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Abstract 
This paper presents investigations laminated plates under moderately large transverse displacements and 
initial instability, through the Generalized Finite Element Methods - GFEM. The von Kármán plate hypothesis 
are used along with Kirchhoff and Reissner-Mindlin kinematic plate bending models to approximate 
transverse displacements and critical buckling loads. The generalized approximation functions are either 
C0 or Ck continuous functions, with k being arbitrarily large. It is well known that in GFEM, when both the 
partition of unity (PoU) and the enrichments functions are polynomials, the stiffness matrices are singular or 
ill conditioned, which causes additional difficulties in applications that requires the solution of algebraic 
eigenvalues problems, like in the determination of natural frequencies of vibration or the initial buckling 
loads. Some investigations regarding this problem are presently addressed and some aspects and 
advantages of using Ck-GFEM are observed. In addition, comparisons are presented between the classical 
GFEM and the Stable-GFEM (SGFEM) with regard to the evaluation of the initial critical buckling loads. The 
numerical experiments use reference values from analytical and numerical results obtained in the open 
literature. 

Keywords 
Large displacements in plates, laminated plate bending, GFEM, SGFEM, arbitrarily continuous approximation 
functions. 

1 INTRODUCTION 

Anisotropic laminated plates are amongst the most commonly used types of structural elements in aeronautical 
and naval industry. They are often subjected to in-plane compressive and shear loads which, when combined with their 
slenderness, make then prone to geometric instability by buckling, where various parameters such as thickness, layer 
stack, loading type, boundary conditions and geometry affect its ability to maintain structural integrity. Plate theories, 
through some kinematic hypotheses, allow the three-dimensional fields to be approximated by two-dimensional ones, 
thus reducing the complexity and the number of variables required to estimate its mechanical behavior. However, 
these simplifications lead to important mathematical consequences, such as: 

(a) First order kinematic models such as Kirchhoff and Mindlin, within the linear conditions, allow solutions to be 
exact with regard to the three-dimensional formulation, in the limit as the transverse displacement becomes small 
compared to the thickness. A traditional rule of thumb of application of these theories is that the errors involved are 
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admissible in engineering applications if the transverse displacements are limited to some fraction of the thickness, 
e.g., a half. 

(b) The simplest inclusion of nonlinear kinematic effects is provided by the von Kármán theory. The resultant 
strain-deformation relation contain a sub-set of the nonlinear terms present in the full relations. As a consequence, the 
range of applicability of the theory is usually referred to as displacements moderately large. This means it provides 
better accuracy in the same displacement range of validity of the linear models, but does not allow arbitrarily large 
displacements. A second aspect of the von Kármán theory is that it allows a first approximation of initial instability of 
the panel. This is obtained numerically by a standard linear eigenvalue problem which gives, in a relatively inexpensive 
way, an estimate for the mode shape and critical load of the structure. Even though the load estimate is only an upper 
bound (Brush and Almroth, 1975; Ventsel and Krauthammer, 2001), it is often very useful in the early stages of the 
design process. 

With regard to finite element (FE) solutions, the plate bending theories available contain different continuity 
requirements on the function basis used. For instance, the Mindlin kinematic model requires 0C  continuous 
approximation functions and the Kirchhoff model requires 1C  functions for the transverse displacements. The 
Kirchhoff model is interesting by its reduced cost in computational analysis and absence of some of the pathologies 
which can suffer some of the FE formulations based on the Reissner-Mindlin model, like the shear locking. Frequently, 
the technologies developed to FE formulations on higher order kinematic models, like the third order shear 
deformation of Levinson or Reddy (Reddy, 1989, 1984), are inspired in developments made for the Kirchhoff model by 
using, for example, non-conforming elements to alleviate the 1C  requirement on the function basis. 

As for the 1C  requirement for the Kirchhoff finite element basis, it is virtually unknown in the literature a 
formulation of arbitrarily shaped plate elements with 1C  continuity everywhere in the mesh. Most of them have to be 
restricted to particular element shapes, or the continuity is restricted to discrete points, only enough to preclude 
numerical instability. Only recently a few approaches have been developed to fix this limitation. One of them is a 
variation of the GFEM (Generalized Finite Element Method), based on smooth kC  continuous approximation functions, 
for arbitrary k  (de Barcellos et al., 2009). This is one of the methods which will be tested in this paper, on modeling the 
nonlinear effects of anisotropic laminated plates by the von Kármán theory with the Kirchhoff and Mindlin kinematic 
models. 

The theoretical and historical basis of the GFEM lies on early developments of meshless methods, particularly on 
the hp-Clouds method (Duarte and Oden, 1996a, 1996b). These methods share some difficulties, for example on 
integration and on imposition of boundary conditions. Oden et al. (1998) and, in parallel, Babuška (Babuška and 
Melenk, 1997; Melenk and Babuška, 1996) proposed the use of clouds (patches of elements around each node) as 
support of approximation basis functions, with the contours conveniently defined by linear finite element meshes, but 
keeping from the hp-Cloud method its flexible way of enriching the basis with arbitrary functions defined in global 
coordinates. After this point the GFEM/XFEM developed exponentially, for example, (Belytschko et al., 2009; 
Belytschko and Black, 1999; Dolbow et al., 2000; Moës et al., 1999; Sukumar et al., 2000). 

Most of GFEM, as well as FEM developments, are formulated with 0C  approximation function basis. However, in 
applications such as the Kirchhoff plate model the required approximation functions must be at least 1C  continuous. 
The kC  version of GFEM has been developed by the use the Edwards proposal (Edwards, 1996), which allows the 
construction of arbitrarily smooth weighting functions with support in convex clouds. These weighting functions are 
used to form a Shepard Partition of Unit (Duarte and Oden, 1995; Shepard, 1968). Duarte et al. (Duarte et al., 2006) 
extends Edwards proposal to non-convex clouds, by the use of a Boolean R-function. 

A known characteristic of the GFEM formulation is that its set of approximating functions is linearly dependent, 
when it is formed by a polynomial partition of unity uniformly enriched with polynomial functions. As a result, the 
coefficient matrix (stiffness) contains more null eigenvalues than the number of rigid body motions in the model. When 
different combinations of types of partition of unity and enrichment functions are used, the rank deficiency can be 
eliminated but the stiffness matrix remains ill conditioned. Babuška (Babuška and Banerjee, 2012, 2011) proposed a 
modification in the enrichment functions, in which they are substituted by the difference between the original one and 
a linear interpolating function, defined in each element. This method, referred to as Stable-GFEM (SGFEM), was shown 
to improve the approximation space and also to alleviate problems due to non-homogeneous enrichment over the 
mesh. Gupta et al (2013) compared accuracy and conditioning between GFEM and SGFEM in a two-dimensional 
fracture mechanics problem, and showed that SGFEM improves the accuracy while keeping the conditioning similar to 
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the one of FEM. Later, Gupta et al (2015) extended and improved the SGFEM formulation to the three-dimensional 
fracture mechanics. 

A practical consequence of the rank deficiency in the stiffness matrix of 0C  -GFEM is that the number n of null 
eigenvalues is, a-priori, unknown, and can be relatively large when compared with the order N  of the matrix. The 
standard procedure to evaluate the critical load consists in solving an eigenvalue matrix problem and compute the first, 
smallest, positive eigenvalue. Since N  is large, an adequate method is used to compute not all N eigenvalues but 
only the first few of them. However, the difficulty is posed when one does not know, a-priori, the dimension of the 
kernel space. This forces the eigenvalue algorithm to work in a vector space of size, at least, 1n  . On the other hand, 
the function basis formed by the smooth kC  partition of unity uniformly enriched by polynomials is linearly 
independent (Mendonça et al., 2011). As a result, after imposition of sufficient Dirichlet boundary conditions, the 
stiffness matrix has a large condition number, but it is not singular. 

The objectives of the present paper are the evaluation of the behavior of both types of GFEM, 0C  and kC  in 
deformation response of Mindlin and Kirchhoff kinematic models under moderately large displacements using the von 
Kármán theory. Also, the response of both stable and non-stable 0C -GFEM in the evaluation of buckling load is 
analyzed, with regard to the effects of the stiffness matrix rank on the computational effort to obtain the first useful 
eigenvalue. 

The present paper is organized as follows. Section 2 summarizes a few key aspects of the GFEM, in both forms 
0C  and kC , and its stable version; Section 3 shows the basic information about Kirchhoff and Mindlin plate theory 

with von Kármán hypothesis and its discretization for a generalized finite element procedure; Section 4 details aspects 
of the initial instability analysis by GFEM and Section 5 presents comparative results for deformation analysis and 
critical load evaluation in standard problems. 

PARTITION OF UNITY AND APPROXIMATION FUNCTIONS 

Let us consider a region V, defined by a thicknessH and a planar middle surface   with boundary region  . The 
V  region may be described, in Cartesian coordinates, as 

 x3 2( , , ) | with , and ( , ) ,
2 2

H H
V x y z R z x y R

                    
:=   (2.1) 

Let us consider a mesh of elements of domain e , such that e    and i j      for i j . Define a cloud 

(a patch of elements)   associated to a node   as the union of all element domains that share the node  . In the 

present tests, the mid-surface of a laminated plate is modeled as an open bounded domain,   2R , with a linear 

triangulation made of elN  elements eK , 1{ } elN
e jK  , and nodeN  nodes with coordinates 1{ } nodeN

 x . 

A Partition of Unit (PoU) is defined (Oden and Reddy, 1976) as a set of functions ( ) x , associated with nodes 

1,2,..., nosN  , such that: 1) 1 ( ) 1,nosN
      x x ; 2)   is a function at least continuous over the domain, has 

having its cloud,  , as a compact support and has the required smoothness. Here, the partition of unity functions 

have at least k  continuous derivative inside the cloud, that is, 0( ) ( ), 0kC k   x . 

Once a PoU is available, the GFEM approximation functions ( )i x  are obtained by enriching the PoU functions, 

with enrichment functions , 1,...,i eL i n  . That is, for each cloud  , 

( ) ( ) ( )i iL   x x x   (2.2) 

The set of enrichment functions can be chosen in different ways. The simplest type is the set of monomials of a 
given degree. Also, it is very common the use a special function extracted from an asymptotic solution around a critical 
region of the model. In general, the enrichment functions are C  continuous over an infinite support. The product 
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with   makes the approximation function i  have compact support and inherit the same level of smoothness as the 
PoU. 

The usual GFEM is based on PoU functions which are the traditional FE shape functions, usually the linear tent 
functions, which naturally constitute a PoU. These functions have low computational cost and are easily integrated by 
numerical quadrature, although it is limited to 0C  continuity. 

1.1 Shepard Partition of Unity 

For problems requiring higher smoothness of the primal variables, like the transverse displacements in the 
Kirchhoff and higher order Reddy plate models, the linear tent functions used as PoU in the 0C  -GFEM are not 
adequate and a different approach is needed to generate approximation basis functions with the required level of 
continuity. Shepard (1968) proposed a procedure to generate smooth PoU by means of smooth weight functions. Let a 
function 2:W R R   with a compact support,  , belonging to the space 0 ( )kC  , be the weight function in each 

cloud  , of the open coverage 
nosNF  of the domain  . Then, the Shepard PoU subordinated to the cover NF  is 

defined as: 

   
    

x
x x x

x
( )      for | 0 .

W
W

W


 
 

    


 (2.3) 

The regularity of ( ) x  depends only on the regularity of the weighting functions. Therefore, it remains to define 

the weight functions with the necessary regularity. In order to do that, a coordinate ( )j x  normal to the straight edge 

j  of the cloud is defined. It is computed as  , ,( ) ,j j j   x n x b−  for x ∈ , where , jb  is the coordinate of the 

mid-point of the edge j , and , jn  is the unity vector normal to the edge pointing to the inside of the cloud. Therefore 

( )j x  is the smallest distance between x and the edge j . Cloud edge functions with continuity C  can be obtained 

using the following edge function 

, ,

if 0 ,
ˆ( ) :

0 other case.

j

j
j j j

A



 


  

                

x
Exp

 (2.4) 

The parameter values are chosen as 0.6   and 0.3   according to Duarte et al. (2006). The weighting 
functions determine the influence of each node within a single element and are defined by 

 ,
1

( ) ,
M

j j
j

W c


   


    x Exp  (2.5) 

where c  is a scale parameter that guarantees 1W   in the node x  and M  is the number of edges on the 
boundary of the cloud. 

The Shepard PoU functions constructed according to (2.3)-(2.5), as observed by Duarte et al. (2006), have C  
differentiability for convex clouds. The regularity of the approximation functions is determined by the regularity of the 
PoU and the enrichment functions used. Since in the present paper only the polynomial enrichment is tested, the 
resultant approximation functions basis is C . If non convex clouds were used, the result would be C  everywhere 
except at the concave nodes, where it would be kC , after using an appropriate Boolean product. In addition to being 
able to choose a basis that satisfy the differentiability required by any formulation, it is possible to use different 
regularities for each unknown field through the combined use of 0C  and kC  functions (Mendonça et al., 2013). 
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1.2 Stable-GFEM 

The first procedure of stabilization in GFEM was proposed by Babuška (Babuška and Banerjee, 2012, 2011) as a 
simple local modification in the enrichment functions employed in 0C -GFEM. They consist in the difference between 
the original enrichment function and a linear interpolant function defined in each finite element: 

mod ( )i i w iL L I L
      (2.6) 

where mod
iL  is the modified SGFEM enrichment function, iL  is the original enrichment function on the cloud  , 

( )w iI L
   is the interpolant function of the enrichment function defined at the element nodes, obtained with piecewise 

linear FE tent functions. 
The approximation functions are obtained by the product of PoU functions with modified enrichment functions in 

the same way as in (2.2) 

mod( ) ( ) ( ).i iL   x x x   (2.7) 

PLATE MODELS AND GFEM DESCRETIZATION 

The kinematic assumptions of Mindlin's model for plates can be summarized as the following, in Cartesian 
displacement components: 

     
     
   

0

0

,

,

, .

x x

y y

z

u z u z

u z v z

u z w





 

 



x x x
x x x
x x

  (3.1) 

and the Kirchhoff hypothesis result in /x w x     and /y w y    . Therefore, Mindlin model involve five 

generalized displacements and Kirchhoff model three. 
For this type of equivalent layer kinematic model, the independent strains are the in-plane strains 

   x,z : ; ;
T

x y xy  ε  and the transverse shear strains    x,z : ;
T

s yz xz    at an arbitrary point of the plate. The 

hypothesis (3.1) allows the in-plane deformations to be represented in the separated in the form 
 ( , ) ( )z z x x xε ε κ , where ε  is the membrane strain, and κ  is the curvature change due to bending. From the von 

Kármán hypothesis, the membrane deformations ε  is divided into linear and non-linear parts 0ε , NLε , as 
0 NL ε ε ε . The complete set of generalized deformations is the following: 

2
1

0 2

2
0 0 1

2

0 0

, ,

x

NL x

yx

wu
xx x

v w

y y y
v u w w

x yx y y x







                                                                                                    

ε ε κ and .xs

w
yx

w

y





                      

γ   (3.2) 

The transverse shear deformations sγ  naturally results null in the Kirchhoff model. 
The plate is considered an anisotropic laminated body, composed by N  layers characterized by the following 

anisotropic linear stress-strain relations (generalized Hooke's law), such that, for each layer lk  
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   ;  ,l l

x
yzk k s

x s
xz

xy

z









                           

Q Eσ ε κ τ γ   (3.3) 

where lkQ  and lkE  are the elastic anisotropic material matrices of the layer, σ  and sτ  are in-plane and transverse 
shear stresses respectively. For the laminate, the constitutive relations are 

    and   s sN C Q E= ε γ   (3.4) 

where  N N M;
T

:= , with N : { , , }T
xx yy xyN N N  and M : { , , }T

xx yy xyM M M  being the resultant forces and 

moments, respectively, defined as z dz N σ  and z z dz M σ . Q : { , }T
x yQ Q  are resultant shear forces, defined 

as sz dzQ = τ . The deformations ε  are defined as { ; }Tε ε κ . 

The bilinear operator for the Mindlin model is 

( , ) sT s sG d d  
 

    Td d C Eε ε γ γ   (3.5) 

where the last integral vanishes in the Kirchhoff case. Separating the linear and nonlinear membrane components, the 
bilinear form becomes 

 0 0 0 0( , ) ,
T T T T TNL NL NL NL s s sG d d     

 
       d d C C C C Eε ε ε ε ε ε ε ε γ γ   (3.6) 

where 

0
0    and    .

NL
NL

                      

ε ε
ε ε

κ0
  (3.7) 

1.3 Discretization for Kirchhoff and Mindlin plate models 

For the Kirchhoff model the generalized displacement fields can be organized as 0 0( ) { , , }Tu v wu x  and for 

Mindlin model as 0 0( ) { , , , , }T
x yu v w  u x . Each of these components is discretized with the enriched basis of GFEM 

over an arbitrary element e as 

1 1

( ) ( , ) ( ) ,
ijmNne

e
i ij ij ijk ijk

j k

u x y u L b
 

          
 x x   (3.8) 

where Nne  is the number of nodes of element e, ij  are the PoU functions associated to the node j , i  represent a 

component of u  and k  is the counter associated to the enrichment monomial functions. The limit ijm  is the number 

of enrichment functions of the displacement e
iu  associated to node j , and jkL  are the enrichment functions of this 

same node. The terms iju  are nodal values of e
iu  associated to the PoU functions and jkb  are the coefficients of the 

enriched basis functions ij ijkL . A compact notation can be obtained collecting the nodal parameters iju  and jkb  in a 

vector eU  and the corresponding basis functions in a matrix eN  of dimensions dofeq N , where 3q   or 5q   for 
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Kirchhoff or Mindlin models, respectively, and dofeN  is the number of degrees of freedom in the element. Therefore, 

the discretized generalized displacements are represented in the usual FEM or GFEM way as 

( ) ( ) .e e eu x N x U   (3.9) 

For future use, the transverse displacement is discretized as 

( ) .w ew x N U   (3.10) 

Substituting the displacement representation (3.9) in the strain-deformations (3.2), one obtains the generalized 
linear deformations in discretized form 

0        and      ,e s s e BU B Uε γ   (3.11) 

where B  is the deformation matrix associated with linear membrane deformation and change of curvature, and sB  is 
the shear deformation matrix, used in case of Mindlin model. 

With regard to the nonlinear generalized deformation NLε , here we follow the development introduced by 
Zienkiewicz & Taylor (1991) for the von Kármán theory with Kirchhoff model, and perform the necessary adjustments 
to GFEM and the Mindlin model. First, one defines the matrices 

0 0 0 0
and .

0 0 0 0

T w

z
w

w w

x y x
w w

y y y

      
      
    
  
    

 

  

N

N
GA   (3.12) 

Next, a vector θ  of the small rotations of the straight segments normal to the reference surface is defined along 
with its variation 

GU G U,      and     ,

w

x
w

y

 

            


   

θ θ   (3.13) 

where U  is the global vector of displacement coefficients and   is the variation operator. The nonlinear strain vector 
in (3.7) can be decomposed as a product of two linear terms as follows 

1 1
.

2 2
NL z zε θ =A A GU   (3.14) 

Its first variation can be written in a more convenient form for computational application after a sequence of 
operations: 

1 1
.

2 2
NL z z z z    ε θ + θ = θ =A A A A G U   (3.15) 

Defining B = A GNL z  in (3.14), we have the discretization of the deformation terms and their variations: 
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0 0

1
( ) , ( ) ,

2
, ,

NL NL NL NL 

 

 

 

B U U B U U

BU B U

 

 
  (3.16) 

supplemented by the transverse shear deformation discretization s s B Uγ  in case of Mindlin model. 

The bilinear operator (3.6), which represents the internal virtual work intW , then becomes 

   1 1
( , ) .

2 2

T TT T T NL NL NL NL sT s sG d 


           
 +u u U B CB B C B B CB B C B B E B U   (3.17) 

Considering int( , ) TG  u u U F , where int ( )F K U U  is the nodal vector of internal forces, the stiffness matrix 

K  is 

   1 1
( ) .

2 2

T TT T NL NL NL NL sT s s d


 
        

K U B CB B CB B CB B CB B E B   (3.18) 

The equilibrium algebraic system ( ) extK U U F  is rewritten in residual form 

int( ) .ext R F U F   (3.19) 

Following the usual procedure, the Newton-Raphson iterations are based on: 

,T k k  K U R   (3.20) 

where kU  is a correction such that in k -th iteration the solution is approximated by 1k k k   U U U  . TK  is the 

tangent matrix, defined as   /
kT   K KU U , which can be represented, in indicial form and using summation rule, 

as 

0
( )

,ij j ijT
ir j ir

r r

K U K
K U K

U U

 
  

 
  (3.21) 

and 0
irK  is the linear term, given by 

0 .T sT s s d

     K B CB B E B   (3.22) 

The first term comes from the differentiation of (3.18), which can be obtained taking B A G,NL z  such that 

.
NL z 


 
B A G

U U
  (3.23) 

The derivative of zA  requires the differentiation of w, obtained from (3.10) as w
k kw N U , such that 

/ .w
r rw U N    Taking zA  from (3.12), /z A U  becomes 
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0 , , 0 0 0

Tw wz
r x r ykl

w w
r r y r x

N NA

U N N

        
  (3.24) 

The symbol /z
klr kl rA A U    is adopted to compact the notation. With the derivative of NLB , the tangential 

matrix becomes 

0 1 1 1
.

2 2 2
t z z
ir ir mkr ki mn nj mi mn nkr kj km kir mn nl lj km ki mn nlr ljK K A G C B B C A G G A C A G G A C A G       (3.25) 

The influence of the transverse shear deformations of the Mindlin model appears in the linear stiffness 0
irK , the 

second term in the integral in (3.22), which is null in case of Kirchhoff model. 

PLATE MODELS AND GFEM DESCRETIZATION 

Here we investigate the behavior of the Generalized Finite Element approach to deal with the initial stability 
problem of the laminated plate associated with the von Kármán's theory. The weak form is the standard one, given by 
Brush and Almroth (1975). 

0 0 0.x xyT sT s T

xy y

N N
d d d

N N
   

  

 
       
  

  ε ε γ γ θ θC E   (4.1) 

Here, { , , }x y xyN N N  form a prescribed profile of in-plane resultant stresses acting in the plate, and one searches 

for the smallest value   which makes the equality holds for arbitrary admissible weighting functions. Hence, the plate 
is considered initially undeformed and loaded only by the prescribed in-plane stress resultants. In this way, 

{ , , }x y xyN N N  gives an estimate for the initial bucking load of the plate, which is proven to be an upper bound of the 

real bucking load. After discretization, Eq. (4.1) results in the algebraic eigenvalue problem 

0 ,G    K K U 0   (4.2) 

where 0K  is the linear stiffness matrix,   and U  are eigenvalues and eigenvectors and GK  is the geometric matrix, 
real, symmetric and, in general, singular. One searches for the smallest eigenvalue associated to the critical buckling 
load. Both in FEM and in GFEM, GK  has non zero entries only on the positions associated to transverse displacement 

w , that is, all rows and columns associated with u , v  (and x , and y  in case of the Mindlin model) are zero. In 

addition, even rows associated with w  can be null depending on the prescribed values of xN , yN  and xyN . Since only 

one eigenvalue is needed, the smallest one, an interactive method is usually selected to search only for the first 
eigenpair, for example the method of subspace iteration or the Lanczos adapted to symmetric matrices. Then, it is 
sufficient to use a small penalty   on the zero diagonals of GK . These values generate a set of eigenvalues of order 
1 /  , which are independent from the first ones, and will be the largest ones in the set. In case of FEM, both K  and 

GK  become positive-definite matrices after the imposition of adequate Dirichlet boundary conditions. 
In case of the usual C0-GFEM, it is proven that the function basis formed by the linear partition of unity uniformly 

enriched by polynomial functions is linearly dependent. This generates a singular stiffness matrix 0K . Besides the 
number of null eigenvalues associated with the number of rigid body motions of the model, there is an a-priori 
unknown number of null eigenvalues associated with the linear dependency of the basis. Considering the complete set 
of N  eigenvalues of the algebraic system, the first non-null, the one of interest, will be n -th one in the ordered list. 
Usually, n can be as large as about a half of N . The singularity of 0K  is dealt with in this paper by the use of the 
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standard shift technique (solving the eigenproblem G   K K U 0 , with GsK K K=  and s  = , for 

arbitrary 0s  ). Now, K  becomes positive-definite for C0-GFEM. However, the iterative method has to solve for a 
number of eigenpairs large enough to include the first non-zero one. This defeats the whole purpose of eigenvalue 
methods like Lanczos or subspace iterations, because the size of the subspace becomes too large to render the method 
efficient. 

On the other hand, function basis formed by the smooth C k  partition of unity enriched by polynomial monomials 
is linearly independent (Mendonça et al., 2011). As a result, after imposition of sufficient Dirichlet boundary conditions, 
the stiffness matrix still has a large condition number but it is nonsingular. In the present paper the shift technique is 
used in both C0-GFEM and C k -GFEM. 

NUMERICAL RESULTS 

The present tests with the GFEM formulations were performed modeling the entire plate by a set of uniform 
meshes, defined by a mesh parameter M, some of which are illustrated in Figure 1. The C k -GFEM behavior in 
extremely distorted meshes has already been investigated in (Mendonça et al., 2011) and is not considered here. The 
same can be stated about benchmark problems with singularities, whose GFEM response have been already intensively 
investigated in the literature. 

 
Figure 1 – Examples of meshes used in the laminated plate numerical tests, with mesh indices M = 1, 2 and 4. 

In transverse load cases, the boundaries are simply supported of the type 0 0 0u v w    along all edges. 
These constraints are imposed by selectively restricting the enrichment coefficients. For example, for a node on a 
boundary .x const , the coefficients of functions whose enrichment contains x  are not constrained, since these 
functions are naturally zero on that part of the boundary. In this way, the enriched function is preserved throughout 
the domain. For arbitrarily shaped domains, where the boundary segments are neither straight nor parallel to a given 
coordinate axis, the procedure proposed in Garcia et al. (2009) can be used, where the partition of unity associated to 
the boundary node is substituted by it multiplied by a ramp function which is zero at the boundary. 

The numerical integration is a special concern when the smooth approximation functions in kC -GFEM is used, 
because the partition of unity is not polynomial but of rational type. A study about the number of integration points 
required to integrate adequately the stiffness matrix is described in de Barcellos et al. (2009), using triangular and 
Gaussian integration rules. In all cases solved in the present paper, an indication of the number of integration points 
used, nip , is shown, and the triangular rule of Wandzura and Xiao (2003) is used. 

In comparing results between C 0 - and C k -GFEM, we distinguish the degree p  of uniform refinement and the 

degree b  of the least complete polynomial the approximation basis is capable of reproducing. For C 0 -GFEM, the PoU is 
the linear tent and the enriched basis has a polynomial reproducibility of degree 1b p  . For C k -GFEM, the largest 
polynomial the PoU can reproduce is the constant, and as a consequence, b p . 

1.4 Homogeneous, isotropic, thin plate problem 

The first evaluation of the behavior of 0C -GFEM and kC -GFEM is the simplest case of a homogeneous isotropic 
square plate, clamped on all edges, modeled by the Mindlin kinematic model, loaded in the nonlinear range. The 
problem is interesting for a first evaluation because there is an analytic solution available for the thin plate model by 
Levy (1942). The data used here are the following: plate with sides 254a   mm, thickness 1.27H   mm (aspect ratio 
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/ 200a H  ) and elastic material properties 68.947E   GPa and 0.316  . The transverse distributed load is 

uniform, 0 0.0138q   MPa. Due to the symmetry, only one quarter of the plate is modeled. Considering the Cartesian 
axes 0xy  with origin at the plate center, the boundary conditions for the Mindlin model are: at / 2x a  and 

/ 2y a , fixed conditions 0 0 0x yu v w       , and at 0x   and 0y  , symmetry conditions 0 0xu    

and 0 0vv   , respectively. 

Figure 2 shows the pointwise relative errors of the transverse displacement at plate center, ( ) /r ex exw w w w  , 

versus the number of dof, for 0C -and 0C -GFEM, for the different meshes M1 to M32, with uniform polynomial 
enrichment of degrees 0,..., 4p  . The results are for the Mindlin model with shear parameter 1sk  . The reference 

value of displacement, from Levy (1942), is 1,7272exw  . In some graphs, the load is parametrized as 

4
0

4
.P

q a

Eh
   (5.1) 

 
Figure 2: Relative error of the transverse displacement at plate center rw  versus dof, for (a) 0C -GFEM and (b) kC -GFEM. nip =25, 

P =320. Mindlin model with sk =1. 

The results in Figure 2 are obtained from 320P  . This load generates maximum transverse displacement of 
about / 1,7w h  , which puts the response beyond the usual linear range ( / 0,5w h  ), but still inside the range of 

validity of the von Kármán model. For the results of kC -GFEM in Figure 2, for lower polynomial enrichments 
1p   and 2, the shape of the basis functions and their derivatives are considered simpler and easier to integrate, 

therefore we use 25nip   integration points. For higher enrichment degrees, 3p   and 4, we use 54npi   points 
per element, in order to guarantee a proper integration. The results show a tendency for locking with enrichments 

0p   and 1, for 0C - and kC -GFEM respectively, that is, for a basis of polynomial reproducibility 1b  . For 

enrichments 2p   and higher, 0C -GFEM results show stabilization with mesh refinements, which can be caused by ill 
conditioning of the stiffness matrix. For the smooth GFEM, the curves show progressive convergence with h -refinement. 
The errors obtained when using mesh M1 are almost always high because this mesh is too crude, particularly in 
Figure 2 kC -GFEM case. 

A more systematic evaluation of the effect of number of integration points (nip ) in the response of kC -GFEM is 

described in Figure 3. Here, the relative error of transverse displacement at plate center, ,rw  is represented versus 
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nip , with enrichments 1p   and 2. For each mesh only 7, 23nip   and 54 points are included, which are the 

smallest ones available in the integration rule of Wandzura. It is clear a tendency of convergence at 25 points for the 
present type of problems. 

 
Figure 3: Relative error of the transverse displacement at plate center rw  versus the number of integration nip. Mindlin model with 

kC -GFEM and enrichments (a) 1p   and (b) 2p  . 

1.5 Homogeneous, isotropic, thick plate problem 

The behavior of 0C -GFEM and kC -GFEM approximations for Mindlin model in moderately large displacements in 
a thick plate is evaluated considering the case of an isotropic square plate with simply supported edges  
( 0 0 0u v w   ) with sides 254a   mm and thickness 25.47H   mm, such that the aspect ratio is / 10a H  . 

The material properties are 68.947E   GPa and 0.316  . The shear correction factor is set to 5 / 6sk  . Only a 

quarter of the plate is modeled due to the symmetry and the transverse load is uniformly distributed, oq . 
Figure 4 shows the pointwise normalized transverse displacement w  and the normal stress x  versus transverse 

load P , for 0C -GFEM, with polynomial uniform enrichment of degree 2p   and 25nip   integration points. The 
displacements are at the plate center and the reference solution is taken from Reddy (Reddy, 2004). This reference 
uses a finite element solution and the stress is obtained at the point ( , , ) (6.25; 6.25; / 2)x y z h  , chosen to coincide 

with one integration point of his model. That model consists of an uniform mesh of 16 nonconforming quadrilateral 
elements, Q9. The results obtained from GFEM uses a mesh M8, with polynomial enrichment of degree 2p  . It must 
be observed that the results from Reddy (2004) are included here only to illustrate results available in the literature 
and to show a general trend. Both models have different number of nodes and types of approximation functions. 
Likely, the present model is more refined and accurate. The values of displacement and normal stresses are listed in 
Table 1 for the normalized values defined in the Figure 4. 
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Figure 4: (a) transverse displacement w  and (b) normal stress x  versus transverse load P , 0C -GFEM, enrichments 2p  .and 

nip = 25 Mindlin model with sk =5/6. 

Figure 5 shows the evolution of the normalized in-plane stress x  along the line 0y  , from the plate center 

0x   to the edge, at four different z levels, obtained with 0C -GFEM with 2p  , 250P   and 25nip  , and the 
mesh M8. Stresses obtained from the linear analysis are also shown, multiplied by 0.1. At this load level the nonlinear 
effect is pronounceable: the membrane stresses causes non zero stresses at the border / 2x a , differently from the 
usual zero value from the linear model; the laminate is symmetric and there is no coupling between bending and 
membrane behavior in the linear problem, and x  is zero for all z at the border in order to comply with the zero 
bending moment there. Along the range, from the center to near the border, the stress variation departs from the 
usual sine like shape of the linear case to an almost constant curve, also because of the nonlinearly generated 
membrane forces. Most of the transverse load is supported by the transverse component of the membrane stresses 
instead of the bending moment associated with the transverse gradient of x . This can be seen by the difference 

between the values of x  at the plate center for the linear analysis, 76.4x   , and nonlinear analysis, 

(1.69; 19.6)x   at the top and bottom surfaces respectively. 

Table 1 - Normalized transverse displacement at plate center ( w ) and normalized in-plane stress ( x ) for loads (P ) with simply 

supported boundary condition. Mindlin model with k = 5/6 

 Reddy (2004) 0C -GFEM
 

kC -GFEM
 

P  w  x  w  x  w  x  

6.25 0.2790 1.861 0.2790 1.872 0.2668 1.800 
12.5 0.4630 3.305 0.4630 3.327 0.4487 3.236 
25 0.6911 5.319 0.6910 5.360 0.6771 5.264 
50 0.9575 8.001 0.9574 8.067 0.9447 7.962 
75 1.1333 9.983 1.1332 10.069 1.1211 9.952 

100 1.2688 11.634 1.2687 11.736 1.2568 11.606 
125 1.3809 13.085 1.3808 13.201 1.3691 13.058 
150 1.4774 14.398 1.4773 14.529 1.4658 14.373 
175 1.5628 15.608 1.5627 15.756 1.5512 15.585 
200 1.6398 16.743 1.6398 16.903 1.6283 16.718 
225 1.7102 17.812 1.7102 17.986 1.6987 17.788 
250 1.7752 18.831 1.7752 19.017 1.7637 18.805 
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Figure 5: Normal stress x  along the line 0y  , at four different z  levels at the thickness, for 0C -GFEM with 2p   and 

250P  . (The stresses of linear response are multiplied by 0.1). Mindlin model with sk =5/6. 

1.6 Cross-ply laminate problem 

The problem considered here consists of a square laminated plate with sides 200a b   mm aligned along x  
and y  axis and thickness 2h   mm, with three equal orthotropic layers with orientations [0 / 90 / 0 ]   . Each layer 

has the following orthotropic properties: 1 225E E , 12 13 20.5G G E  , 12 23 0.25   , 23 20.2G E  with 

2 7E   GPa. The laminate is thin, with aspect / 100a h  . The boundary conditions are simply supported: at x  and 

/ 2y a  , 0 0 0u v w   . The tests are made with uniform transverse distributed loads ranging from 
0.1  to 1  MPa. 

Since the laminate is relatively thin, with aspect / 100a h  , the behavior of the Kirchhoff model can be evaluated 

using conform Kirchhoff GFEM formulation with kC  smooth functions. In this way, Figure 6 shows the transverse 
displacement w  in the plate center versus the transverse load, using FSDT (Mindlin) with both 0C  and kC -GFEM and 
CPT (Kirchhoff) plate model using kC GFEM. In all cases, the approximation basis has reproducibility polynomial 
degree 3b  . 

 
Figure 6: Cross-ply laminate. Transverse displacement w  in the plate center node, using FSDT and CPT plate models, 0C - and kC -

GFEM with b = 3, a/h = 100. 
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Figure 7 shows the normal stress x  in the central node at top and bottom of the plate, versus transverse load, 

using FSDT and CPT plate models. The results are compared between the 0C  and kC -GFEM with 3b  . The nonlinear 
results for FSDT model obtained with 0C  and kC -GFEM are very similar to each other, for the stresses at both 
surfaces. Figure 8 shows the normal stress x  across thickness at the center node, computed at two neighboring 

elements. Because the results are obtained with 0C -GFEM, the discontinuity is expected, but it is very small in this 
case. 

 
Figure 7: Normal stress x  in the central node at top and bottom of the plate, using FSDT and CPT plate models, 0C - and kC -

GFEM with b = 3. “b” and “t” refer to results at bottom and top surfaces of the laminate, respectively. 

 
Figure 8: Normal stress x  through the thickness at the interfaces elements 1 2 and ee  shearing the central node, using Mindlin 

model, 0C -GFEM with 3p   and max250, 1.nip q q    
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The results for displacements and stresses for Mindlin and Kirchhoff are naturally similar because the laminate is 
thin. Also, the results from 0C  and kC -GFEM are similar for the same degree b  of the approximation basis. For 
Mindlin model, a given b  implies more degrees of freedom per node in the smooth than 0C -GFEM, as seen in Table 2. 
However, if the laminate is thin, kC -GFEM in Kirchhoff model requires equal or less dof's/node than 0C -GFEM to 
attain a given degree b  in the basis, for orders of 3b   or higher. 

Table 2 - Number of degree of freedom per node in Mindlin and Kirchhoff models with 0C  and kC -GFEM 

 

Mindlin Kirchhoff 
0C -GFEM kC -GFEM kC -GFEM 

0 0, , , ,x yu v w    0 0, , , ,x yu v w    0 0, ,u v w  

b  p  /dof node  p  /dof node  p  /dof node  
1 0 5x1 = 5 1 5x3 = 15 1 3x3 = 9 
2 1 5x3 = 15 2 5x6 = 30 2 3x6 = 18 
3 2 5x6 = 30 3 5x10 = 50 3 3x10 = 30 
4 3 5x10 = 50 4 5x15 = 75 4 3x15 = 45 
5 4 5x15 = 75 5 5x21 = 105 5 3x21 = 63 

1.7 Instability analysis 

The problem considered here consists of a square laminated plate with equal sides 200a   mm aligned along x  
and y  axis, with thickness 2H   mm, simply supported at all sides, with four equal orthotropic layers with 

orientations [0 / 90 / 90 / 0 ]    . Each layer has the following properties in their orthotropic directions: 1 225E E , 

12 13 20.5G G E  , 12 23 0.25   , 23 20.2G E  with 2 7E   GPa. These geometric and material relations allow 
analytic solution of the critical load for the Kirchhoff model. Considering simply supported boundary conditions with 

1x yN N   and 0xyN  , the first exact eigenvalue is (Whitney, 1987) 

2
22 11 2 4

2 2
22 22

,
(1 )

D D D
n n

D Da n




 
      

  (5.2) 

where 12 662D D D  . The buckling mode is    sin / cos /n x a m y a  , where, 1m   and n must be chosen to 

provide the minimum value of  . For these layers properties, the laminate bending elastic matrix has nonzero 
components 5

11 1.029240 10D    Nmm, 3
22 1.871345 10D    Nmm, 3

12 1.169591 10D    Nmm, 
3

66 2.333333 10D    Nmm. Then, 5836.24D   Nmm and the critical load happens with mode 1n  , with value 

16.446457757  . Where necessary, a reference value for the buckling load associated with the Mindlin model was 
taken from an uniform mesh of 9 nodes Lagrangian quadrilateral finite elements. It was used a sequence of meshes 
until of 50 50  elements, with 10201 nodes. The shear correction factor was set to 1.0s  . The obtained critical 
value is 16, 36971  . 

Figure 9 and Figure 10 display results of relative errors of   versus number of degrees of freedom for Kirchhoff 
and Mindlin models respectively, with C k -GFEM. Each curve is associated to a given mesh, as indicated. The dots 
indicate the enrichment degree p  of the basis, starting with 1p   at the top, except for the first curve, mesh 1M  , 
which starts from 2p  . In this case, the discretization was too poor to allow a solution. We see the errors and the 

rates of convergence are similar for both kinematic models. All results were obtained with penalty   on GK  equal to 
210  times the smallest non zero value at the diagonal in GK . The shift factor was 10s  . The eigenvalues were 

obtained with the subspace iteration method, with error tolerance 810tol   for the first 2 eigenvalues. The size of 
the iteration subspace was set to 10 eigenvectors. 
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Figure 9: Relative error of   for Kirchhoff model versus number of degrees of freedom. 

 
Figure 10: Relative error of   for Mindlin model with kC -GFEM versus number of degrees of freedom. 

The abscissa scale in both Figure 9 and Figure 10 are the same. It can be seen a horizontal shift of the curves to the 
left in the Kirchhoff results, with respect to those of Mindlin model. This is natural because, for the first model, there is 
only one displacement component (w) and for the first order model there are three ( , xw   and y ). 
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For the Kirchhoff model with enrichment 1p   there is no convergence. This can be understood considering that 
only the transverse displacement is modeled. With 1p  , the basis is too poor for allowing the adequate derivatives 

,xw  and ,yw  necessary to the model, although the space of approximation is still kC  continuous, with arbitrary k . In 

the case of C 0 -GFEM, all displacement components, , xw   and y , are modeled independently and convergence is 

observed. 
For both, Mindlin and Kirchhoff models, Figure 9 and Figure 10 show very low convergence for enrichment degree 
4p  . This can be imputed to numerical difficulties due to the condition number of the stiffness matrix. 

For the tests with C 0 -GFEM, as commented in the last section, the stiffness matrix contains an a-priori unknown 
number of spurious solutions with zero or very small eigenvalues. Figure 11 shows the number sN  of zero eigenvalues 

obtained for each degree b  of polynomial reproducibility of the basis, for Mindlin model. In all cases the 1sn N  -th 

eigenvalue is an adequate approximation for the reference value of the critical load. The fraction of sN  with the total 

number of degrees of freedom, /sN dof, grows approximately linearly with the degree b  of the basis for all meshes, 
except for the coarsest one. 

 
Figure 11: Number of null eigenvalues for Mindlin’s model in 0C -GFEM versus degree b  of the polynomial basis. 

1.7.1 Comparison between GFEM, stable GFEM and C k -GFEM on the stability analysis 

The effects of the use of stabilization in C 0 -GFEM is evaluated using several meshes on the entire plate, in the 
same problem described at the beginning of this section, with 1x yN N   and 0xyN  . Table 3 shows the 

estimated critical loads for the Mindlin model for polynomial enrichments 0,1,2, 3p   and 4, for both non-stabilized 

and stabilized C 0 -GFEM. The stabilization procedure (2.7), when applied to polynomial enrichment functions, 
automatically renders the stabilized linear function identically zero, such that remains in the approximation basis only 
the partition of unity function and the functions enriched by polynomials of degrees 2p   and greater. Except for the 

very coarse mesh M1 (two elements and four nodes), C 0 -GFEM with 2p   gives reasonable approximations for the 
critical load in all meshes, however, the first non-zero eigenvalue is the n -th one of the algebraic system. For 

, ,2, 3p    the critical load is the 9th eigenvalue. In the stabilized case, C 0 -SGFEM, the critical load is the first 

eigenvalue for all p 's, and the more refined meshes, M4, M6 and M8. For the coarser meshes M1 and M2, the critical 
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load is the first eigenvalue when 2p  , but can be the 13th one for M2 and 4.p   For the refined meshes M4, M6 
and M8, and 1,p   the SGFEM critical load is the first eigenvalue but the approximation is too crude to be useful. This 
is in opposition to the non-stable GFEM, which gives reasonable approximation. For example, for M6 and 1p  , we 
have 17.306   and 308.5  for GFEM and SGFEM respectively. For M2, only with 4p   one obtains a reasonable 
SGFEM approximation, but the algebraic system contains 12 numerically zero eigenvalues. As described in Babuška and 
Banerjee (Babuška and Banerjee, 2012, 2011), the stabilization procedure aims to improve the condition number and 
make its rate of growth reduced to the levels of the standard finite element method. It is seems that the stabilization 
procedure impoverish the approximation basis and does not preclude completely all spurious modes. 

Table 3 -Critical loads for 0C -GFEM and SGFEM versus degree of enrichment p, Mindlin model, nsi is the number of subspace 
iterations, d1 an d2 are the number of degree of freedom in the model. n is the first useful eigenvalue. 

  GFEM    SGFEM 

Mesh p    n  d1 nsi   n  d2 nsi d2/d1 

M1 2 91.04 9 72 5 91.04 1 48 2 0.667 
 3 17.0403 2 120 3 17.04031 2 96 3 0.8 
 4 16.8133 15 180 16 16.81391 2 156 4 0.867 

M2 1 27.79 2 81 3      
 2 16.56 9 162 9 79.6 1 108 2 0.667 
 3 16.48797 25 270 17 24.04 1 216 9 0.8 
 4 16.36976 49 405 19 16.36977 13 351 20 0.867 

M4 0 646.7 1 75 2      
 1 19.063 2 225 5 646.7 1 75 2 0.333 
 2 16.43064 9 450 10 47.72 1 300 6 0.667 
 3 16.37024 25 750 12 16.74418 1 600 9 0.8 
 4 16.37963 49 1125 21 16.37188 1 975 9 0.867 

M6 0 308.5 1 147 11      
 1 17.3055 3 441 7 308.5 1 147 11 0.333 
 2 16.37819 9 882 9 25.18 1 588 6 0.667 
 3 16.36966 25 1470 40 16.43857 1 1176 6 0.8 
 4 16.36962 49 2205 41 16.37000 1 1911 7 0.867 

M8 0 182.8 1 243 14      
 1 16.7808 3 729 14 182.8 1 243 14 0.333 
 2 16.37153 9 1458 16 19.434 1 972 6 0.667 
 3 16.36961 25 2430 16 16.38854 1 1944 8 0.8 
 4 16.36962 49 3645 40 16.36968 1 3159 8 0.867 

An interesting side effect of the stabilization procedure is the reduction of the number of degrees of freedom for a 
given polynomial degree of enrichment. For an approximation basis capable of reproducing a polynomial of degree 

3b  , for example, in a two-dimensional space, C 0 -GFEM requires 6 functions per node while C 0 -SGFEM requires 4. 
This happens because the PoU function can represent degrees zero and one, and the uniform enrichment with 
quadratic monomials generates a set of 4 functions per node whose linear combinations are capable of representing all 
polynomials of degrees 3, 2 and 1. This is summarized in Table 4, where nf is the necessary number of monomials per 
node. The counting of number of degrees of freedom is given by 3 generalized directions in bending ( ,w ,x y ), times 
the number of nodes, times nf. The results are given as d1 and d2 in the Table 3 for GFEM and SGFEM respectively. The 
difference between both GFEM's gradually reduces with the growth in p , but for 2,p   SGFEM needs only 2/3 of the 
number of dof in GFEM. As for the smooth GFEM, b p , and the number nf of dof's in each generalized direction is 
the same as in C 0 -GFEM. It requires more degrees of freedom to attain a given polynomial reproducibility, but always 
produces the solution in the first eigenvalue of the algebraic system, without the need of stabilizing the enrichment 
monomials. 
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Table 4 - Size of the basis nf for GFEM and SGFEM versus degree of enrichment p in two dimensions. 

 0C -GFEM 0C -SGFEM kC -GFEM 

 0 0, , , ,x yu v w    0 0, , , ,x yu v w    0 0, ,u v w  

p  p  nf p  nf p  nf 
0 1 1 1 1 - - 
1 2 3   1 3 
2 3 6 3 4 2 6 
3 4 10 4 8 3 10 
4 5 15 5 13 4 15 

Table 5 - Relative errors of critical loads obtained from 0C -GFEM, SGFEM and kC -GFEM versus degree of enrichment p, for 
several meshes. Mindlin model. nsi is the number of subspace iterations, d1, d2 and d3 are the number of degree of freedom in the 

model. 

 0C -GFEM SGFEM kC -GFEM 
Mesh p  d1 Error d2 Error d3 Error 

M1 2 72 4.5 48 4.6 72 4.6 
 3 120 4.1 E-2 96 4.1 E-2 120 2.0 E-1 
 4 180 2.7 E-2 156 2.7 E-2 180 1.2 E-2 

M2 1 81 7.0 E-1   81 7.9 E+1 
 2 162 1.2 E-2 108 3.9 162 1.1 
 3 270 7.2 E-3 216 4.7 E-1 270 2.5 E-2 
 4 405 3.2 E-6 351 3.8 E-6 405 5.0 E-4 

M4 0 75 3.9 E+1     
 1 225 1.6 E-1 75 3.9 E+1 225 1.9 E+1 
 2 450 3.7 E-3 300 1.9 450 2.9 E-1 
 3 750 3.2 E-5 600 2.3 E-2 750 2.2 E-3 
 4 1125 6.1 E-4 975 1.3 E-4 1125 3.3 E-6 

M6 0 147 1.8 E+1     
 1 441 5.7 E-2 147 1.8 E+1 441 1.2 E+1 
 2 882 5.2 E-4 588 5.4 E-1 882 8.4 E-2 
 3 1470 3.0 E-6 1176 4.2 E-3 1470 3.3 E-4 
 4 2205 5.4 E-6 1911 1.8 E-5 2205 6.9 E-6 

M8 0 243 1.0 E+1     
 1 729 2.5 E-2 243 1.0 E+1 729 7.9 
 2 1458 1.1 E-4 972 1.9 E-1 1458 3.1 E-2 
 3 2430 6.0 E-6 1944 1.2 E-3 2430 7.3 E-5 
 4 3645 5.4 E-6 3159 1.8 E-6 3645 7.6 E-6 

 
Figure 12: Relative errors in critical load versus number of degree of freedom for Mindlin model, 0C -GFEM and SGFEM and kC -

GFEM. Every dot in a curve corresponds to a given degree p  of polynomial enrichment, starting from 0, 1 or 2, as indicated. 
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The results in Table 3 are reorganized in Table 5 to show relative errors in critical load. Here the errors are given 
versus number of degrees of freedom for Mindlin model, using C 0 -GFEM, SGFEM and C k -GFEM, for several meshes. 
To easy the interpretations, the results for two meshes, M2 and M8, were plotted in Figure 12. Every dot in a curve 
corresponds to a given degree p  of polynomial enrichment, starting from 0, 1,2,3 or 4, as indicated in the figure. The 

relation between the results of C 0  and C k -GFEM follows as expected, because the difference between 1b p   and 
b p , respectively, generates a vertical translation between the curves, accompanied by a difference in convergence 

rates. However, it must be considered that the results for C k -GFEM were obtained computing only the first eigenvalue 
of the algebraic system, while for C 0 -GFEM the quantity sN  of non-physical eigenvalues is unpredictable. Therefore, 

contrary to the tendencies of the convergence curves alone, C k -GFEM presents superior behavior in comparison to C 0

-GFEM for this type of application. 
For C 0 -GFEM with mesh M8, it can be seen a lack of convergence between 3p   and 4. This is imputed to the 

degradation of the condition number, which becomes more pronounced than in the mesh M2. The C k -GFEM results 
for M8 does not show an effect so intense, because, by construction, its approximation basis is linearly independent, 
which renders the coefficient matrix still ill conditioned but nonsingular. 

The SGFEM aims at a stabilization of the condition number growth, by elimination of the linear dependency in the 
approximation basis by removing the linear content from the enrichment monomials. In most cases, as seen in n in 
Table 3, this is enough to renders a numerically nonsingular coefficient matrix, giving the critical load as the first 
eigenvalue. Even though, for coarse meshes M1 and M2, for 4p  , it can be seen in the results a list of eigenvalues 
several orders smaller than the physical one. This happens as a result of the ill conditioning of the matrix, even after 
the stabilization procedure. 

One side effect of the stabilization is the impoverishment of the approximation basis, as seen comparing the 
curves C 0 -GFEM and SGFEM in Figure 12. This has been observed with extensive numerical experimentation by Li 
(2014) in linear plane elasticity problems. It seems that the linear contents in the enrichment monomials, although 
generating linear dependency in the basis, provides also a useful enrichment, which is eliminated in the stabilization 
procedure. Judging by the curves in Figure 12, the resulting stabilized function basis is capable of spanning a space 
function similar to the one of smooth C k -GFEM: the curves are very similar in the range 2p   and 3. 

CONCLUSION 

The current paper presents a comparison between two types of GFEM, 0C  and kC , in response of Mindlin and 
Kirchhoff kinematic models under moderately large displacements, modeled under the von Kármán theory. In addition, 
the response of both stable and non-stable 0C -GFEM are evaluated in comparison with the smooth GFEM in the 
approximation of the buckling load, with regard to the effects of the stiffness matrix rank on the computational effort 
to obtain the first useful eigenvalue. The results allow the following observations and conclusions: 

1) For Mindlin model, a given degree b  of the polynomial reproducibility of the approximation basis implies more 
degrees of freedom per node in the smooth than 0C -GFEM. However, if the laminate is thin, kC -GFEM allows the 
use of Kirchhoff model, which requires equal or less dof's/node than 0C -GFEM to attain a given degree b  in the 
basis, for orders 3b   or higher, thus compensating the natural excess of dof's/node with respect to the 0C  
version. 

2) The convergence curves in pointwise relative errors of displacement for Mindlin model with 0C -GFEM show 
stabilization of the curves for all enrichments, after some number of dof's, differently from the curves of smooth 
GFEM, which keep the convergence for all enrichment degrees, except for approximation basis of degree 1b  . 
In fact, both forms of GFEM show locking in the nonlinear response for the Mindlin model with 1b  . As for the 
stabilization of the curves for the 0C -GFEM, it can be speculated it is related with bad conditioning of the stiffness 
matrix. The smooth version has the matrix naturally nonsingular, because the basis functions are linearly 
independent. 
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3) As in the linear problem, the von Kármán response with the smooth GFEM requires a larger effort in the numerical 
integration than in 0C -GFEM. This is due to the highly oscillatory aspect of the smooth enriched functions and 
their derivatives. 

For the standard problem of the approximation of the upper bound of critical instability load by eigenvalue 
problem with kC -GFEM, we observe the following: 

4) The convergence curves of the critical load by kC -GFEM and Kirchhoff model show lack of convergence for 1p  , 
as expected because only the displacement component w  is modeled with linear approximation functions and its 
first derivatives are too poor. For the Mindlin model, 1p   generates a good convergence curve: the 

approximation basis is of degree 2b  , applied over the three displacement components, w , x  and y . 

However, for thin laminates, the Kirchhoff model requires only one third of the dof's in the Mindlin model. 

5) The behavior of the curves for enrichments 2p   and 3 are excellent for both Kirchhoff and Mindlin models. For 
4p  , the response is not convergent, raising the hypothesis of ill conditioning in the coefficient matrix. 

Considering the critical load obtained by 0C -GFEM and SGFEM, we observe the following: 

6) The critical loads obtained with 0C -GFEM are, in general, as accurate as with smooth GFEM, but it corresponds to 
the n -th eigenvalue of the problem, where n is a priori unknown. This is different from the kC -GFEM, where all 
critical loads are the first eigenvalue of the model. 

7) The stable form of GFEM, for non-coarse meshes, furnishes the critical load at the first eigenvalue, although with 
inferior accuracy. The processes of stabilization also impoverish the function basis. A positive aspect is that the 
number of dof's/node is reduced with respect to the non-stable GFEM because, in the process, the enrichment 
function of degree 1p   naturally vanishes from the stabilized basis. However, with the impoverishment of the 
basis, the SGFEM requires more enrichment than GFEM to attain a given error. The increase in the number of 
dof's in SGFEM with respect to 0C -GFEM, to obtain a given accuracy, is approximately the same as the increase in 

kC -GFEM, that is, both kC -GFEM and SGFEM show close convergence curves and produce the critical load at the 
first eigenvalue of the problem. 
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