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Abstract 
In this paper, a new 12-node triangular element is developed for 
the analysis of composite plates. Moreover, the stress-strain rela-
tions of laminated bending plates, along with the characteristics 
of composite and piezoelectric materials have also been investiga-
ted. Following this, a finite element formulation for smart com-
posite bending plates is proposed. The capability of the suggested 
element in analyzing both composite plates and smart ones is 
studied via numerical examples. These analyses demonstrate that 
the proposed element is capable of yielding accurate results for 
the given problems. In addition, it is also concluded that in com-
parison to the elements developed by other researchers, this new 
formulation leads to more precise outcomes. 
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1 INTRODUCTION 

Due to the prominent role of plates in civil, aerospace and mechanical structures, extensive re-
search has been conducted on their behavior and their analytical formulation during the last dec-
ades. With the advancement of technology, new kinds of material have been introduced into con-
struction. For example, composite materials are now used in the production of multi-layered 
bending plates. 

The discovery of the piezoelectric effect goes back to the beginning of the nineteenth century. 
However, piezoelectric materials were not practically used until the First World War. Piezoelec-
tric material comprises one of the main categories of smart materials which are implemented in 
the construction of smart structures. Smart structures have the capability to sense changes and 
adapt to them [1]. Piezoelectricity is an electro-mechanical phenomenon which is exhibited in 
materials with certain chemical structures. These materials contain particles that can acquire 
electric charges and have the characteristics of electrical polarization. Two forms of piezoelectric 
behavior are defined for these materials; direct and converse. Direct piezoelectricity is when me-
chanical straining of a material causes the formation of electric poles in that material. While in 

M. Rezaiee-Pajand (Pro fessor), 
Y. Sadeghi (Graduate Student)* 
 
Department of Civil Engineering, Ferdowsi 
University of Mashhad, Iran 
 
 
 
Received 16 Feb 2012 
In revised form 20 Aug 2012   
 
 
 
 
*Author email: sadeghi@um.ac.ir 
 
 



    Y. Sadeghi et al / A bending element for isotropic, multilayered and piezoelectric plates 

	  

 
Latin American Journal of Solids and Structures 10(2013) 323 – 348 

324 

converse piezoelectricity, the material will experience mechanical strains when subjected to an 
electric field. 

Structural members such as beams, plates, shells and laminated elements, which constitute the 
active material, create a class of structures known as smart structures. Various definitions of this 
kind of structures exist. By Newnham’s description, smart structures are ones that actuators and 
sensors, with the ability of sensing and taking corrective action, have been implemented inside or 
on the surface of the structure [2]. The process of designing a piezoelectric laminated plate, with a 
number of sensors and actuators distributed on its surface, is developed by Lee [3]. Lee also ob-
tained the interactive relations between a laminated plate and the smart material. Experimental 
research has been carried out by Lazarus on smart structures with plate elements subjected to 
strain excitations [4]. In 1991, a piezoelectric brick element with three degrees of freedom was 
proposed by Tzou et al [5]. Ha et al. proposed an 8-node hybrid brick element [6]. They investi-
gated the response of laminated composite structures composed of piezoelectric ceramics under 
mechanical and electrical loading. In 1993, a 4-node flexural plate element with twelve electrical 
degrees of freedom was developed by Park et al [7]. Detwiler used the finite element method to 
analyze laminated composite structures with sensors and actuators distributed on their surface 
[8]. Wang et al. developed the governing equilibrium equations of smart structures comprised of 
piezoelectric sensors and actuators [9]. Based on classic analytical methods, they formulated a 4-
node bending plate element with a single electrical degree of freedom on each node. 

The plate bending modeling by Reissner-Mindlin theory is today the dominating tool used in 
finite element computations. In fact, the related elements have to be designed very carefully in 
order to avoid, or relax, the locking phenomena. According to the numerical findings, the locking 
is mostly seen in some low-order elements for which the finite element method will not lead to the 
proper response, when the plate is thin. It should be added that similar phenomena may arise for 
many higher-order elements as well. For these, the full locking may not occur, but the accuracy 
will not be as good as it would be expected from the used basis functions. 

Mathematically, the locking is the result of lacking stability of the formulation. Another effect 
due to the scheme non-stability is that the calculated shear force can be oscillating and leading to 
inaccurate answer [46, 47].  During the last few years, significant progress has been made on the 
mathematical stability and error analysis of the Reissner-Mindlin plate techniques. As a result, 
several new procedures have emerged [48, 49-52, 46, 53, 54]. For instance, the error analysis [50, 
52] performed for these elements showed that they are optimally convergent for all elements 
which are of at least quadratic (triangles) or bi-quadratic (quadrilaterals) degree [57]. 

Circular and rectangular shaped plates are commonly used in civil, mechanical and aerospace 
engineering. Hence, these structural elements have been extensively studied during the last dec-
ades [10-12]. Many articles have been presented on the elastic and elasto-plastic response of these 
structures [13-15].   On the other hand, researchers have widely investigated the behavior of com-
posite structures [16-18]. An instance of these studies is the deformational analysis of plates with 
reinforcement fibers [19-21]. Salehi and Sobhani presented a comprehensive range of analytical 
results on small and large deformations of fiber-reinforced plates [22]. Moreover, a vast amount of 
research has also been carried out on the analysis of banding plate using the finite element meth-
od [23-25]. 
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The construction of smart composite structures is expanding due to the articles published to 
this day. Therefore, researchers are in need of new elements for their analyses. In this paper, a 12-
node triangular element is developed for the analysis of composite plates. The authors state the 
assumptions and explain the formulation in detail during the process and also elaborate on the 
stress-strain relation of multi-layered structures. The characteristics of composite and piezoelec-
tric materials are given afterwards. Concluding this, the suggested finite element formulation is 
presented for smart composite plate structures. In this process, Mindlin’s first-order shear defor-
mation theory is utilized. The proposed formulation is capable of analyzing both thin and thick 
plates. Finally, the competence of this new element is examined via numerical analyses. 
 
 
2 PIEZOELECTRIC MATERIAL EQUATIONS 

A laminated composite plate with integrated sensors and actuators is shown in Fig 1. 
 

 
Figure 1   A laminated composite plate with integrated sensors and actuators 

 
It will be assumed that each layer of the plate a plane of elastic, symmetry parallel to the  

  x − y  plane. For the   k − th  layer’s, the direct and converse piezoelectric equations can be ex-
pressed by the next formulas [26]: 
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In the former equations, 

 
Qij , 

 
eij  and 

  
ξij are, respectively, the elements of the plane-stress re-

duced stiffness matrix, the piezoelectric constants and the permittivity coefficients of the   k − th  
lamina in its material coordinate system. Whereby,   iσ ,   iε ,  Ei  and  Di  respectively correspond to 
the stress, strain, electric field and electric displacements of the element in the material coordi-
nate system. The plane stress elastic constants, 

 
Qij , are as follows: 
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Certain components of the stresses, strains and electric displacements in the plate coordinates 

can be used to write the layered piezoelectric equations as below: 
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These equations can also be rewritten in the following form: 
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3 FINITE ELEMENT FORMULATION 

The triangular element of Fig. 2 will be used in the proceeding formulation. This element lies in 
the   x − y  plane with the z axis in the direction of its thickness. Using the Mindlin's formulation, 
the displacements  u ,  v , and w at a point 

   
x,y,z( ) from the median surface can be written as a 
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function of mid plane displacements 0u , 0v  and w and the independent rotations   θx  and 
  
θy  in 

the   x − z  and   y − z  planes, respectively. 
 

    

u x,y,z,t( ) = u0 x,y,t( ) + zθx x,y,t( ),
v x,y,z,t( ) = v0 x,y,t( ) + zθy x,y,t( ),
w x,y,z,t( ) = w x,y,t( )

 (8) 

 

 
Figure 2   12-node triangular element and multi-layered plate 

 
 

With the assumption of small deformations and the introduction of shear deformations, the 
strain vector can be written the following form: 
 

   
ε{ } = εm{ } + z εb{ }  (9) 

 
In this equation, em is the membrane strain, and eb  is bending strain, which can be obtained 

by the following relations: 
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It should be noted that for linear analysis,     εm = εm

0 . In addition, the transverse shear strain 
vector has the next form: 
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In general, the electric field,{ }E , can be assumed in the below shape: 
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The present triangular element has 12-node with 15 degrees of freedom and one electrical de-

gree of freedom per piezoelectric. It can be assumed that in an element, the electric potential is 
constant over an element piezoelectric layer and has a linear variation in the direction of the pie-
zoelectric layer’s thickness. Therefore, the electric field of the piezoelectric sensor and actuator 
layers is obtained as: 
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 In this equation, st  and at are the thicknesses of the piezoelectric sensor and actuator layers, 
respectively. Using standard discretization techniques in an element, the following relationships 
can be obtained: 
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Where { }de

j
 corresponding to the -‐j th  node and N are the shape functions [27, 28]. The 

membrane strains { }em , bending strain { }eb  and shear strain{ }es  take the following form: 
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The relations between the nodal deformations and the membrane bending and shear stresses 
are established by the strain matrices

  
Bm
⎡
⎣
⎤
⎦ ,   Bb
⎡
⎣
⎤
⎦ and

  
Bs
⎡
⎣
⎤
⎦ , respectively. 

 
4 POTENTIAL ENERGY EQUATION 

Based on material properties, the stress-strain relation for piezoelectric composite plates can be 
written as: 
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Here the piezoelectric sensor and actuator layers are considered as an additional layer of a 

composite laminate. The second term of Eq. (2) corresponds to these piezoelectric layers. In this 
equation, F is the membrane force vector in the mid-plane, M  is the bending moment vector and 
S  is the transverse shear force vector. 
 

   

F = Fx Fy Fxy{ }
T

, M = Mx My Mxy{ }
T

S = Qx Qy{ }
T

 (25) 

 
The unknowns of the problem are deflection,   w(x,y) , and the next rotation vector:  

    
β(x,y) = (βx ,βy) . 



    Y. Sadeghi et al / A bending element for isotropic, multilayered and piezoelectric plates 

	  

 
Latin American Journal of Solids and Structures 10(2013) 323 – 348 

330 

By solving the bending plate, from the solution b( , )w , the following bending moment M  and 
the shear force Q  are obtained: 
 

    
M = −

Et
3

12(1− v)
{(1− υ)ε(β) + υdivβI}  

    Q = Gκt(β −∇w)  
 

Here, E  and u denote the modulus of elasticity and Poisson's ratio, respectively. e(0) is the 
linear strain operator and ‘div’ stands for the divergence. The subsequent relationships are held: 
 

    
ε(β) =

1
2
∇β + ∇β( ){ }t , 

   
divβ =

∂βx
∂x

+
∂βy
∂y

 

 
The possible ‘locking’ of a finite element model will appear for a ‘thin’ plate and in order to 

make a rigorous analysis of this, it is customary [46, 55] to consider the sequence of problems 
where the coming loading is applied: 
 

   g = t3f  
 

In this equality, f is fixed and independent of the thickness t . Based on this, it is ensured that 
the problem has a finite non-vanishing solution in the limit Æ 0t . In this limit, the Kirchhoff 
condition leads to the coming equation: 
 

   β = ∇w  
 

Accordingly, the locking is due to a too strong enforcement of it in the finite element model. It 
is also appropriate to consider the scaled shear force -‐= 3q t Q , in the below form: 
 

    q = Gκt−2(β −∇w)  
 

The solution to the Reissner-Mindlin equations exhibits a boundary layer (cf. [56] for a survey) 
and hence the solution will usually not be very smooth even if the loading, and the boundaries 
are smooth [57].  

The relation between the forces and the membrane strains, 
   
εm{ } , and the bending strains, 

   
εb{ } , are given as follows: 
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In this equation, t p  is the thickness of the piezoelectric layer. The matrices
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combination of layers, respectively. These matrices are defined next [29]: 
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The transverse shear stress of the   k − th  lamina can be written as follows: 
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Thus, the shear force vector S, which appears in all the shear-strain related equations, takes 

the following form: 
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Eij  ( )=, 4, 5i j  are transverse shear stiffness coefficient, can be obtained by using the follow-

ing equation. 
 

    
Eij
⎡
⎣⎢
⎤
⎦⎥ = kαikαj Qij

⎡
⎣⎢
⎤
⎦⎥hk−1

hk

∫ kk=1

n

∑ dz i, j = 4, 5  (31) 

 
In this equation,   kαi  and 

  
kαj  are the shear correction factors. Based on the Reissner’s varia-

tion method, one can asume 
    
kαi

2 = kαj
2 = 5 / 6  [30]. According to the variation principles, the 

strain energy equation will take the following form: 
 
 
 

    
V =

1
2

εm{ }T
Aij
⎡
⎣⎢
⎤
⎦⎥ εm{ } + εm{ }T

Bij
⎡
⎣⎢
⎤
⎦⎥ εb{ } + εb{ }T

Bij
⎡
⎣⎢
⎤
⎦⎥ εm{ } + εb{ }T

Dij
⎡
⎣⎢
⎤
⎦⎥ εb{ } + εs{ }T

Eij
⎡
⎣⎢
⎤
⎦⎥ εs{ }⎡

⎣
⎢

⎤
⎦
⎥

A∫ dA−  

   
εm{ }T

+ z εb{ }T( )V p∫ e⎡⎣
⎤
⎦
T

E{ }dv  (32) 
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where A  is the area of the element, and  V p  denotes the volume of the piezoelectric layer in an 
element. Substituting 

   
εm{ } ,

   
εb{ }  and 

   
εs{ }  leads to the next relation: 

 

    
V =

1
2
δ{ }e

T
Bm
⎡
⎣
⎤
⎦
T

Aij
⎡
⎣⎢
⎤
⎦⎥ Bm
⎡
⎣
⎤
⎦ + Bm
⎡
⎣
⎤
⎦
T

Bij
⎡
⎣⎢
⎤
⎦⎥ Bb
⎡
⎣
⎤
⎦ + Bb
⎡
⎣
⎤
⎦
T

Bij
⎡
⎣⎢
⎤
⎦⎥ Bm
⎡
⎣
⎤
⎦ + Bb
⎡
⎣
⎤
⎦
T

Dij
⎡
⎣⎢
⎤
⎦⎥ Bb
⎡
⎣
⎤
⎦ + Bs
⎡
⎣
⎤
⎦
T

Eij⎡⎣
⎤
⎦ Bs
⎡
⎣
⎤
⎦

⎡
⎣
⎢

⎤
⎦
⎥dA

A∫ δ{ }e
 

    
+

1
2 e

T
δ{ } T

mB[ ] T
e[ ] φB
⎡
⎣⎢
⎤
⎦⎥ + z

T
bB[ ] T

e[ ] φB
⎡
⎣⎢
⎤
⎦⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V p∫ dV

e
φ{ } =

1
2 e

T
δ{ } uuK⎡⎣

⎤
⎦ e
δ{ } +

1
2 e

T
δ{ } uφK
⎡
⎣⎢

⎤
⎦⎥ e
φ{ }  (33) 

 
It should be noted that 

  
Kuu
⎡
⎣

⎤
⎦  represents the element stiffness matrix and 

   
Kuφ
⎡
⎣⎢

⎤
⎦⎥  is the ele-

ment elastic-electric stiffness matrix. 
 
5 ELECTRICAL POTENTIAL EQUATION 

Using constitutive relations, strain displacement and electric-field electric-potential relations, the 
element electrical energy can be written as follows: 
 

    
We =

1
2

E{ }T
e⎡⎣
⎤
⎦ ε{ } + ξ⎡⎣

⎤
⎦ E{ }⎡

⎣
⎤
⎦dV = −

1
2
φ{ }e

T
φB{ }T

e⎡⎣
⎤
⎦ Bm
⎡
⎣
⎤
⎦ + z Bb

⎡
⎣
⎤
⎦

⎡
⎣

⎤
⎦dV δ{ }e

−
V p∫V p∫  

    

1
2
φ{ }e

T
Bφ⎡⎣⎢
⎤
⎦⎥
T
ε⎡⎣
⎤
⎦ Bφ⎡⎣⎢
⎤
⎦⎥dV φ{ }e

= −
1
2
φ{ }e

T

V p∫ Kφu⎡
⎣⎢

⎤
⎦⎥ δ{ }e

−
1
2
φ{ }e

T
Kφφ⎡
⎣⎢

⎤
⎦⎥ φ
⎡
⎣
⎤
⎦e  (34) 

 
 

In this equation, 
   

Kφu⎡
⎣⎢

⎤
⎦⎥ = Kuφ
⎡
⎣⎢

⎤
⎦⎥
T⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟  represents the elastic electric stiffness matrix and 

   
Kφφ⎡
⎣⎢

⎤
⎦⎥  is 

element electric stiffness matrix. 
 
 
6 WORK DONE BY THE EXTERNAL FORCES AND THE ELECTRICAL CHARGE 

The virtual work has two components. One component is due to the surface loads and the other 
component corresponds to the density of the electric charge. These components are calculated by 
the following equations: 
 

   
ΔWS − Δu{ }T

s1∫ fS{ }ds − ΔE{ }T

s2∫ q{ }ds  (35) 

 
where { }f s  and { }q  are the surface force intensity and surface electric charge density, respec-

tively. The areas where the surface loads and the electric charge are applied to are denoted by 1s  
and 2s   respectively. Eq. (35) can be rewritten in the following form: 
 

    
ΔWS = Δδ{ }e

T
Nu
⎡
⎣
⎤
⎦
T

fs{ }
s1∫ ds − Δφ{ }e

T
φB⎡⎣⎢
⎤
⎦⎥s2∫ q{ }ds = Δδ{ }e

T
Fs{ }e

+ Δφ{ }e

T
Fq{ }

e
 (36) 
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In this equation, 
  

Fs{ }e
 represents the mechanical surface load vector, while 

  
Fq{ }

e
 denotes the 

electrical charge in an element. 
 
7 KINETIC ENERGY EQUATION 

The element kinetic energy is calculated using the following equation: 
 

     
T =

1
2

P u02
+ v02

+ w2( ) + I θx
2 + θy

2( )⎡
⎣⎢

⎤
⎦⎥A∫ dA  (37) 

 

where n  is the number of layers, 
    
P = = 1 −1ρdz

−hk

hk

∫k

n∑  and 
   
I = = 1 −1z2pdz

−hk

hk

∫k

n∑ . Eq. (37) 

can be rewritten in the following form: 
 

    
T =

1
2
δ{ }e

T
P Nu0⎡
⎣

⎤
⎦
T

Nu0⎡
⎣

⎤
⎦ + Nv0⎡
⎣

⎤
⎦
T

Nv0⎡
⎣

⎤
⎦ + Nw
⎡
⎣
⎤
⎦
T

Nw
⎡
⎣
⎤
⎦

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟+ I Nθx⎡

⎣
⎤
⎦
T

Nθx⎡
⎣

⎤
⎦ + Nθy⎡
⎣⎢
⎤
⎦⎥
T

Nθy⎡
⎣⎢
⎤
⎦⎥( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥A∫ dA δ{ }e

 

    
=

1
2
δ{ }e

T
Muu
⎡
⎣

⎤
⎦ δ{ }e

 (38) 

 
In this equation,

  
N⎡⎣
⎤
⎦  corresponds to the shape functions and

  uuM⎡⎣
⎤
⎦  is the element mass ma-

trix. 
 
8 EQUATIONS OF MOTION 

Using Hamilton’s principal, an element’s equation of motion can be written in the following form: 
 

    
Muu
⎡
⎣

⎤
⎦e
δ{ }e

+ Kuu
⎡
⎣

⎤
⎦e δ{ }e

+ Kuφ
⎡
⎣⎢

⎤
⎦⎥e φ{ }e

= Fs{ }e
 (39) 

 

   
Kφu⎡
⎣⎢

⎤
⎦⎥e δ{ }e

+ Kφφ⎡
⎣⎢

⎤
⎦⎥e φ{ }e

= Fq{ }
e
 (40) 

 
 In this equation, 

  
Muu
⎡
⎣

⎤
⎦e  represents the element mass matrix, 

  
Kuu
⎡
⎣

⎤
⎦e  is the element stiffness 

matrix, 
   

Kφu⎡
⎣⎢

⎤
⎦⎥e = Kφu⎡

⎣⎢
⎤
⎦⎥e

T⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟  is the element elastic electric stiffness matrix and 

   
Kφφ⎡
⎣⎢

⎤
⎦⎥e  denotes the 

element electric stiffness matrix [31]. The mechanical force vector and electric charge vector for 
an element have been previously defined and are denoted by { }s eF  and { }q eF , respectively. Sub-

stituting Eq. (40) into (39) leads to: 
 

     
Muu
⎡
⎣

⎤
⎦e
δ{ }e

+ Kuu
⎡
⎣

⎤
⎦e − Kuφ
⎡
⎣⎢

⎤
⎦⎥e Kφφ⎡
⎣⎢

⎤
⎦⎥e
−1

Kφu⎡
⎣⎢

⎤
⎦⎥e

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
δ{ }e

= Fs{ }e
− Kuφ
⎡
⎣⎢

⎤
⎦⎥e Kφφ⎡
⎣⎢

⎤
⎦⎥e
−1

Fq{ }
e
 (41) 
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 Eq. (40) is utilized for the sensors when the external charge is equal to zero. Therefore, the 
input voltage will be equal to: 
 

    
φs{ }e

= − Kφφ⎡
⎣⎢

⎤
⎦⎥se
−1

Kφu⎡
⎣⎢

⎤
⎦⎥se sδ{ }e

 (42) 

 
 Subscript s, denotes the sensor layer. The global equations of motion can be obtained by as-
sembling the elemental equations and is given in the following form: 
 

     
uuM⎡⎣
⎤
⎦
δ{ } + uuC⎡⎣

⎤
⎦
δ{ } + uuK⎡⎣

⎤
⎦ − uφK⎡⎣⎢

⎤
⎦⎥

−1
φφK[ ] φuK⎡⎣⎢

⎤
⎦⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ δ{ } = sF{ }− uφK⎡⎣⎢

⎤
⎦⎥ aφ{ }  (43) 

 
 In the last equation, 

   
φa{ }  is the actuator voltage vector, and 

  
Cuu
⎡
⎣
⎤
⎦  represents Rayleigh’s  

damping [32]. 
 
9 NUMERICAL EXAMPLES 

The capabilities of the proposed element, as well as its accuracy in analyzing various single-layer 
bending plate is examined in this section. For this purpose, multiple problems with different ge-
ometries, layers, boundary conditions and loads will be analyzed. The result of each problem will 
be compared to the elastic solution as well as the results given in other researches. The response 
of single-layer plates will be examined at first, followed by composite plates and then smart com-
posite plates. In these examples, unless stated otherwise, it is assumed that all the layers of a 
composite plate have the same thickness. 
 
9.1 Square plate with f ixed supports 

In the first benchmark problem, a square plate with fixed supports and linear behavior will be 
considered (Fig. 3). The plate will be under a uniform load of q . The length of each side of the 
plate is equal to L . 
                                                                               

 

 
Figure 3   Square plate with fixed supports 
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Fig. 4 Illustrates the different finite element meshes utilized in the analyses. 
 

 

 

Figure 4   Finite element meshes of the square bending plate  
 
 

Due to symmetry, only a quarter of this structure will be analyzed. Thus, the boundary condi-
tions will take the following form: 
 
 

   

Along the x  and y  axes:
∂w
∂y

= 0 ,
∂w
∂x

= 0 , w = 0.

Along the x  axis:
∂w
∂y

= 0

Along the y axis:
∂w
∂x

= 0

          , 

 
 
Using classic plate theory, the deflection of the plate’s center is calculated as [33]: 
 

 

   wc = 0.126×10
−2

L4

D  
 

 
In the above equation, q  represents the intensity of the uniform load, L  is the length of the 

plate and D  is the flexural stiffness of the plate. The deflection ratio of the plate obtained by 
using the proposed element and elements developed by other researchers is given in Table 1. In 

128 elements 50 elements 32 elements 

2 elements 8 elements 18 elements 
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addition, the error of the center deflection obtained by each of these elements is calculated and 
their convergence is shown in Fig. 5. In Fig. 5, the horizontal axis represents the number of ele-
ments, while the vertical axis represents the error. Utilizing the same elements presented in Table 
1, the convergence of a similar plate under a concentrated load is illustrated in Fig. 6. 
  
 

Table 1   deflection ratio for the center of the square plate with fixed supports and uniform loading 
 

Reference 
Number of elements 

Element 
128 50 32 18 8 2 

 0.12551 0.12542 0.12508 0.12266 0.11891 0.11307 Present study 

[34]  0.12684 0.12723 0.12834 0.12939 0.13175 0.1369 DST-BK  
[35]  0.12703 0.12755 0.12897 0.13186 0.1356 0.14271 RT9  
[36]  0.12629 0.12708 0.12764 0.12846 0.13274 0.14053 TUBA  
[37]  0.12479 0.12392 0.1234 0.12189 0.11724 0.11143 Zhong  
[38]  0.12532 0.12497 0.12445 0.12304 0.12025 0.11472 IR12  
[39]  0.126 Exact  

  
 
 

 
Figure 5   convergence of the square plate under a uniform load analyzed by different elements 
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Figure 6   convergence of the square plate under a concentrated loading analyzed by different elements 
 
  

It is evident from Table 1 and Figs. (5) and (6) that the proposed element is capable of result-
ing in fairly accurate results. However, in order to make a more comprehensive assessment of the 
capabilities of the element, more complex problems should also be solved. 
 
9.2 Incl ined plate with f ixed edges 

A plate with a 30∫  inclination will be considered in this section. As illustrated in Fig. 7, this 
structure is fixed along two sides the x  axis and parallel to the x  axis and is free along the other 
two sides. The concentrated load P  is applied at the center of the plate. Boundary conditions 
corresponding to the fixed edges are as follows: 
 
 

   
w = 0 ,

∂w
∂x

= 0 ,
∂w
∂y

= 0  

 
 
Fig. 8 illustrates the different finite element meshes used for linear analysis of the inclined 

plate. The deflection of the plate’s center point is calculated by the following equation: 
 

 

   wc = 0.759×10
−1

qL2

D  
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Figure 7   inclined plate with fixed supports 

 
 

 

Figure 8   Finite element mesh for the inclined plate 
 
     Center point deflections are given in Table 2. The convergence of the deflection and the error 
are shown in Fig. 9. 
 

Table 2   deflection ratio for the center point of the inclined plate with fixed supports under concentrated loading 
 

Reference 
Number of elements 

Element 
200 128 72 32 8 

  0.74746 0.73441 0.70602 0.69714 Present study 
[39]  0.8166 0.8168 0.8315   Sengupta  
[37]  0.76545 0.77494 0.79095 0.81054 0.83915 Zhong  
[39]  0.759 Exact  

 
 

8 elements 32 elements 

72 elements 128 elements 
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Figure 9   convergence of the center point deflection for the inclined plate with supports under concentrated loading 

 
 It should be mentioned that having an acute angle of 30∫  makes this plate one of the most 

complicated structures in bending plate analysis. Many elements which converge to satisfactory 
results in simple problems are incapable of providing reasonable results for the present problem. 
However, the data given in Table 2 and Fig. 9 indicate that the proposed element has effectively 
converged to the correct solution. This feature demonstrates the effectiveness of the proposed 
formulation. 
 
9.3 Circular bending plate 

Fig. 10 illustrates the finite element mesh used for the analysis of the fixed circular plate. This 
circular plate has a radius of a and is subjected to a uniform load q . Due to symmetry, only a 
quarter of the circle will be considered in the analysis. A linear analysis will be carried out for 
this structure. The center point deflection of the structure is calculated by the following equation 
[33]: 
 

   
wc = 1.00228

qa4

D
 

 
     Fig. 10 illustrates the finite element meshes used in the analysis of this structure. The ob-
tained center point deflections are given in Table 3, while the convergence graphs of the deflec-
tion are shown in Fig. 11. 
 



    Y. Sadeghi et al / A bending element for isotropic, multilayered and piezoelectric plates 

	  

 
Latin American Journal of Solids and Structures 10(2013) 323 – 348 

340 

 
9 elements                     36 elements          64 elements 

  
Figure 10   Finite element meshes used for the analysis of the circular bending plate 

 
Table 3   deflection ratio for the center point of the circular bending plate 

 

Reference 
Number of elements 

Element 
64 36 12 9 3 

 0.99997 0.99095 0.97792 0.94234  Present study 
[40] 1.0091 .1.0111 1.0127 1.04418 1.07555 Roufaeil  
[37]   1.03846 1.0546 1.07765  Zhong  
[41]  1.01561 1.03566 1.0557 1.11985 1.18394 AFSIQ  
[42]  1.00228 Exact  

 
 

 
Figure 11   convergence of the center point deflection for circular bending plate 

 
     The results given in Table 3 and Fig. 11 demonstrate the ability of the proposed element in 
solving this complicated benchmark problem. Fig. 11 illustrates the convergence of the center 
point deflection. It should be added that in comparison to elements suggested by other research-
ers, the proposed element leads to the least error. To this point, it can be deduced that the pro-
posed element is quite effective in analyzing single-layer bending plates. 
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9.4 4- layer composite cross plate 

In the proceeding text, a number of composite plates will be analyzed. All of these composite 

plates will have the following properties: 
   

E1

E2

=
E1

E3

= 25 , 
   

G12

E2

=
G13

E3

= 0.5  and 
   

G23

E3

= 0.2 . Pois-

son’s ratio is taken as    v12 = v12 = v12 = 0.25  and the elastic modulus is set to

   E2 = 6.89GPa = 106psi . An   8×8  finite element mesh is used to analyze all plates. The deflec-
tion and the stresses are calculated using the following values. The intensity of the uniform load 
or the sinusoidal load is 0P  and the plate length dimension is set to a . 

   
m1 =

100t2E2

P0a4
, m2 =

t2

P0a2
, m3 =

t
P0a

 

 
In a square plate, the location of the critical values displacement as well as the normal and 

shear stresses are as follows: 
 
1. Coordinates of the critical transverse displacement 

  
w( ) : 

   
0.5a,0.5a,0( )  

2. Coordinates of the critical in-plane normal stress 
   
σx( ) : 

   
0.4718a,0.4718a,1 2t( )  

3. Coordinates of the critical in-plane normal stress 
   
σy( ) : (  0.4718a ,  0.4718a , top/bottom surface) 

4. Coordinates of the critical in-plane shear stress 
  
τxy : 

   
0.0282a,0.0282a,1 2t( )  

5. Coordinates of the critical transverse shear stress   τxz : 
   
0.0528a,0.4472a,0( ) 

6. Coordinates of the critical transverse shear stress 
  
τyz : 

   
0.4472a,0.0528a,0( ) 

    
The first numerical example constitutes a 4-layer laminated cross-ply composite plate with 

simple supported. The arrangement of the layers is 
  
0° / 90° / 90° / 0°⎡
⎣

⎤
⎦  with all layers having a 

equally thickness of 
   it = 1 4t,i = 1,..., 4( ) . In addition, a distributed sinusoidal load is applied 

normal to the surface of the plate. The plate will we analyzed for two cases where    (a / t = 10)  
and    (a / t = 100) . The results of the analyses are given in Tables 4 and 5. The results depict that 
the central displacement show rather quick convergence. In other words, finer meshes are needed 
for the convergence of stress values. 

 
Table 4   convergence of deflections and stresses in a simple supports 4-layer cross-ply    (a / t = 10)  

    
τxy ×m3      τxz ×m3     τxz ×m2  

    
σy ×m2     σx ×m2     w0×m1  Mesh Source 

0.0982 0.1983 0.02672 0.3182 0.5736 0.7295    2×2 

Present study 
0.1029 0.2659 0.02755 0.3296 0.5698 0.7277   4× 4 
0.1198 0.3005 0.02726 0.3271 0.5632 0.7265    6×6 
0.1247 0.3180 0.02693 0.3258 0.5593 0.7252   8×8 
0.1960 0.3010 0.02750 0.4010 0.5590 0.7370  3D elasticity [42] 
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Table 5   convergence of deflections and stresses in a simple supports 4-layer cross-ply =( / 100)a t  

 

    
τxy ×m3 

    τxz ×m3     τxz ×m2  
    
σy ×m2 

    σx ×m2     w0×m1  Mesh Source 
0.0918 0.1868 0.02015 0.2429 0.5438 0.4379    2×2  

 
Present study  

 

0.1294 0.2031 0.02029 0.2472 0.5462 0.4364   4× 4  
0.1362 0.2217 0.02018 0.2453 0.5426 0.4351    6×6 
0.1418 0.2294 0.02005 0.2435 0.5355 0.4346   8×8  
0.1390 0.3390 0.02140 0.2710 0.5390 0.4347  3D elasticity [42] 

 
The results of analyzing multi-layered composite plates with different length to height ratios, 

demonstrates that the proposed element effectively converges to the 3-dimentional elastic re-
sponse of the structure [42]. 

 
 
9.5 Comparison between the proposed element and other e lements 

The effectiveness of the proposed formulation is investigated in this section. For this purpose, a 4-
layer composite plate with simple supports is considered. The layers of this plate have equal 
thicknesses ( )= =1 4 , 1,...,4t iti  and are arranged as 

  
0° / 90° / 90° / 0°⎡
⎣

⎤
⎦ . The plate is analyzed 

under the application of a distributed sinusoidal load and comparison will be made between the 
results obtained by the proposed formulation and other methods. In addition, the acquired data 
are also compared against the outcome of a 3-dimensional elastic analysis. Numerical results are 
presented in Table 6. 
 
 

Table 6   Deflection and stresses attained of a simply supported 4-layer cross-ply 
 

    
τxy ×m3

 
    τxz ×m3

 
    τxz ×m2

 
    
σy ×m2

 
    σx ×m2

 
   w0×m1

 /a t Source 
0.1960 0.3010 0.02750 0.4010 0.5590 0.7370 

10 

3D elasticity [42] 
0.1418 0.3180 0.02693 0.3258 0.5593 0.7252 Present study 
0.1531 0.3040 0.02723 0.3888 0.5591 0.7263 Higher-order theory [43] 
0.1292 0.1667 0.02410 0.3615 0.4989 0.6628 First-order theory [43] 
0.1390 0.3390 0.02140 0.2710 0.5390 0.4347 

100 

3D elasticity [42] 
0.1418 0.2294 0.02005 0.2435 0.5355 0.4346 Present study 
0.1317 0.2897 0.02130 0.2708 0.5387 0.4347 Higher-order theory [43] 
0.1009 0.1780 0.02130 0.2705 0.5382 0.4337 First-order theory [43] 
0.2920 0.2190 0.04670 0.6630 0.7200 1.9368 

4 

3D elasticity [42] 
0.2152 0.1926 0.0423 0.6005 0.6286 1.8729 Present study 
0.2389 0.2064 0.0440 0.6322 0.6651 1.8937 Higher-order theory [43] 
0.1963 0.1398 0.03080 0.5765 0.4059 1.7100 First-order theory [43] 
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It is evident from the data given in Table 6 that for thin plates    (a / t = 100) , the proposed 
method yields results closer to the 3-dimensional elastic solution. Nevertheless, the values ob-
tained for thick plates    (a / t = 4)  are also considerably accurate. 
 
9.6 8- layer square plate 

A simple supported 8-layer unidirectional square laminate with length    a = 30.48cm(12in)  and 
thickness    t = 0.35cm(0.138in)  subjected a uniformly load is analyze. Structural properties are: 

   E1 = 3.0×106psi ,    E2 = 1.28×106psi ,    G12 = G13 = G23 = 3.7×105psi  and    v12 = 0.32 . The 
structure is analyzed using the proposed element, the CPT element [44] which is suitable for thin 
plates and the 3-node multi-layer triangular element by Argyris [45]. Fig. 12 shows the variation 
of center point deflection against load intensity for all of the analyses as well as experimental 
results [44]. 
 

 
Figure 12   Center point deflection of the simply supported 8-layer unidirectional square laminate 

 
It is observed from Fig. 12 that the proposed element effectively traces the experimental curve. 

This response indicates that the suggested formulation is quite capable of analyzing multi-layer 
plates. 
 
9.7 Smart composite canti lever plate 

The 4-layer cantilevered laminated composite plate in Fig. 13 is analyzed in this section. The 
layers of this    0.5m×0.05m×0.01m  plate are made of   T 300 976  graphite epoxy and each has a 
thickness of   2.5mm . The arrangement of these layers is as 

  
0° / 90° / 90° / 0°⎡
⎣

⎤
⎦ . The top and bot-

tom of this structure are each covered with a   0.1mm  thick piezoelectric layer   PZTG1195N . The 
effect of the cohesive layers will be neglected in the analysis. 
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Figure 13   4-layer composite cantilever plate with PZT sensors and actuators 

 
The structure is analyzed by using different elements and meshes and the displacement of the 

free edge is evaluated. The error of the displacements obtained in these analyses is presented in 
Fig 14. 
 

 
Figure 14   Displacement error (percent) in the free edge of the 4-layer smart cantilever plate 

 
 The effectiveness of the purposed element in analyzing the 4-layer smart plate is evident from 
Fig. 14. This figure also indicates the advantage of the proposed element over the   QUAD4 , 
  DST −BK ,  HOST  and  Tri  elements. 
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10. CONCLUSION 

A 12-node triangular element was formulated for the analysis of multi-layered bending plates. 
The formulation was based on the Mindlin’s first-order shear deformation theory, and an elastic 
piezoelectric behavior is considered for the material. The developed relations are capable of effec-
tively analyzing both thin and thick plates. Several benchmark problems were analyzed using the 
proposed element. It was demonstrated via numerical analysis that this new element can be uti-
lized for the analysis of single- and multi-layered plates with and without a piezoelectric layer. 
Moreover, the numerical results indicate that the suggested element is capable of converging to 
the exact solution. In comparison to the results given by other researchers, it was deduced that 
the authors' formulation leads to faster convergence. 
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