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Abstract 
This paper presents the formulation of a two-dimensional numeri-cal model able to describe the fracture 
process in structural mem-bers of steel fibre reinforced concrete (SFRC) from the volume ratio of the fibres 
and the mechanical properties of the compo-nents: a concrete matrix and a set of steel fibres with a random 
orientation. The relationship between the stress and the strain fields of the composite material is obtained 
using the mixture theory with a compatibility strain of its component materials. The concrete matrix is 
represented with a scalar damage constitutive model with a softening strain and a different strength in 
tension and compression. The mechanical strain of an insulated fibre and the slip between the fibre and the 
matrix are simultaneously de-scribed with a one-dimensional plasticity constitutive model. The cracking of 
the composite material indicates a jump in the dis-placement field and non-bounded values of the strain field, 
which are represented by the Continuum Strong Discontinuity Ap-proach. The model has been implemented 
in the framework of the nonlinear analysis with the Finite Element Method, using con-stant strain triangular 
elements. Moreover, the fibres distribution and orientation change randomly in each finite element and each 
simulation or observation. The structural responses of the simula-tions are treated as curves and analysed by 
tools from the Func-tional Data Analysis. Confidence intervals for the structural re-sponse are built using 
bootstrap methodology. Finally, experi-mental tests of SFRC members subjected to tension and bending are 
simulated. The structural response and the cracking patterns obtained from the numerical simulation are 
satisfactory. 

Keywords 
Computational mechanics, fracture mechanics, strong discontinui-ty approach, mixture theory, steel fibres 
reinforced concrete (SFRC), functional data analysis (FDA). 

1 INTRODUCTION 

The mechanical behaviour of SFRC can be described by four types of approaches implemented with finite element 
methods, according to the analysis scale. The first represents SFRC by a unique constitutive model; the second establishes 
the behaviour of the composite material through the mixture theory and uses different constitutive models for the 
concrete matrix and the steel fibres. The third approach explicitly represents each fibre with lattice elements and the 
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mesh of solid finite elements represents the plain concrete. Finally, in the fourth approach the mortar, the aggregates 
and the steel fibres are described as discrete entities with different constitutive models. 

In the first approach type, Peng and Meyer (2000) characterise the composite material with a constitutive model of 
scalar continuum damage, where the damage parameter depends on the volumetric fraction of the steel fibres. Likewise, 
Oliveira de Barros (1995) implements a non-linear constitutive model which represents the fracture process by a rotating 
smeared crack model. This approach has a low computational cost but requires knowing the mechanical properties of 
the SFRC for a defined amount of steel as an input data. 

In the second approach type, Nofal (1997) uses a damage-plasticity constitutive model which represents the 
degradation of the stiffness and the permanent strain after the unloading of the material. A set of randomly distributed 
elliptical micro-voids represents the cracking in the plane concrete matrix. The one-dimensional plasticity model 
describes the behaviour of the short fibres and their slipping. The stiffness matrix of the SFRC is obtained from the integral 
of a probability function of the random orientation of the fibres at the plane. A similar work, Luccioni et al. (2012) 
represents the plain concrete with a damage-plasticity constitutive model, the steel fibres and the slipping between them 
and the matrix through an orthotropic homogeneous plasticity model. Likewise, Li and Li (2001) apply the mixture theory 
for composite materials, representing the plain concrete, the steel fibres and their slipping with isotropic damage 
constitutive models. In another work Mora et al. (2013), the multi-field theory is applied to describe the axial behaviour 
of the fibres and the adherence between fibre and matrix. Each material point is formed by a concrete matrix, which is 
represented by a constitutive model of damage and by some packages of steel fibres with perpendicular orientations 
represented with one-dimensional plasticity constitutive models. This approach type needs the amount of fibre 
reinforcing and the mechanical properties of the concrete and the steel as input data. 

In some works of the third approach type (Prós, 2011; Cunha et al. 2012; Kang et al. 2014; Yu et al. 2016), the ends 
of lattice element of the steel fibres do not match with the nodes of the finite element mesh of plain concrete. Contrarily, 
the displacement compatibility is defined by employing Immersed Boundary Methods. In another approach, in Radtke et 
al. (2010), the domain is represented by triangular elements of plain concrete, using an isotropic damage constitutive 
model, and the contribution of each fibre is defined using an axial force at its ends. 

A sample of the fourth approach type for plane stress condition is developed by Bui (2007). He represents the 
cement matrix by six-node triangular elements, each aggregate grain by a set of six-node triangular elements and each 
steel fibre by a lattice element. These last elements are connected to the nodes of the triangular elements of the cement 
matrix. The Mohr-Coulomb criteria and a softening law establish the beginning and the evolution of the fracture process, 
directly applied at the nodes, preserving the elastic behaviour of triangular elements. Some authors present the 
extension of this model to the three-dimensional space (Leite et al. 2007; Gal and Kryvoruk 2011; Caggiano et al. 2012). 
This approach type allows describing the geometry of each material component, particularly, the shape of the aggregates 
and the length of fibres. However, the orientation, the distribution and the shape of the fibres and the size and the 
distribution of the aggregates are chosen randomly requiring a specific meshing technique and high computational cost. 

The fracture process of the concrete in the previous approaches was represented using smeared crack models 
(Oliver et al. 1990; De Borst et al. 2004; Cunha et al. 2012), discrete models (De Borst et al. 2004; Caggiano et al. 2012; 
Manzoli et al. 2012), Continuum Strong Discontinuity Approach (CSDA) (Oliver 1996a), and strain injection approach 
((Dias et al. 2011), among others. 

On the other hand, a set of scalar data or curves can be treated employing the standard statistical or the functional 
data analysis (FDA) (Ramsay and Silverman 2005; Ferraty and Vieu 2006), respectively. Several authors have sustained 
efforts to adapt standard statistical methods for scalar values to this data type (Cardot et al. 1999, 2007; Locantore et al. 
1999; Cuevas et al. 2002; Ferraty and Vieu, 2002; Dabo-Niang and Rhomari, 2009). 

The structural response of an SFRC member is considered as a curve obtained from a continuous stochastic process, 
which represents the relationship between the displacement and the applied external loads. This structural response 
depends on random parameters of the composite material; therefore, a set of structural responses for different random 
parameters is treated employing tools belonging to functional data analysis. Some Authors has assumed that similar 
relationships in physical problems are functional data (Fletcher et al. 2004; Antoniadis and Sapatinas, 2007; Del Barrio et 
al. 2007; López- Pintado and Romo, 2007; Nerini and Ghattas, 2007; Tarrio, 2012). 

In recent researches about the statistical control of processes, characterised by nonlinear relationships, Guevara 
and Vargas (2013) used the bootstrap method to provide a better estimation of the confidence intervals without 
requiring a specific distribution of probability. 

Previous numerical approaches using statistical procedures to describe the functional relationship of the SFRC 
structural response were not found. Generally, the random parameters are represented by factors assigned to one 
simulation of the problem. 
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In essence, the objective of this work is to estimate the median of the mechanical response and its confidence 
interval, for structural members of SFRC by means of a stochastic procedure that is based on the functional data analysis, 
which has proven to be adequate for similar problems. The sample of continuous functions representing the mechanical 
response is obtained from a two-dimensional nonlinear finite element analysis using the formulation described in this 
paper. The relevance of this formulation is that the numerical model in the deterministic procedure has a low 
computational cost due to the composite material is homogenized by subdomains along the structural member. This 
allows obtaining a large number of simulations by applying a stochas-tic procedure in which the properties that depend 
on the distribution and direction of the fibres are randomly assigned to the subdomains. In the end, the result consists 
of a range of probable responses that have into account the variability that is proper of SFRC material. 

The model is able to describe the fracture process in SFRC structural members, from the vol-ume ratio of the fibres 
and the mechanical properties of concrete and steel. A concrete matrix and a set of steel fibres with random orientation 
constitute this composite material. The relationship between the stress and strain fields of the composite material is 
obtained through the mixture theory with strain compatibility of its component materials (Truesdell and Toupin, 1960) 
as it is indicated in the second type of approaches. The concrete matrix is represented with a scalar damage constitutive 
model with a softening strain and a different strength in tension and compression (Oliver et al. 1990; Linero et al. 2007). 
The mechanical strain of discrete fibres and the slip between fibres and matrix are simultaneously described with a 
one-dimensional plasticity constitutive model (Simó and Hughes, 1998). A crack in the composite material indicates a 
jump displacement field and non-bounded values of the strain field, which are represented by the continuum stro,ng 
discontinuity approach (Oliver, 1996a). The model has been implemented into the finite element method using constant 
strain triangular elements. Moreover, the distribution and orientation of fibres change randomly in each finite element 
and each simulation or observation. he structural response of these observations is treated using tools from the 
Functional Data analysis (FDA) (Ramsay and Silverman 2005; Ferraty and Vieu, 2006). Mainly, the concept of the depth 
allows to sort the curves from the centre to the outer and to estimate the median curve. The confidence intervals for the 
structural response are found using bootstrap procedures for continuous functions defined in a compact interval  , as 
is indicated in the reference Guevara and Vargas (2013). 

2 MAIN PROCEDURE OF THE PROPOSED MODEL 

SFRC is a composite material conformed by fibres of random direction and distribution, embedded in a plain 
concrete matrix. The proposed model represents the fracture process in structural members of SFRC, particularly 
considering plane stress condition, infinitesimal strain, and static loads. 

The steel fibres can be oriented in any direction within the concrete, exhibiting a three-dimensional behaviour of 
SFRC. Nevertheless, when the stress components out-of-plane are null, the problem is simplified into a two-dimensional 
domain, through the statistical participation of steel fibres projected on the plane. 

Each material point shows the macroscopic behaviour of the SFRC considering: the steel fibres uniformly distributed 
in the concrete matrix, the compatibility of the longitudinal strain between the materials, and the composite material 
stress equal to the weighted addition of the stress of each component material. Consequently, the numerical model does 
not depend on the relation between the fibres length and the finite element size. 

This numerical model establishes an external procedure or stochastic procedure and an internal procedure or 
deterministic procedure as it is indicated in Table 1. 

Table 1 Main procedure of proposed model. 

input Mechanical properties of the concrete and the steel, global volumetric ratio of the steel fibres, geometry, loads and boundary 
conditions of the solid. 

1 Meshing of the geometry problem 
2 Do j-observation, from 1 to nj-observations 
3   Random assignment of the orientation and the variability in the amount of steel fibres in each finite element 

(part of the stochastic procedure). 
4   Deterministic Procedure: Non-linear finite element analysis with CSDA. 
5   Partial output: Stress and strain state, structural response and cracking pattern. 
7 End  
8 Partial output: Set of nj-observations: structural responses or curves load vs displacement. 
9 Stochastic procedure: Functional Data Analysis (FDA) of the set of nj-observations 
Output Median and confidence intervals of the set of structural responses. 
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In the deterministic procedure, the structural response and the cracking pattern of the structural member are 
obtained from a non-linear finite element analysis with CSDA and a set of parameters assigned to a simulation (Oliver 
and Huespe, 2004a; Oliver et al. 2008). An observation corresponds to a simulation where a random orientation and a 
distribution of fibres in each finite element are assigned. Likewise, in the stochastic procedure, the random parameters 
of each observation are computed, and an FDA is executed with the collection of deterministic results of the observations 
(Ramsay and Silverman, 2005; López-Pintado and Romo, 2009; Sun and Genton, 2011). 

3 DETERMINISTIC PROCEDURE OF THE PROPOSED MODEL 

The deterministic procedure of the proposed numerical model represents the fracture process of a SFRC structure, 
in which the orientation and distribution of the fibres are defined. The deterministic procedure is based on the 
Continuum Strong Discontinuity Approach (CSDA), the mixture theory for composite materials and the constitutive 
models of damage and of plasticity applied to each component material. Likewise, this procedure is implemented in a 
finite element method, considering infinitesimal strains, static loading, plane stress condition and the nonlinear 
behaviour of the material. 

3.1. Constitutive model of the plain concrete 

The two-dimensional behaviour of the concrete matrix is described with a constitutive model of isotropic scalar 

damage, in which the tensile strength 
c
tσ  is different to the compressive strength 

c
cσ  (Oliver et al. 1990) . The tangent 

constitutive equation of plain concrete :c c c
tg=C σ ε , relates the rate stress tensor cσ  and the rate strain tensor c

ε . 

The tangent constitutive tensor c
tgC  and the factor φ  are: 
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In the previous equations, the effective stress tensor is equal to :c c c=Cσ ε , where cε  is the strain tensor and 

cC  is the elastic constitutive tensor, which is defined as ( )( )2
1 ( ) (1 )c c c c cE ν ν ν = − ⊗ + − C 1 1 I  for plane stress 

conditions. The norm ( ) 1
: :c c c

ετ
−

= σ C σ  is a scalar function of the strain state and determines the elastic domain of 

the model. Mac-Auley parenthesis function c
iσ  and the absolute value function c

iσ  are applied on the principal 

effective stresses 
c
iσ . The softening rule relates the stress-like internal variable cq  and strain-like internal variable cr , 

by the rate equation ( )c c c cq H r r= 
. The stress-like internal variable is obtained as ( ) ( ) ( )( )max ,c cr t r t tετ′ ′= , 

where [ ]0,t t′∈  and this initial value is ( )0 /c c c
tr t Eσ= = . In this relation, the softening parameter is defined as 

( ) 0c c c cH r dq dr= ≤  which is determined from the relation between the normal stress and the crack opening 
(Bazant and Planas 1998). The evolution law, the damage criteria, and the loading and unloading conditions of this 
constitutive model are explained by other authors (Oliver et al. 1990). 

The constitutive model requires the Young’s modulus cE , the Poisson’s ratio cν , the fracture energy per surface 

unit c
fG  and the tensile and compressive strengths. These mechanical properties can be obtained from experimental 
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tests ASTM-C469, ASTM-C39, ASTM-C496 and RILEM TC-50 (RILEM 1985; ASTM 2004, 2014a, b) . Figure 1(a) and Figure 
1(b) indicate the elastic domain and the uniaxial stress – strain curve in terms of principal stresses for a plane stress 
condition. 

 
Figure 1. Constitutive models for the component materials: (a) elastic domain in function of the principal stresses for the plain 

concrete, (b) uniaxial relation between the normal stress and the longitudinal strain for the plain concrete, (c) relation between the 
normal stress and the longitudinal strain for the deformable-sliding fibre model, (d) relation between the shear stress and angular 

strain for dowel action model. 

3.2. Constitutive model of the deformable-sliding fibre 

The behaviour of the fibres is associated to three mechanisms: (i) the mechanical deformation due to axial stress, 
(ii) the slipping of the fibre relative to the concrete matrix and (iii) the shear transfer between the faces of a crack by the 
fibres. The pull-out tests of a steel fibre into concrete matrix describe the first and second mechanism simultaneously. A 
relation between the normal stress and the longitudinal strain is obtained from this test type (Naaman et al. 1991; 
Laranjeira et al. 2010; Zile and Zile, 2013). 

This model considers two sets of parallel fibres with different orientation. The axial behaviour of each set of fibres 
is represented by one-dimensional plasticity isotropic constitutive model with a softening strain (Simó and Hughes, 1998; 
de Souza et al. 2008), named in this work as deformable-sliding fibre model. This model is defined by the elasticity 

modulus 
fE , the maximum normal stress max

fσ  and the softening parameter fH , as shown in Figure 1(c). 

The tangent constitutive equation of this model f f f
tgEσ ε=  , relates the normal stress rate 

fσ  and the longitudinal 

strain rate fε . The tangent constitutive modulus is f f
tgE E=  in elastic loading or unloading regimes and it is equal to 

( )f f f f f
tgE E H E H= +  in plasticity regime. The softening parameter fH  is obtained from pull-out tests and its 

value is assumed as a constant. 
The softening rule is defined as f f fq H r= 

, where fq  is the stress-like internal variable and fr  is the strain-like 
internal variable, that is described by Simó and Hughes (Simó and Hughes, 1998) in the clasical one-dimensional plasticity 
constitutive model. Other elements of this constitutive model as the flow rule, the evolution law, the plastic yielding 
criterion, and the loading and unloading conditions are explained in several references (Simó and Hughes, 1998; de Souza 
et al. 2008). 

3.3. Constitutive model of the dowel action for SFRC 

When a crack is formed in the SFRC and its sliding is greater than its opening, the shear stress is mainly transferred 
to the steel fibres crossing the sides of the crack. This phenomenon is produced by two mechanisms: (i) bending of each 
fibre between the sides of the crack due to relative displacement perpendicular to its longitudinal axis, and (ii) direct 
shear of each fibre crossing the crack. Particularly in this work, the second mechanism is considered the most 
representative, because the crack opening is not substantially greater than the fibre diameter. A similar behaviour has 
been studied in concrete reinforced with steel bars under the name dowel action (Park and Paulay, 1975; Nawy, 2009). 

The dowel action for SFRC can be represented with a one-dimensional plasticity isotropic model with a softening 
strain, which relates the shear stress rate dτ  with the angular strain rate dγ  in the cross-section of the fibres, thus: 
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d d d
tgGτ γ=  . Figure 1(d) indicates the curve between the shear stress and the angular strain, where dG  is the elasticity 

shear modulus, max
dτ is the maximum shear stress and dH  is the softening parameter. 

The softening rule is d d dq H r= 
, where dq  is the stress-like internal variable and dr  is the strain-like internal 

variable. The flow rule, the evolution law, the plastic yielding criterion, and the loading and unloading conditions of this 
constitutive model are presented extensively in several references (Simó and Hughes, 1998; de Souza et al. 2008). 

3.4. Mixture theory applied to SFRC 

Three considerations of the deformation compatibility are assumed in the numerical model (Linero et al. 2007). 
First, the strain rate tensor of SFRC is equal to the strain rate tensor of the plain concrete. Second, the strain component 
rate of the plain concrete constitutive model in the fibre orientation is equal to the longitudinal strain rate of the 
deformable-sliding fibre constitutive model. Third, it is assumed that the angular strain rate of the dowel action model is 
equal to the angular strain rate in the plain concrete model after the crack formation. 

A set of parallel fibres in the r direction and another set in the s direction are assumed at each material point, where 
r is perpendicular to s (Figure 2). Therefore, the compatibility conditions of the strain rate are: 

c =ε ε   (plain concrete) (3) 

frε = ⋅ ⋅r ε r   (deformable-sliding fibre in r direction) (4) 

fsε = ⋅ ⋅s ε s   (deformable-sliding fibre in s direction) (5) 

2dγ = ⋅ ⋅r ε s 
 (dowel action in rs plane) (6) 

where ε  is the tensor of strain rate of the SFRC, cε  is the tensor of strain rate of the plain concrete model, dγ is the 
angular strain rate of the dowel action model, frε  and fsε  are the longitudinal strain rate of the deformable-sliding fibre 
constitutive model in r and s direction, respectively. 

 
Figure 2. Representation of the cracking of SFRC: (a) structural member and (b) material point 

The tensor of stress rate of the composite material is considered equal to the weighted addition of the stress rates 
of the constitutive models of the component materials (Truesdell and Toupin, 1960; Oller, 2003), thus: 

( ) ( ) 2( )( )c c fr fr fs fs fr fs sym dk k k k kσ σ τ= + ⊗ + ⊗ + + ⊗σ σ r r s s r s      (7) 

The weight factors ck , frk  and fsk correspond to the volumetric participation of the plain concrete and the fibres 
oriented in r and s directions, respectively. 
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3.5. Description of fracture process by means of the CSDA 

The Continuum Strong Discontinuity Approach (CSDA) can predict the formation and propagation of the cracks in a 
simple material (Oliver 1996a, b, Oliver and Huespe 2004a, b) or in a composite material (Linero et al. 2007; Manzoli et 
al. 2008; Oliver et al. 2008) . This approach establishes the existence of a jump of the displacement field [[ ]]u  on the 
discontinuity or fracture surface. 

Let Ω  be a solid exhibiting a strong discontinuity on the surface S of normal n, which splits the body into the 
domains +Ω  and −Ω  as is shown in Figure 2(b). The displacement rate in a material point x and at a time t is defined as 
(Oliver, 1996a): 

( , ) ( , ) ( )[[ ]]( , )St t M t= +u x u x x u x

   (8) 

Where ( ) ( ) ( )S SM H ϕ= −x x x , 0
( )

1SH
−

+

 ∀ ∈Ω
= 

∀ ∈Ω

x
x

x
 and 0 /

( )
1 /

h

hϕ
−

+

 ∀ ∈Ω Ω
= 

∀ ∈Ω Ω

x
x

x
 

The notation A/B indicates the set of all the material points of A that do not belong to B. Furthermore, u  and [[ ]]u  
correspond to the continuous part and to the jump of the displacement rate in the discontinuity, respectively. 

In the continuum, the unit jump function ( )SM x  is computed as the subtraction between the Heaviside’s function 

( )SH x  and an arbitrary continuous function ( )φ x  limited by a small band hΩ  in S , as is indicated in Figure 3. 

 

 
Figure 3. Special functions of displacement fields: (a) Heaviside’s function, (b) function ϕ , and (c) unit jump function. 

The strain rate field is evaluated with the symmetrical differential operator on the displacement rate field; so that, 
the strain is split in a compatible part in terms of continuous displacement and in an enhanced part in terms of 

displacement jump. Given that the gradient of Heaviside’s function produces an unbounded value equal to S SH δ∇ = n
, the strain rate can be indicated as the sum of a regular or bounded part ( ) ( [[ ]])sym symϕ= ∇⊗ − ∇ ⊗u u 

ε  and a 

singular or unbounded part equal to ( [[ ]])sym
Sδ ⊗n u . 

Dirac’s delta function Sδ  is approximately equal to a regularized function 
k
Sδ  applied in a band kS  inside the 

discontinuity S , whose regularization parameter k  is the minimum permitted by the computer precision. This regularized 
function is: 

0

1( ) lim ( ) ; ( )
1
0

k
S S S kk

k

k S
S

δ µ µ
→

= =  ∈
 ∉

x x x
x
x

 (9) 

where 
Sµ  is a collocation function on kS , therefore the strain rate ε  of the composite material is: 

 (10) 
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The previous equation shows an unbounded strain on the discontinuity surface. The constitutive models of the 
materials are modified to preserve bounded values for the stresses. The softening parameter is regularized in each 

material • , thus: H kH• •= , where H•  is the intrinsic softening parameter. 

Despite the discontinuity of the strain field, the discontinuity surface S  with normal vector n  exhibits the same 
traction vector between its sides, that is: 

[ ] / /S S− +Ω Ω
  ⋅ = ⋅ − ⋅ = σ n σ n σ n 0    (11) 

Likewise, the equilibrium equations in the volume and the boundary of the composite material are also fulfilled. 
The activation time and the orientation of the discontinuity are determined by means of the material bifurcation 

analysis (Rice, 1976). 
The deterministic procedure of the proposed model is based on a previous approach that was applied to structural 

members of concrete reinforced with steel continuum bars (Oliver et al. 2008). This approach has been modified to 
represent the short fibres with any orientation within SFRC. 

4 STOCHASTIC PROCEDURE OF THE PROPOSED MODEL 

The variability in the orientation and the amount of the steel fibres into the concrete matrix are random parameters 
related to the dispersion of the mechanical response of SFRC members. Consequently, the proposed model includes a 
stochastic procedure in which: the orientation and the variability of the amount of the fibres are randomly assigned to 
each finite element of the mesh for each observation, as is shown in Figure 4, moreover the results of the deterministic 
procedure of all observations are treated by means of Functional Data Analysis (FDA), as it is indicated in Line 3 and 9 of 
Table 1. 

 

 
Figure 4. Orientation of the fibres into the finite element: (a) finite element mesh, (b) random direction r and s of three triangular 

elements, and (c) discrete values of the angle between x-axis and r-direction of a fibre. 

 

4.1. Random assignment of parameters of the fibres 

Previously, it was mentioned that the effect of the fibres on the SFRC mechanical behaviour depends on the amount 
and distribution of them into the concrete matrix. In practice, the average dosage of fibres is given by the weight of fibres 

per unit volume of SFRC fw . Thus, the volume of fibres per unit volume of SFRC can be calculated as /f f
swρ γ= , 

where 
sγ  is the steel specific weight of fibres. 

For a two-dimensional problem, the effectiveness of fibres into the analysis plan can be accounted by the equivalent 

volumetric ratio 
f

hk , that is the volume of fibres per unit volume of SFRC projected on the plane (Lamus, 2015) for an 

structural member with a defined thickness t and can be calculated through the form: 
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f f dis
h t hk c tρ ϑ=  (12) 

Where 
tϑ is the participation ratio on the plane and 

dis
hc  is the dispersion coefficient. 

The participation ratio on the plane 
tϑ  is a function of the thickness of the structural member t  and the orientation 

range of the fibres outside of the plane α . This ratio establishes the possible amount of fibres projected on the plane 
and is expressed as: 

/2

0 0
(2 ) cos( )

t

t z d dz
α

ϑ α ϕ ϕ= ∫ ∫  (13) 

where, z  is the distance between any fibre and the lateral boundary of the structural member and ϕ  is the angle 
between any fibre and the plane under analysis. 

The possible directions of any fibre whose centre distance to the structural member boundary is less than the half 
of its length are restrained as it is shown in the zone A of Figure 5(b). Because of that reason, 

tϑ  is variable in this zone, 
taking a value of 1.0 when the fibre is near to the boundary and decreasing with the distance between the centre of the 
fibre and the boundary. Otherwise, a fibre at any other position can be oriented in any direction as it is shown in the 
zone B of Figure 5(a) and its participation ratio on the plane is equal to 0.636. In the examples presented in this work, 
the thickness of the structural member t  and the fibre length fl  are constant and then the participation ratio on the 
plane is assumed to be constant. 

 

Figure 5. Random assignment of parameters of the fibres: (a) and (b) participation ratio on the plane tϑ  as a function of distance 
between the fibre center and the member boundary, and (c) normal probability distribution of the dispersion coefficient of the 

amount of fibres. 

The dispersion coefficient 
dis
hc  identifies the variability of the amount of fibres per unit volume along the structural 

member. This parameter exhibits a normal probability distribution which has a variation coefficient of 0.27 and a median 
associated to the global volumetric ratio of fibres (Soe, 2010). In this work, each finite element has a random dispersion 

coefficient choice of four values: 1 2 3 40.688, 0.912, 1.084, 1.308dis dis dis disc c c c= = = = , corresponding to the 
accumulated probabilities of 0.125, 0.375, 0.625 and 0.875, respectively, as shown in Figure 5(c). The four probable 
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values of equivalent volumetric ratio of fibres 1 2 3, ,f f fk k k  and 4
fk  are obtained replacing the dispersion coefficients into 

Equation (12). 

The equivalent volumetric ratio ,
f

e jk  is the volume of fibres per volume unit of SFRC projected on the plane of a finite 

element e  for an observation j . The value of ,
f

e jk  is randomly assigned among the values 1 2 3 4, , ,f f f fk k k k , that is, 

, 1 2 3 4random( , , , )f f f f f
e jk k k k k=  (14) 

The equivalent volumetric ratio of fibres ,
f

e jk  includes the sum of the equivalent volumetric ratio of the two packages 

of fibres which are perpendicular to each other, that is, , , ,
f fr fs

e j e j e jk k k= + , where ,
fr

e jk  and ,
fs

e jk  are the equivalent 

volumetric ratio in r direction and in s direction, respectively. The isotropy coefficient is , ,
fs fr

e j e jc k kϕ = and indicates the 

relation of the amount of fibres between two perpendicular directions. Consequently, the equivalent volumetric ratio of 
the fibres in each direction can be expressed thus: 

, , , ,
1 ,

1 1
fr f fs f

e j e j e j e j

c
k k k k

c c
ϕ

ϕ ϕ

= =
+ +

 (15) 

A methodology to obtain the isotropy coefficient from radiographies of SFRC specimens has been developed (Lamus, 
2015) . This methodology depends on the size of the reference volume, the thickness of the structural member and the 
weight of the fibres per volume unit. In this paper, the isotropy coefficient is assumed as a constant equal to one, then 

the equivalent volumetric ratios ,
fr

e jk  and ,
fs

e jk  are equal to ,0.5 f
e jk . 

Particularly in this work, the angle between the x-axis and the direction r of a fibres package 
fr

lθ  can take one of ten 

values between 1 90frθ = °and 10 72frθ = − ° , as shown in Figure 4(c). The angle between the x-axis and the r direction of 

a fibres package ,
fr

e jθ , at finite element e and in an observation j, is randomly chosen among the values of 
fr

lθ , that is, 

, 1 10random( , , )fr fr fr
e jθ θ θ=   (16) 

The s direction of the second fibres package is calculated as , , 90fs fr
e j e jθ θ= + ° . 

According to the above, 40 material types are defined as the combination of 4 equivalent volume ratio 
and 10 r-direction of the fibres. A material type is randomly assigned to each finite element. This attempts to represent 
the real distribution of the fibres into the structural member and the discontinuity of the short fibres, keeping the global 
volumetric ratio of fibres constant. 

In this work, observation is the deterministic procedure of the non-linear analysis of a finite element mesh with 40 types 
of materials. All the observations of a mechanical problem have the same mesh, but a different assignment of the 
material type to the finite elements, as shown in Figure 6. Here, the numbers from 1 to 40 identify the material type. 
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material type

 
Figure 6. Randomly assignment of the materials type in the finite element mesh: (a) first observation and (b) second observation. 

4.2. Overview of the functional data analysis of the set of the observations 

The random distribution and orientation of the steel fibres into the SFRC are important factors in the dispersion of 
the mechanical response of the structural members. An experimental test is analysed by means of the proposed 
numerical model. Many simulations or observations are con-ducted to obtain representative results of the structural 
response. In the proposed numerical model, the structural response of each observation is different due to the change 
in the distribu-tion and orientation of the fibres in each finite element of the mesh. The estimation of the medi-an is 
made considering the nature of the structural response of the mechanical problem. 

The structural response corresponds to a function between the applied load and a displacement component that 
represents the deformed shape. This relationship defines a continuum curve, which is studied by means of the FDA. 

The functional data analysis done in this work has the following steps: (i) to generate a sample of continuous 
functions from the observations, (ii) to sort the sample and to measure the cen-trality of the curves, (iii) to detect and 
remove the outliers, and (iv) to build the confidence intervals. 

4.3. Generation of continuous functions from the observations 

In this step, the discretized data of each observation are used in order to fit a continuous function or curve using B-splines 
functions (Ramsay and Silverman, 2005). Figure 7 represents the relationship between the applied load and the 

displacement at the middle of the span of 1, 2 and jn  observations of the bending test in a SFRC beam. Each relationship 

of an observation j  contains 
in  couples of the applied load 

( )j
iP and of the displacement at the middle of the span 

( )j
iδ

, where 1, 2, , ii n= 

. The curve ( )jy  is the one that minimize the least squares criterion with respect to the couples 

{ }( ) ( ) ( ) ( ) ( ) ( )
1 1( , ), , ( , ), , ( , )

i i

j j j j j j
i i n nP P Pδ δ δ 

. The curves fitted of these jn  observations can be grouped into the 

sample X , thus: 

{ }( )(1) (2) ( ), , , , , jnjX y y y y=  

 (17) 
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Figure 7. Relationship between the applied load P and the displacement at the middle of the span δ  as functional data. 

4.4. Sorting of the sample and measurement of the centrality of the curves 

In this step, the depth of each curve with respect to sample is computed using the graphical approach named 
Modified Band Depth (MBD) (López-Pintado and Romo, 2009) . Next, the curves are sorted decreasingly according to the 
depth value. The depth is a measure of the centrality of each curve with respect to the rest of the sample, where the 
curve with the greater depth is the more central curve. Following the MBD method is described. 

Let I  be the compact interval where the functional relationships between load and displacement are defined. 
Likewise, let ( )R I be the set of these continuous functions into the compact interval I . The plot of the function ( )jy is 

the subset into the space 2
  defined by 

{ }( ) ( )( ) ( , ( )) :j jG y t y t t I= ∈  (18) 

Particularly in this work, the band is the region delimited by two or three curves of the sample X . In a sample of 

jn
 curves, the number of possible bands is the combination of jn  in 2 curves plus the combination of jn  in 3 curves, 

that is 2 3
j jn n

rn C C= + . A band delimited by two curves is defined as (López- Pintado and Romo, 2007): 

{ }( ) ( ) ( ) ( )( )
2 1,( ( )) ( , ) : ,min , max ,a b a b

i

r r r rr
i i i n i i i i i iB y t t y t I y y y y y=    = ∈ ≤ ≤     (19) 

and a band delimited by three curves is equal to: 

{ }( ) ( ) ( ) ( ) ( ) ( )( )
3 1,( ( )) ( , ) : ,min , , max , ,a b c a b c

i

r r r r r rr
i i i n i i i i i i i iB y t t y t I y y y y y y y=    = ∈ ≤ ≤     (20) 

where 1, , rr n= 

 is the indicator of the combination of curves ( ) ( ),a br ry y  for the band 
( )
2

rB  and curves 

( ) ( ) ( ), ,a b cr r ry y y  for the band 
( )
3

rB . The super index , ,a br r   indicates the number of the curve corresponding to the 

combination. Figure 8 shows the possible bands of a sample with 4jn =  curves. Particularly, the grey region in the 

subfigures (a) to (f) shows the band delimited by two curves, and in the subfigures (g) to (i) shows the band delimited by 
three curves. In Figure 8(a), the band is delimited by the curves (1)y  and (2)y . 
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For example, curve 4 is partially contained into the band delimited by curves 1 and 3 shown in Figure 8(b) and it is 
not contained into the band delimited by curves 1 and 2 shown in Figure 8(c). Curve 1 is fully contained into the band 
delimited by curves 2 and 3 shown in Figure 8(d) and into the band delimited by curves 2 and 4 shown in Figure 8(e). 

The Modified Band Depth (MBD) of a curve in the sample is equal to the fraction of the curve contained into each 
possible band of the sample. This measure allows to rank each curve into the sample, depending on how central a curve 
is respect to the rest of the sample (Sun and Genton, 2011) . 

Modified Band Depth (MBD) (López-Pintado and Romo, 2009) measures the depth of the curves partially contained 
into a band, by means of the ratio between Lebesgue’s measure of the curve segment contained into the band and 
Lebesgue’s measure of the whole curve. Considering that the bands are delimited by two or three curves, the modified 
band depth of a curve j  is equal to: 

32 ( ) ( )( ) ( )
( ) 32

( ) ( )
1 12 3

( ( , ))( ( , ))1 1( )
( ( )) ( ( ))

nn jj

j j

CC j rj r
j

n nj j
r r

A y BA y BMBD y
G y G yC C

λλ
λ λ= =

= +∑ ∑  (21) 

where 
( ) ( )

2( , )j rA y B is the subset of ( )jy  contained into the band 
( )
2

rB  and 
( ) ( )

3( , )j rA y B  is the subset of ( )jy  contained 

into the band 
( )
3

rB . The operator ( )λ • indicates the Lebesgue’s measure. 
Each curve of the sample has an associated value of modified band depth (MBD). The curve with maximum value of 

MBD is placed nearer to the center of the sample and the curve with minimum value of MBD is located further from this 
zone. In this procedure, the curves are sorted decreasingly into the sample according to the value of MBD. The curve 
with the maximum value of MBD corresponds to the sample median curve (López-Pintado and Romo, 2009). When two 
or more curves have the maximum MBD, the sample median curve is estimated as the average of the trajectories of 
these curves. 
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Figure 8. Possible bands of a sample with 4 curves: (a) to (f) bands delimited by 2 curves, and (g) to (i) bands delimited by 3 curves. 
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4.5. Detection and removal of outliers 

In this step, the outliers are detected and removed by means of the functional boxplot (Sun and Genton, 2011). A 
functional outlier is a curve generated by a stochastic process with a different distribution than the one of the normal 
curves (Febrero et al. 2008). To identify and to remove outliers is important because any statistical technique may lead 
to misleading results and conclusions when the sample has statistical contaminated data. 

The functional boxplot is a graphical tool that allows to identify and to remove outliers, when these are totally or 
partially on the outside of 1.5 times the limits of the 50% of the central region (Sun and Genton, 2011). The central region 
envelops the 50% of the deeper curves. 

For a sample with 8 curves, Figure 9(a) shows the median curve and the central region of 50% of the curves. Figure 
9(b) shows the median curve, the outliers and 1.5 times the central region of 50% of the curves. 
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Figure 9. Functional boxplot of a sample of 8 curves: (a) envelope of the 50% of the curves with greater MBD and median curve, and 

(b) 1.5 times the envelope of the 50% of the curves and the outliers. 

4.6. Evaluation of the confidence intervals 

In this step, a confidence interval of the median curve using bootstrap procedure is calculated (Guevara and Vargas, 
2013) . First, the bootstrap method creates a random set of ghost samples from the original sample. Next, the curves 
into each ghost sample are sorted according to their MBD and a central region with 95% of the curves is defined (CR0.95). 
A set of upper limits that envelope the top of the (CR0.95) associated to the ghost samples is sorted using the MBD. A new 
central region with 95% of the upper limits is created and its bottom envelope is defined as the upper limit of the 
confidence interval. Likewise, a set of lower limits of all the ghost samples is sorted with respect to MBD. A new central 
region with 95% of the lower limits is created and its top envelope is defined as the lower limit of the confidence interval 
(Guevara and Vargas, 2013). 

The bootstrap method consists on the construction of 
kn  ghost samples ( )kX  from the random resampling with 

replacing of the original sample X of the form (Hesterberg, 2011): 

{ }

{ }

{ }

(1)( )(1) (1)(1) (1)(2) (1)( )

( )( )( ) ( )(1) ( )(2) ( )( )

( )( )( ) ( )(1) ( )(2) ( )( )

( ), ( ), , ( ), , ( )

( ), ( ), , ( ), , ( )

( ), ( ), , ( ), , ( )

j

j

k jk k k k

nj

k nk k k k j

n nn n n n j

X y t y t y t y t

X y t y t y t y t

X y t y t y t y t

=

=

=



   
 





   
 





   
 

 (22) 

In each ghost sample, the MBD of the curves is calculated and these curves are sorted decreasingly with respect to 
MBD. Next, the envelope of the 100(1 )%α−  of the curves with greater MBD is made and the curves on the outside of 

this region are excluded. In this work 0.05α = and the confidence 100(1 )%α−  is equal to 95%. This envelope reduces 

the size of each ghost sample to 
ln curves, which is equal to the integer part of 0.95 jn , and renumbers the curves from 
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greater to smaller value of MBD, that is ( )(1) (2) ( )( ) ( ) ( ) ( )lnlMBD y MBD y MBD y MBD y≥ ≥ ≥ ≥ ≥   
 

 with the 
index 1, , ll n= 

. 

The upper limit 
( ) ( )k
ug t  and the lower limit 

( ) ( )k
bg t  of the envelope are functions formed by the segments of the 

curves of the ghost sample ( )kX  with the maximum and minimum values, respectively. These functions can be expressed 
as: 

 (23) 

 (24) 

The collection of the upper limits of the ghost samples 
uZ and another collection of the lower limits of the ghost 

samples 
bZ  are constructed, thus: 

{ }( )(1) ( )( ), , ( ), , ( )knk
u u u uZ g t g t g t=   

   (25) 

{ }( )(1) ( )( ), , ( ), , ( )knk
b b b bZ g t g t g t=   

   (26) 

The curves of the collection 
uZ  are sorted according to their MBD. Next, 95% of the curves with greater MBD of 

uZ  

is extracted and a new envelope is defined between the upper limit ( )uuh t  and the lower limit ( )ubh t , named upper 

envelope. The same procedure is applied to the collection 
bZ , obtaining an envelope between the upper limit ( )buh t  

and the lower limit ( )bbh t , named lower envelope. 

Finally, the confidence interval 0.95C  is defined as the region delimited by the functions ( )uuh t  as upper limit and 

( )bbh t  as the lower limit, that is: 

{ }0.95 ( , ( )) : , ( ) ( ) ( )bb uuC t y t t I h t y t h t= ∈ ≤ ≤

   (27) 

5 EXAMPLES OF APPLICATION 

SFRC specimens subjected to tension and bending are tested and simulated with the proposed numerical model. 
The estimated structural response and the representative crack pattern are obtained in the numerical model and 
compared to the experimental results. The numerical simulation considers plane stress condition, infinitesimal strains 
and applied static loads and represents the formation of a crack as the concentration of the field displacement isolines. 
In these examples of application, 200 observations with different orientations of fibres are simulated for each fibre 
volumetric ratio, to obtain the confidence interval for the median of the relationship between the applied load P  and 
the representative displacement δ . 

These sizes are the same that were used to estimate the dispersion coefficient 
dis
hc  (Lamus, 2015). The element size 

has a low influence over the mean curve of the mechanical response Figure 10 (a). 
To determine the influence of the finite element size in the results and to select the appropriate mesh size, a 

convergence study was performed over the meshes TM8, TM12, TM16 and TM20 with maximum element size of 8mm, 
12mm, 16mm and 20mm, which correspond to 16%, 24%, 32% and 40% of the fibre length, respectively (Figure 10(b)). 
It is necessary to note that the geometry of the simulated specimens requires the use of small-sized elements mainly in 
the areas of the notch. 
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Figure 10. Influence of finite element size: (a) Curves load vs displacement for four finite element sizes (b) Four meshes used for the 

mesh analysis. 

The percentages of outlier simulations presented in Table 2 allow identifying the efficiency of the model to obtain 
feasible results. For larger mesh sizes the number of outliers increased consider-ably. It was established that the ratio of 
admissible outliers with respect to the efficiency of the model is 5/100. The maximum element size used in this work was 
selected to be around 32% (TM16) of the length of the fibres used in the experimental tests. This limit corresponds to 
16% of the structural member minor dimension in the notched region. 

Table 2 Characteristics of the mesh used in estimating the influence of the finite element size. 

Mesh Maximum Element 
Size 

Percentage of the fibre Length 
Elements Nodes Outliers ratio 

Length=50mm Length=60mm 
TM8 8mm 16.00% 13.33% 2672 1426 2/200 

TM12 12mm 24.00% 20.00% 1224 678 4/200 
TM16 16mm 32.00% 26.67% 740 426 7/200 
TM20 20mm 40.00% 33.33% 500 296 13/200 

 
In each sample of 200 observations obtained for both, tension and bending specimens, less than four curves were 

considered as outliers using the functional boxplot and consequently, they were excluded. Due to the low probability of 
atypical events in the numerical simulation using the selected mesh size, the number of outliers does not exceed 2%. The 
behaviour of this curves can be associated to: (i) longitudinal bands of finite elements where the fibre orientation is 
parallel to the maximum principal stress direction, (ii) finite elements where the fibre orientation is perpendicular to the 
maximum principal stress direction at the cracking zone. 

5.1. Direct tensile tests 

Six cylindrical specimens of plain concrete tested according to NTC454 (ICONTEC, 2011), NTC673 (ICONTEC, 2010) 
and NTC722 (ICONTEC 2000), presented a compressive strength of 22MPa and an indirect tensile strength of 1.72MPa. 
The Young’s modulus estimated from the compressive strength is equal to 18GPa. The Poisson’s ratio and the fracture 
energy were assumed equal to 0.2 and 100N/m, respectively. 

Steel fibres Dramix ® RL 45/50 BN were mixed with the plain concrete of the specimens. These fibres are 50mm long 
and have a shape factor of 45 and an ultimate tensile strength of 1115MPa, according to manufacturer. Five fibres are 
individually tested to tension, obtaining Young’s modulus of 200GPa and a yielding stress of 520MPa. 

The slipping of the fibre embedded into the concrete matrix is defined by means of three repeats of the pull-out 
test Figure 11), which indicate the relationship between the applied load and the displacement. These curves allow to 
obtain the parameters of the deformable-sliding fibre model as pull-out strength of 494MPa, equivalent elasticity 
modulus of 24.56GPa and an equivalent softening parameter of 1564MPa. 
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Figure 11: Three Load vs displacement curves for Pullout test using fibres 45/50 and concrete with a compressive strength of 

22MPa. 

Fifteen specimens of concrete reinforced with 0.5%, 1.0% and 1.5% of volumetric ratio of steel fibres were tested 
under direct tension as shown in Figure 12(a). This experiment is based on works of other authors (Lim et al. 1987), 
considering different dimensions of the specimen (Figure 12(b)). 

This direct tensile test of the three volumetric ratios of fibres is simulated with the proposed numerical model 
(Figure 12(a) and Figure 12(b)). The finite element mesh has 568 nodes and 1016 linear triangular elements with a 
thickness of 150mm and a maximum size of 12mm, as shown in Figure 12(c). The applied loads and the boundary 
condition are shown in Figure 12(c). 

 
Figure 12. Direct tensile test: (a) sketch of the test, (b) geometry of the specimen, (c) finite element mesh with boundary conditions. 

The median and its confidence interval are calculated and compared to the experimental results. For a volumetric 
ratio of steel fibres equal to 0.5%, Figure 13(a) shows 200 estimated curves using B-splines and Figure 13(b) presents the 
five experimental curves, the median curve and its 95% confidence interval. The range of the maximum load, between 
26kN and 33kN, in the numerical model and in the experimental test is the same. The confidence interval of the numerical 
result is like the envelope of the experimental curves. The estimation of the structural response of the SFRC with 1.0% 
and 1.5% is also satisfactory, as shown in Figure 13(c) and Figure 13(d). The maximum load increases slightly with the 
amount of the fibres, besides; the ductility of the specimens with 1.5% of fibres is significantly greater than that of the 
specimens with 0.5% of fibres. 

The concentration of displacement isolines of a numerical simulation matches with the crack pattern observed in 
the experimental test as shown in Figure 14. The simulations of the other observations indicate the same result. 
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Figure 13. Direct tensile test: (a) load vs displacement curves for 0.5% volumetric ratio of fibres, (b) confidence interval, median 

curve and experimental curves for 0.5% volumetric ratio of fibres, (c) confidence interval, median curve and experimental curves for 
1.0% volumetric ratio of fibres, and (d) confidence interval, median curve and experimental curves for 1.5% volumetric ratio of 

fibres. 

(a) (b)
 

Figure 14. Direct tensile test of SFRC with 0.5% of volumetric ratio of fibres in the last loading step: (a) cracking pattern in the test, 
(b) displacement isolines of the numerical simulation of an observation. 

5.2. Three-point bending tests 
Three points beams were tested to bending in previous works (Segura and Lamus, 2014), according with RILEM TC 

162 standards (Vandewalle et al, 2002).. The concrete is reinforced with 1% and 2% of volumetric ratio of steel fibres. 
The dimensions, the supports and the applied load are shown in Figure 15(a). The beam has a notch of 25mm of depth 
at the mid-span, which induces the formation of the crack. This bending test is simulated with the proposed numerical 
model. The finite element mesh has 781 nodes and 1425 linear triangular elements with a thickness of 150mm and a 
maximum size of 12mm, as shown in Figure 15(b). 
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Figure 15. Three-point bending tests: (a) general sketch and (b) finite element mesh. 

Six cylindrical specimens of plain concrete to NTC454 (ICONTEC, 2011), NTC673 (ICONTEC, 2010) and NTC722 
(ICONTEC 2000), presented a compressive strength of 25.4MPa and an indirect tensile strength of 1.87MPa. The Young’s 
modulus estimated from the compressive strength was equal to 19GPa. The Poisson’s ratio and the fracture energy were 
assumed equal to 0.2 and 100N/m, respectively. 

Steel fibres Dramix ® RC 80/60 BN were mixed with the plain concrete of the specimens. These fibres have a length 
of 60mm, a shape factor of 80 and an ultimate tensile strength of 1050MPa, according to manufacturer. Young’s modulus 
and the yielding stress are assumed equal to 200GPa and 590MPa, respectively. 

The slipping of the fibre embedded into the concrete matrix is defined by means of three repeats of the pull-out 
test, which indicates the relationship between the applied load and the displacement. These curves allow to obtain the 
parameters of the deformable-sliding fibre model as pull-out strength of 825MPa, an equivalent elasticity modulus of 
45GPa and an equivalent softening parameter of 1710MPa (Figure 16). 

 
Figure 16. Three load vs displacement curves for Pullout test using fibres 80/60 and concrete with a compressive strength of 

25.4MPa. 

The median and confidence intervals of these curves are calculated and compared to the experimental results. 
Figure 17(a) shows the 200 obtained curves and Figure 17(b) presents the 95% confidence interval for the population 
median curve, the sample median curve and the three experimental curves for a volumetric ratio of steel fibres equal to 
2.0%. The range of the maximum load is between 21kN and 38kN in the numerical result and between 29kN and 37kN in 
the experimental result. This indicates a suitable value of the upper limit, but a low approximation of the lower limit of 
the confidence interval. Likewise, the post-pick branch of the upper limit curve of the confidence interval is similar to the 
upper limit of the experimental envelope, but it is not alike at the lower limit. The estimation of the structural response 
of the SFRC with 1.0% is also acceptable, as shown in Figure 17[REMOVED REF FIELD](c). 
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Figure 17. Three-point bending tests: (a) load vs displacement curves for 2.0% volumetric ratio of fibres, (b) confidence interval, 

median curve and experimental curves for 2.0% volumetric ratio of fibres, (c) confidence interval, median curve and experimental 
curves for 1.0% volumetric ratio of fibres, (d) final cracking pattern in the test, (e) displacement isolines of the numerical simulation 

of an observation. 

In the last loading step of the experimental test, a crack is formed at the notch and is vertically propagated, as shown 
in Figure 17(d). The concentration of displacement isolines of a numerical simulation matches with this cracking pattern 
observed in the experimental test as shown in Figure 17(e). The simulation of other observations indicates the same 
result. 

6 CONCLUSIONS 

The novelty of this work is the combination of a deterministic numerical procedure in order to obtain the structural 
response of SFRC members and a stochastic procedure in order to consider the random orientation and distribution of 
the steel fibres. This allows establishing the confidence interval of the statistical structural response from numerical 
simulations. 

The orientation and distribution of the steel fibres in concrete are random. Consequently, the structural response 
of SFRC members is a statistical result that depends on the confidence interval. The proposed numerical model defines 
this statistical measure. Likewise, this idea could apply to mechanical problems with other random parameters. 

The structural response of steel fibres reinforced concrete members is computed by means of a two-dimensional 
numerical model based on the continuum strong discontinuity approach and the mixture theory. A functional data 
analysis of the sample of structural response obtained for random orientations of the fibres is proposed. This model 
predicts the fracture process in members of concrete reinforced with short fibres of random orientation (SFRC), subjected 
to static load, plane stress condition and infinitesimal strain. The structural response and the cracking pattern of a 
specimen with defined orientation of fibres are obtained from a non-linear finite elements analysis. This procedure, 
named observation, is repeated with random orientations of fibres. The functional data analysis takes the structural 
response of the observations and estimates the median curve and its confidence interval. 

The formulation of a constitutive model of SFRC at a material point integrates the behaviour of each component 
material and its interaction effects. This avoids the high computational cost associated to the discretization of the matrix 
and the fibres and conserves the random character of the fibres. 
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The structural response of each observation is a function between the applied load and the representative 
displacement. These functions are the statistical objects, which have been processed. The presented numerical model 
uses the multivariate statistics and particularly the functional data analysis, which allows estimating the median curve 
and its variability. 

The numerical simulation of a tensile specimen and a bending beam, using the proposed model, shows satisfactory 
results with respect to the experimental tests. The gathering of displacement isolines of the numerical simulation is 
similar to the cracking pattern of the experimental test. Likewise, the estimation of the structural response of the 
numerical model is alike to the envelope of the experimental results. 

The mixture theory allows to simulate mechanical problems where the SFRC has different global volumetric ratios 
of fibres. Consequently, this numerical model can show that the ductility of a structural member increases with the 
amount of fibres. 

The Functional Data Analysis used in this work requires a high number of numerical analyses to obtain the median 
curve of the structural response and its confidence interval. It was found that the statistical results for samples with more 
than 100 observations (analysis) were convergent. In each test presented in this work, around 200 observations with 
different orientations of fibres were realized. In addition, each analysis demands a low computational cost: around 120 
seconds using a 2.40 GHz Intel Core i7-4700M processor with 16GB of RAM for a model with 781 nodes and 1425 
elements. However, the procedure has the advantage over less time-consuming methods that use deterministic 
approaches because its capability to estimate of the range of the experimental response. 
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