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Abstract 

Two-dimensional motion of a rope fixed at one end is consid-

ered. The Rigid Finite Element Method (RFEM) is reviewed 

and applied to obtain a model of the rope, including its elastic 

and dissipative properties. Equations of motion are derived 

without the small displacement assumption, using the Lagrange 

equations. The resulting model is compared to another one, 

being derived within the framework of standard analytical me-

chanics methods and the Lagrange formalism. Advantages of 

the RFE approach are discussed from a computational point of 

view. The presented, alternative model can be a basis for e

cient numerical simulations, which seem to be useful in further, 

comparative studies of the rope dynamics. 
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1   INTRODUCTION 

Using discrete models to approximate continuous systems is a common procedure. It can be ex-

tremely convenient when dealing with mechanics of a deformable solid body submitted to large 

displacements and deformations, e.g. ropes, cables or belts. A discrete model may be produced by 

applying various theoretical formulations. The slender bodies, for instance, can be simply repre-

sented as chains of rigid elements and described with use of some analytical mechanics methods. 

Otherwise, the discretization may be an imminent feature of a certain computational technique, 

e.g. the Finite Element Method (FEM). The former approach has been previously applied to de-

scribe and simulate motion of a hanging rope (see [1{3]). However, the resulting mathematical 

model consists of the implicit system of ordinary differential equations (ODEs): 

 
( ) ( , , )tM q q f q q  (1) 

 with time-dependent mass matrix on the left-hand side. Consequently, numerical integration is 

a cumbersome process, involving very sophisticated strategies. The difficulties can be avoided 

when using the Rigid Finite Element Method (RFEM).  
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 This method was developed by Kruszewski et al. [4] and should be distinguished from the clas-

sical FEM. In the RFE approach, a physical model is composed of rigid (nondeformable) bodies 

connected by massless elastic-dissipative elements. In this paper, the methodology is outlined and 

employed in modeling of the rope. Perhaps the earliest studies of the rope motion were done by 

D. Bernoulli (1732) and Euler (1781). They considered and solved the problem of small vibrations 

of a perfectly flexible, uniform rope which is fixed at one end [6]. Nowadays many researchers 

derive and improve models of various slender bodies. Usually continuum approach is applied, e.g. 

in case of ropes [10, 13], cables [9], y lines [7] and even chains [10, 11]. Probably dynamics of a 

whip is most spectacular, which has been investigated both theoretically and experimentally. The 

contemporary theory of whip motion was developed by Goriely and McMillen [8]. When it comes 

to a discrete approach, the chain-like model of Pieranski and Tomaszewski [12] should be men-

tioned, which was crucial for our previous works on the classical problem of rope dynamics. 

 

2 PHYSICAL MODEL 

The RFE approach has been thoroughly described in [4, 5]. Let us consider a rope of length L and 

mass M which is initially suspended between two supports (see Fig. 1a). Physical model of the 

system is created in two steps. First, the slender body is divided into ñ sections of equal length 

/l L n . Elastic-dissipative properties of each section are concentrated in its center and rep-

resented by a spring-damping element (SDE). Due to the secondary division, the system consists 

of 1n ñ  rigid finite elements (RFEs) interconnected, and connected to foundation, via the 

SDEs as illustrated in Fig. 1b. The SDEs are assumed to be massless and characterized by 

stiffiness and damping coefficients. Every RFE, in turn, is described by mass and inertial mo-

ments. 

 The two additional rigid elements (RFE0 and RFEn+1) can be regarded as a foundation or can 

be used for realization of non-stationary constraints (movable supports). The classical fall of a 

folded rope can be observed as the parameters of SDEn+1 have zero values. 

 

3 MATHEMATICAL DESCRIPTION 

In case of the plane system, every RFE has three degrees of freedom and its position can be speci-

fied with use of the generalized coordinate vector , ,
T

i xi yi iq q qq . As illustrated in Fig. 2, 

there is a local coordinate system i ix y  connected to the ith rigid element. However, 

note that iq  related to the global, reference system xy. Similarly, the generalized forces acting on 

the RFE can be specified by the vector , ,
T

i xi yi iP P PP . 

 Assuming that the rope is a homegenuous prismatic bar of diameter d, length of the RFEs can 

be written as 1 / 2 and  for 2,3, , 1inl l l l l i n .Consequently, the mass 

/ , 1,2, ,i im Ml L i n . Since each rigid element is a cylinder, its moment of inertia with re-
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spect to the central principal axis of inertia i z  (perpendicular to the plane of motion) is given by 
2 2

, 1,2, ,
4 3 4
i i

i

m l d
J i n . 

 

a) 

 
  

b) 

 
 
Fig. 1 Division of a rope: a primary division into equal segments, b secondary division: RFEs connected by SDEs 

 

 

Fig. 2 Local coordinate system and generalized coordinates of a RFE 
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 The system has N = 3n degrees of freedom. In the RFE approach, equations of motion are 

derived using the Lagrange equations: 

 

d
,

d

T T D V

t
P

q q q q
 (2) 

 

 where T denotes kinetic energy of the system, V is potential energy of the system, D is the 

dissipation function. The vectors q and P are composed of the subvectors iq  and iP , respective-

ly: 

 

1 1

2 2, ,

n n

q P

q P
q P

q P

 (3) 

 

 The first two terms of Eq. (2) have the form: 

 

,
d

d

T T

t
Aq

q q
 (4) 

 

 where A is a diagonal mass matrix (N N ), defined as 

 

3 2, 1,2, ,

3 1, 1,2, ,

3 ,

for 

for 

f 1r 2,o , ,

i

i

i

kk

k i i n

k i im

J n

m

n

k i i

A  (5) 

 

 Now, consider two neighbouring RFEs (see Fig. 3). The ith SDE is assumed to have the same 

orientation as the ith RFE. Deformation of the SDEi can be written as follows: 

 
1 1

1
1 1

1

1

,

i i
Ai Bixi

i i
i yi Ai Bi

i i i

x xw

w y y

w q q

w  (6) 

 

 where position of the points iA and 1iB  are expressed in the same coordinate system; the 

subscripts x , y ,  correspond to tension, shearing and bending, respectively. The potential en-

ergy and the dissipation function of the system become 

 
1

2 2 2

1 1

1
,

2

n n

xi xi yi yi i i i xi
i i

V C w C w C w m gq  (7) 
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1

2 2 2

1

1
.

2

n

xi xi yi yi i i
i

D B w B w B w  (8) 

 

 In the above formulas xiC , yiC , iC  are stuffiness coefficients and xiB , yiB , iB  are damping 

coefficients, which can be expressed as follows [4]: 

 

, , ,xi yi i
EA GA EI

C C C
l l l

 (9) 

 

, , ,xi yi i
A A I

B B B
l l l

 (10) 

 

 where A denotes the cross-sectional area of the rope, I is the second area moment of the rope's 

cross-section, E denotes the Young's modulus, G is the shear modulus,  denotes the shape fac-

tor,  and  are material constants of normal and tangential damping, respectively. Unlike in 

the case of small vibrations, iw  and iw  have much more complex forms and the derivatives 

/V q  and /D q  cannot be linearly expressed in terms of q and q . Finally, the equations 

of motion are given by 

 
( , , ) ,tAq F q q  (11) 

 

 where F is a non-linear vector function, including the components resulting from spring de-

formation, gravity, dissipation and external forces. Considering that A is diagonal, Eq. (11) can 

be easily transformed to 

 
( , ) . ,tq F q q  (12) 

 

 
Fig. 3 Two neighbouring RFEs connected by a SDE 
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 Compared with Eq. (1), the mathematical model (12) is a system of ordinary differential equa-

tions in the standard (explicit) form. Therefore, solving initial values problems for the equations 

seems to be significantly simpler and straightforward: many sophisticated techniques, necessary in 

the former case (especially for computation and processing of the left-hand side matrix), become 

redundant. Using an appropriate solver can lead to very efficient numerical simulations, which 

plays a crucial role in studies of long-term behaviour of physical systems (e.g. in chaos identifica-

tion). 

 

4 NUMERICAL EXPERIMENT 

To verify the numerical efficiency of the presented approach, a series of simple numerical experi-

ments have been performed with use of two different models and the results have been compared. 

Consider motion of the rope which is initially deflected aside, which means that the deflection 

angle is equal for all the rigid elements: (0)iq , where 1,2,...,i n  and 75º . Parameters 

of the rope are presented in Tab. 1. It should be noticed that the damping material constants 

fulfil the relation [4, 5]: 

 

.
G

E
 (13) 

 

 

Quantity Value Unit 

Rope density,  6000 kg/m3 

Rope length, L 1.0 m 

Rope diameter, d 0.005 m 

Young’s modulus, E 635 10  Pa 

Shear modulus, G 614 10  Pa 

Material constant of normal damping,  103 Ns/m2 

Material constant of tangential damping  24 10  Ns/m2 

 

 For purposes of the comparative analysis, a combination of the models described in [2,3] has 

been used. This system can be regarded as a multiple physical pendulum (MPP) with some addi-

tional features. Its members are identical and consist of two connected parts: a rigid rod and a 

spring. Such whole members are connected by elastic-dissipative joints. Thus, the rope is extensi-

ble by involving a simple spring-mass conception; it also includes bending stiffness and damping 

via non-ideal joints. Mathematical model of the system was derived in Lagrange formalism. 

 Since the two models are based on various theoretical conceptions, the problem of parameters 

matching arises. Some properties of the MPP (mass, spring constant, bending stiffness) can be 

easily calculated using the values from Tab. 1. However, selection of the damping values has been 

performed by trial and error to ensure possibly highest agreement of the two systems motion. 
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 The problem of the rope dynamics has been solved several times for different discretization 

density. More precisely, the number of RFEs and the number of the pendulum members have 

been varied. As with the problem analyzed in [1{3], we decided to apply the MEBDFV solver 

designed by Abdulla and Cash (Imperial College, London). The code implements the modified 

extended backward differentiation formulas (MEBDF) developed by Cash (1980). In each case all 

the solver parameters have been set identically. The calculations have been carried out using PC 

with Phenom X4 3.0 GHz processor. 

 In the experiments motion lasting 30 s has been considered. As other works indicate, the time 

interval is long enough to go beyond a transient phase of the rope's behaviour. Figure 4 shows 

computation time for various numbers of elements n. As can be seen, in most cases the RFEM 

approach leads to considerably shorter time of calculations. The MPP model is numerically more 

efficient only for small n. 

 Detailed comparative studies focused on dynamics itsels are beyond the scope of this paper. 

However, to illustrate an agreement rate of the two systems, their total energy E = T+V is 

shown in Fig. 5. To make the both cases fully comparable, the initial energy E0 is regarded as the 

zero level. In more systematic analysis the difference between energy of the systems should be 

minimized by more sophisticated selection of the parameters. 

 

 
Fig. 4 Number of elements versus computation time in seconds 

 

5 CONCLUSIONS 

The rigid finite element method has been applied to obtain mathematical model of a rope. Be-

cause the equations of motion have not been formulated under the assumption of small vibra-

tions, the model appears to be non-linear. Nevertheless, its form is advantagous from the compu-

tational point of view, when compared with the other models presented in the previous works. 

The numerical experiment has shown that parameters matching is not straightforward when 

studying behaviour of two models based on different formulation. However, the performed selec-
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tion of the parameters values has led to quite compatible solutions. What is more, the obtained 

results prove that the RFEM approach is numerically more efficient. 

 All in all, the RFEM is a well-developed and effective approach, which is based on simple con-

ceptions and can be used to analyze both small and large deformations. The presented, numerical-

ly efficient model will be useful in further, comparative studies of the rope dynamics. 

 

a) 

 
  

b) 

 

Fig. 5 Total energy of the two systems: a n = 30, b n = 70 
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