,         = ,
2ee c c ek ked
λ µ µ µ = + ⊗ − = 

 
I I       (43) 

( )2( )+ 2 ,c ckk
µλ µ µ µ µ µ
β

  
= ⊗ − + + + −  

  
I I



    (44) 

in Phase 2 as 

( )( ) ( )( )
( )( ) ( )

2 2 2 22 2 2 2

2 22 2 4

2 dev 2 dev
,

2 dev 8 dev dev

c

ee

c

λ αβ κ β ε µ µ αβ κ β ε

µ µ αβ κ β ε αβ ε ε

 + − ⊗ + + − −
= 
+ − − − + ⊗


I I 




 
 

( ) ( )2 28 dev ,          8 dev ,ek keαβ ε κ αβ κ ε= − ⊗ = − ⊗   (45) 

( ){ } ( ) ( )2 22 4 dev 8 ,kk c cλ µ µ α κ β ε µ µ α κ κ= ⊗ + + + − + − + ⊗I I    (46) 

in Phase 3 as 

( ) ( ) ( )2 2 2 ,ee c cλ µ β µ µ µ β µ µ µ β= − ⊗ + + + + − +I I
  

    (47) 

( ) ( )= ,        ( )+ ,c cek ke kk λ µ µ µ µ= = ⊗ − + −I I       (48) 

where is the fourth order zero tensor, I is the second order identity tensor,   and  are the fourth order unit tensors 
computed as 
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,      ;      , , , 1, 2,3.ik ji i j k l il jk i j k le e e e e e e e i j k lδ δ δ δ= ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗ =   (49) 

The system of nonlinear equations to solve for each element is thus stated as 

  =  0,

  =  0.

e e e e e
uu u u

e e e e e
u

K u K f

K u K f
ϕ

ϕ ϕϕ ϕ

ϕ

ϕ

 + −


+ −
 (50) 

where e
uf and efϕ are respectively the vectors of external forces and couples acting on the body eΩ and are given by 

     [ ] ,             [ ]
u

e T e e T e
u u u uf N t d f N t d

ϕ
ϕ ϕ ϕ ϕ∂Ω ∂Ω

= Γ = Γ∫ ∫  (51) 

The global unknown vector for the displacement and micro-rotational degrees of freedoms are 

( )
1 1

, ,      here    u = u       =  
e en nT e e

e e
u u ϕ ϕ ϕ

= =
= A A  (52) 

where
1

en

e=
A is the finite element assembly operator. The global system of nonlinear equations to solve thus can be 

written as 

( , )      0,
( , )     0.

lin uu u u

ang u

u K u K f
u K u K f

ϕ

ϕ ϕϕ ϕ

π ϕ ϕ

π ϕ ϕ

= + − =
 = + − =

 (53) 

where the global stiffness matrices 

1 1 1 1
= ,    = ,    = ,    =

e e e en n n n
e e e e

uu uu u u u ue e e e
K K K K K K K Kϕ ϕ ϕ ϕ ϕϕ ϕϕ= = = =

A A A A  (54) 

and the global external force and moment vectors are defined, respectively, as 

1 1
 = ,   = . 

e en n
e e

u ue e
f f f fϕ ϕ= =

A A  (55) 

The computational algorithm for solving the set of non-linear system of equations in (53) is summarized in the 
Table 1. 
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Table 1 Solution Algorithm. 

Step 1 Define material constants , , , , , , min( , ), , ,c cE ν λ µ µ λ µ µ µ µ µ α=


and .β  

Step 2 For each quasi-time increment: Divide the loading into tnts time steps as
1 1n n nt t t+ += + ∆ where { }0,1,2,3,..., .n tnts∈  

Step 3 Initialize the field varialbles 0, 0.i iu ϕ= =  

Step 4 Compute Cosserat strains iu∇ and coupled strain iϕ∇  

Step 5 
Compute the term ( ) 2 22, devsymi i i iu uθ ϕ ϕ β∇ ∇ = ∇ − ∇ that characterize microstructural and non-microstructural 

material phase 

Step 6 

Calculate the material tensors , ,
ee ek ke

i i i   and
kk

i such that if ( ) 2,
2

i iu µθ ϕ
αβ

∇ ∇ ≥ then use equations (43) and (44), if

( ) 2,
2 2

i iuµ µθ ϕ
α αβ

− ≤ ∇ ∇ ≤ then use equations (45) and (46), 

if ( ),
2

i iu µθ ϕ
α

∇ ∇ ≤ −  then use equations (47) and (48). 

Step 7 Determine the stiffness matrices , ,uu u uK K Kϕ ϕ and Kϕϕ from equations (38), (40), (41) and (39) respectively. 

Step 8 

Update the solution 

( )( ) ( )11
1 1 1 1 1 1u = u  u R u  i i i i i i

n n n n n nj
−

+
+ + + + + +−  (56) 

where 

( )
( )
( )

1 11
1 1 1

1 1 1

u ,u
u = ,       R u  =  

u ,

i i ii
lin n nni i i

n n ni i i i
n ang n n

π ϕ

ϕ π ϕ

+ ++
+ + +

+ + +

  
  
     

 (57) 

and 

( )1 1

1

    
J u  = 

    

i
uu ui i

n n
u n

K K
K K

ϕ

ϕ ϕϕ
+ +

+

 
 
  

 (58) 

 

Step 9 

Check convergence, 

if ( )1
1u i

lin n tolπ +
+ < ane ( )1

1u i
ang n tolπ +

+ < then 

Update the load increment to time
1n nt t +←  and go to Step 2 

else 
Update the iteration counter 1i i← + and go to Step 3 

5 RESULTS AND DISCUSSION 

Here we present numerical experiments to demonstrate on the important features of the exact quasi-convex 
energy envelopes. The computations are performed to simulate granular material behavior in a Couette shear cell, 
under compression and in indentation. The geometry of the model is reduced to two dimensions thereby allowing 
computing three degrees of freedom at each point of the material domain. Two of them are the displacements 1u and

2u and third is the micro rotation 3ϕ . In the computations these degrees of freedom are approximated on each node of 

an element eΩ using bi-quadratic interpolation functions. A plain strain assumption is used in all the three cases in 
consideration. 

5.1 Extended microstructure in a Couette shear cell 

Couette shear cell have been used to analyze the shear flows in granular materials in a number of numerical and 
experimental studies. For an overview on the comparison between numerical and experimental results obtained in a 
granular Couette shear the reader is referred to the paper by Latzel et al. (2003). These investigations provide clear 
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evidence on the formation of different microstructural patterns in granular materials under shear deformation. These 
microstructural patterns appears as a result of localized deformations near the rotating cylinder in a Couette annular 
geometry Debregeas et al. (2001); Howell et al. (1999); Savage and Sayed (1984); Utter and Behringer (2009); Veje et 
al. (1999). These investigations have shown that under intense shearing different deformation patterns develops. The 
formation of these deformation patterns depends upon the interactions of the granular particles at micro scale. The 
kinematic of these particle rotations is shown in 1(c) where two possible kinds of particle rotations, namely, counter 
rotations and identical rotations can be seen. The micromotions of counter rotating particles contribute strong 
rotational effect to the proposed interaction energy potential in 5, whereas, in a situation of identical rotations of the 
particles it contributes much sliding effect to the interaction energy potential. Moreover, within a confined geometry 
and under certain boundary conditions the phenomenon of particle rotations is affected by particle size. Here, we are 
able to perform a numerical experiment to show that the microstructural patterns that appear in shearing granular 
materials can be classified and characterized as either microstructure due to translational motions of the particles or 
due to micromotions of the particles. 

60 mm

1 mm

20 mm

 
Figure 1: (a) Geometry of the two circular rotating cylinders, (b) Reduced Couette geometry and boundary conditions, 

(c) Kinematics of particle rotations: A schematic of rotating particle chain exhibiting two different rotational phenomenons. 
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Figure 2: (a) Phase with microstructure in micro-motions and no internal structure phase coexists, (b) All the three phases coexists, 
(c) Three phases coexists with more pronounced microstructure in micro-motions, (d) Coexistence of the three phases with almost 

vanishing microstructure in translational motions. 

For this purpose a Couette annular geometry is taken into consideration to observe the formation of 
microstructure using the proposed theory. The granular material is confined between two concentric rigid circular 
cylinders as shown in Figure 1(a). The cylinders are subjected to rotations in opposite directions. Due to symmetry it 
was taken only first quadrant of an annular domain for the observation of microstructure formation in it. The annular 
domain is subjected to an in-plane shear deformation with the application of rotational motions at the outer 
boundaries. The width of the annular is taken to be 20 mm. The inner circular boundary is at a radius of 10 mm from 
the origin of the annulus. The circular boundaries are supposed to rotate in opposite direction and as a consequence 
two types of rotations among the particles inside the annular domain can be observed. These identical and counter 
rotations of the granular particles within the annular domain can be seen as in Figure 1(c). The boundary conditions for 
the numerical simulation using the proposed model uses fixed displacement along the circular boundaries, whereas, a 
small micromotion is prescribed at the boundaries. 

The intention with this study is to observe the development of microstructural phases within the annular domain 
subjected to rotational deformation. The microstructure develops in both the translational and micro-rotational 
motions of the particles as shown in Figure 2. Where, in Figure 2(a) material exhibits a microstructure in micro-
rotations of the continuum particles. In Figures 2(a), 2(b) and 2(c) it is shown that for a particular values as listed in 
Table 2 the material has microstructure in both the translational and micro-rotational motions of the particles. Thus 
allow to observe that all the material phases can coexist. Moreover, the deformed configurations with different values 
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of β depict that decreasing the value ofβ causes the material to behave softly. Also, with the decrease in the particle 
size the microstructure in the micromotions of the particles is more pronounced. 

Table 2 Material parameters for the shear test in a Couette geometry. 

Figure E  ν  
cµ  α  β  µ  

cµ  

- (MPa) - (MPa) (N.mm2) mm-1 (N) (N) 

2(a) 2.0x102 0.3 2.0x100 2.0x105 5.8x10-1 8.0x101 5.0x101 

2(b) 2.0x102 0.3 2.0x102 2.0x105 5.8x10-1 8.0x101 5.0x101 

2(c) 2.0x102 0.3 2.0x102 2.0x105 4.0x10-1 8.0x101 5.0x101 

5.2 Localized deformations in granular materials 

The localization of deformations leads to possible material failure and such localized zones have been observed 
both numerically deBorst (1991); Trinch and Hackl (2014) and experimentally Kaus and Podladchikov (2006); Tejchman 
and Gudehus (1993) in a number of physical situations. The emphasis of this study is to show that it is possible to 
observe this phenomenon with the application of exact relaxed potentials. The exact relaxed potentials are enable 
enough to predict on the formation of microstructures within these localized zones in the material. Here, an 
investigation is presented on the formation of microstructure and thus provides a clue that how localized deformations 
develop that produce different possible bands. This may be important to know that under certain boundary conditions 
the material can form different localized deformation bands which depending upon the loading conditions afterward 
possibly leads to material failure. To illustrate on the formation of these localized deformation bands a tension-
compression test performed on a rectangular specimen is presented. The formation of microstructural zones in the 
specimen clearly predicts the localized deformation mechanism observed by Kaus and Podladchikov (2006). 

5.2.1 A rectangular specimen in compression 

In this example, a rectangular specimen of a granular material is considered with a small imperfection in the form 
of a weak element at the center of the specimen as shown in Figure 3. The material parameters used for the simulation 
are given in Table 3. The geometry and boundary conditions are shown in Figure 3, where the vertical displacements on 
both top and bottom of the specimen are constrained. The material points are allowed to move horizontally at both 
the top and bottom boundary of the specimen except the point at the left lower corner of the specimen which is fixed 
in both the horizontal and vertical direction. Additionally a frictional boundary condition is used where the micro-
rotation of the continuum points is allowed at both the top and bottom boundary of the specimen. A maximum 
displacement of 34.8 cm is applied on top boundary in vertically downward direction over a 1000 loading steps with a 
load step size of 4.35x10-3. 
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Figure 3: (a) Geometry and boundary conditions of the rectangular specimen with weak element. (b) Selected lines along the width 

of the microstructural zone. 
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Figure 4: Rectangular specimen in compression. In first column: The deformed configuration of the specimen under compression 
with coarse mesh consisting of 765 elements. In second column: The deformed configuration of the specimen under compression 

with fine mesh consisting of 4214 elements. 
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The purpose of this analysis is to observe the development of localized zones related to material microstructure in 
the specimen under compression. Two different mesh sizes for discretization of the specimen into finite elements are 
used in the analysis. In the first analysis (see first column of Figure 4) the specimen is discretized into 765 finite 
elements whereas in the second (see second column of Figure 4) 4214 elements are used to discretize the domain of 
the specimen. The formation of microstructure in the material is triggered with an introduced inhomogeneity in the 
form of a weak element. It is observed that the microstructure in the material develops in zones where material failure 
may possibly occur. The developed microstructural zones in the material resembles to the localized deformation zones 
observed by Kaus and Podladchikov (2006). This development of the microstructure is gradually increasing with the 
increase in the loading. The two colors in Figure 4 depict the microstructural and non-microstructural zones of material. 
The red color zone is corresponding to the material phase where there is a microstructure in the material. This 
microstructure is due to the translational motions of the continuum particles. The onset of the localized zones is 
predicted by the formation of microstructure in the material as shown in Figure 4. The development of this 
microstructural zones leads to the information on the possible material failure. It is observed that the width of the 
microstructural band is not affected by the mesh size; this is highly due to the properties of the exact relaxed 
potentials. The microstructural bands are the regimes in material where dissipation occurs while significant 
deformation takes place and the maximum compressive stress exceeds the yield strength of the material. 

 
Figure 5: Distribution of shear Cosserat rotation 3ϕ (a) and (b), Cosserat strains (c), curvature strains (d), force-stress (e) and couple 

stress (f) components along the width of microstructural zones. 
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Figure 6: Geometry of the granular medium under indentation along with the prescribed boundary conditions. 

Figure 5(a) and 5(b) clearly shows an increased value of the microrotation at the center across the width of the 
microstructural zones. The microrotations are more concentrated towards the center of the microstructural zones. This 
is why these microstructural zones can be seen as patterns on which the material can lead to possible failure, since 
inside the localized zones of deformations the particle rotations are found to be large. Since the material model used 
for these observations do not accommodate plastic deformations therefore this study cannot show but is able to 
predict on the possible material failure zones that are related to energy dissipation. 

From Figure 5(c) and 5(d) it can be seen that the Cosserat strains and curvature strains are more concentrated 
towards the center of these microstructural zones. Figure 5(e) and 5(f) respectively shows that the couple stress and 
the Cosserat shear stress switch their direction at the center across the width of the microstructural zones. The physical 
significance of this phenomenon can be realized by considering the center line of the microstructural zones as a slip or 
shearing line where there is strong shearing effect which causes the flip of shear and couple stress direction. These 
results are in accordance to the observation of Alshibli et al. (2006) where they show the formation of strain 
localization in a rectangular specimen of granular material by applying Cosserat continuum theory. 

Table 3 Material parameters for the specimen with introduced imperfection in compression. 

- E  ν  
cµ  α  β  µ  

cµ  

- (MPa) - (MPa) (N.mm2) mm-1 (N) (N) 

Mesh 2.0x105 0.3 2.0x101 5.0x101 1.5 7.0 2.0x101 

Weak element 2.0x103 0.3 2.0x101 1.0x103 1.5 3.0x102 4.0 

5.2.2 Indentation test 

The significance of observing the mechanical response of a granular medium subjected to indentation is evident 
from the load bearing capacity problems in geotechnical engineering. Particle rotations have always played an 
important role in load bearing capacity problems and therefore of keen interest to many researchers Aranson and 
Tsimring (2009); Bardet (1994); Tordesillas et al. (2005) where Cosserat continuum was used to describe the behavior 
of granular medium subjected to indentation. 
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Figure 7: Microstructure development beneath the indenter in a granular foundation. In first column: The deformed configuration 

of the specimen with coarse mesh consisting of 640 elements. In second column: The deformed configuration of the specimen with 
fine mesh consisting of 2560 elements. 
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In this example the microstructure formation is studied in a granular medium under indentation with the 
application of relaxation theory within the framework of Cosserat continuum. A plain strain assumption is used in this 
analysis. The granular medium of dimensions 200x100 cm2 is subjected to indentation by a flat rigid indenter with a 
dimension of 50x5 cm2 as shown in Figure 6. The geometry of the granular medium is discretized into 2560 finite 
elements whereas the geometry of the indenter is discretized into 250 finite elements. The indenter can only move in 
vertical direction and this constraint is applied by fixing the horizontal degrees of freedom of all the nodal points of 
indenter. Both the horizontal and vertical degrees of freedom on the right and left boundary of the granular medium 
are fixed. The continuum points can move only in the horizontal direction at the base of the granular medium which is 
ensured by fixing the vertical degrees of freedom at the base of the granular medium. The punching of the indenter is 
controlled by the applied vertical displacements, where a maximum displacement of 3.76 cm is applied at the top 
nodes of the indenter mesh in 1390 loading steps with a step size of 1.4x10-3. The material parameters used for the 
indenter and the granular medium are shown in Table 4. 

A large number of experiments have been performed on the granular foundations subjected indentation revealing 
similar bands of localized deformations as shown in this investigation. Also numerical simulation using finite element 
scheme for the Cosserat continuum by Walsh and Tordesillas (2006) has shown such kind of microstructure formation 
in a granular medium punched by rigid indenter. Here, a numerical solution is shown where the development of 
microstructure has been predicted in the localized zones around the indenter. The nucleation and the evolution of 
microstructural zone can be observed as the indenter moves downward into the material domain. The microstructural 
zone developed beneath the indentor is corresponding to the material regime where there are localized displacement 
gradients. These are the regions where the dissipation in the material takes place upon yielding in plasticity analysis. 
Results from the numerical simulations in Figure 7 are in accordance to the generalized Prandtl's solution of a rigid flat 
punch problem, where the dead material (there is no microstructure in this region) underneath the rigid indenter has a 
triangular shape as seen in the second column of Figure 7(h) and is in agreement with the experimental investigation 
Walsh and Tordesillas (2006). 

Table 4 Material parameters for the indentation test on a granular medium. 

- E  ν  
cµ  α  β  µ  

cµ  

- (N/cm2) - (N/cm2) (N.cm2) cm-1 (N) (N) 

Granular medium 2.0x104 0.3 2.0 5.0x104 0.5 7.0x103 2.0x102 

Indenter 2.0x1012 0.3 2.0 5.0x103 0.5 7.0x103 2.0x102 

The red color zones of the material are corresponding to the phase where there is a microstructure due to 
translational motions of the particles, whereas the purple colored zones are the regimes where there is no internal 
structure in the material. 

6 CONCLUSION 

In this article, a promising scope of the exact relaxed energy potentials is shown in modeling the granular 
materials and observing the extended and localized deformation microstructures. On the basis of an exact relaxed 
energy minimization principle a two field variational formulation is presented and a finite element method is 
developed to compute the deformation behavior of granular materials with microstructrues. To demonstrate on the 
possible applications of the proposed method different numerical examples are simulated. It is worth mentioning that 
these results show that the localized deformations and extended microstructures formation are not bifurcation 
phenomena, but arise as different aspects of the same variational model using exact quasiconvex energy envelope in 
the framework of generalized elasticity. 
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