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Non-linear dynamics of a hanging rope
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Two-dimensional motion of a hanging rope is considered.
A multlbody System with elastic—dissipative joints is used for Institute of Applied Mechanics, Poznan University of Technology,

modelling of the rope. The mathematical model based on the 24 Jana Pawla Il Street, 60-965 Poznan, Poland

Lagrange formalism is presented. Results of some numerical simu-
lations are shown for the mechanical system with kinematic exci-
tation. Basic tools are used to qualify dynamics of the rope: the
maximum Lyapunov exponent (MLE) is estimated numerically
by the two-particle method, frequency spectra are generated via
the Fast Fourier Transform (FFT) and bifurcation diagrams are
produced. Influence of the excitation amplitude and frequency as
well as damping on behaviour of the system is analyzed. The
work can be treated as the first step in more advanced analysis of
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regular and chaotic motion of the complex system.
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1 INTRODUCTION

Similar to pendula, hanging ropes and chains are not only classical mechanical systems, but also
have various engineering applications. For instance, a chain can be a part of an impact damper
used for reducing wind-induced vibration of tower and mast structures [1, 2]. Moreover, the slen-
der bodies (like cables, belts, textile threads) have many features in common and simplified mod-
els of the ropes and chains can be useful to explain some interesting phenomena occurring in real
technical systems. One such example is dynamics of marine cables, particularly non-stationary
motion of a steering cable of a remotely operated underwater vehicles [8, 9|. Simulations play
even more important role in context of satellite tethers, whose motion can be hardly studied ex-
perimentally [8]. What is more, the same purely mechanical models at small length scales are
sometimes used to investigate behaviour of biological filaments and molecules such as DNA [9].
Modelling of a rope which undergoes large deformations seems to be a non-trivial task. Even if
the slender body is approximated with a discrete system, performing simulation of its motion
requires rather sophisticated numerical apparatus due to nonlinear nature of the model. However,
the discrete systems can be very attractive to researchers in the field of nonlinear dynamics. For
example, the chain-like models presented in [3, 4] are composed of many rigid links connected by
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joints of different types. The character of the system leads to mass coupling between particular
elements. Such complex mechanical systems are rarely discussed in literature. Usually authors
focus mostly on simple systems with one, two or three degrees of freedom (e.g. see [2, 7]).

In what follows, behaviour of the rope subjected to kinematic excitation is analyzed, with use
of the mentioned discrete model. It is shown that regular and irregular motion of the system can
be observed, when values of the excitation parameters are altered. In the numerical studies, the
largest Lyapunov exponent and frequency spectra are used to identify vibration character.

2 MATHEMATICAL MODEL

The discrete model of the rope is briefly described below. Consider a uniform rope of length L and
mass M suspended from a support. For simplicity, only plane motion of the body in gravitational
field is studied. The rope itself can be modelled as a discrete system composed of n identical rigid
members, which are connected by rotational joints (see Fig. 1). Assume that the elements are
prismatic rods of length [ = L /n and mass m = M /n. The joints, in turn, determine viscoelastic

character of the system. As a simple combination of a spring and damper, each joint is described
by stiffness k. and damping coefficient c¢. The rope may be subjected to kinematic excitation

realized by the movable support, whose position depends explicitly on time:

Ty = z,(t), Yo = Yo(t) - (1)

Figure 1 Discrete model of the rope: a) general idea, b) system with elastic-dissipative joints

Using the angular generalized coordinates q =[g@,, ¢,, ..., »,]' and applying the Lagrange for-

mulation, one can obtain the following equations of motion:
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where the coefficients a, € R and b, € R. The generalized forces on the right-hand side have
different nature: Q° are potential forces which come from gravity; Q' denotes potential elastic

forces of nonlinear form, derived by applying the classical ‘bending moment — curvature’ relation-
ship for beams [4]; Q" are dissipative forces, obtained with use of the viscous damping model [4].

Mathematically, the given dynamical problem is specified as the initial value problem:

M(q) § =£(t, g, q) (3)
CI(O) =y, q(O) =q, (4)

The simulation environment developed by the authors has been based on the MEBDFYV solver of
Abdulla and Cash, suited to solve the systems of implicit ODEs with time dependent left-hand
side mass matrix. More details on the method can be found in [6].

3 NUMERICAL EXPERIMENTS
3.1 Excitation amplitude and frequency as control parameters

Consider the discrete model of the rope of length L = 1 m and mass M = 0.2 kg. Moreover, let us
restrict the analysis to the case when n = 20, and the constants k. = 0.001 NmQ, ¢ = 0.005 Nm-s.

Assume that initially the system is in the stable equilibrium position with zero velocities:
q(0)=0, ¢0)=0 (5)
Vibrations of the system are forced through horizontal harmonic motion of the support:
z,(t) = Asin(2zBt),  y,(t)=0, (6)

where A and B denote the amplitude and frequency of the kinematic excitation, respectively.

To qualify dynamics of the rope, the maximum Lyapunov exponent (MLE) is used. Since the
system of differential equations (3) is implicit and the mass matrix M is time dependent, using
the variational technique for the calculation of MLE is rather a cumbersome task. Thus, the two-
particle method is applied with periodic renormalization of the distance between the shadow tra-
jectory and the reference one [7].

Additionally, frequency spectra, obtained via Fast Fourier Transform (FFT), are analyzed. In
practice, some problems may appear when distinguishing between subharmonic, quasi-periodic
and chaotic vibrations on the basis of a discrete spectrum. Therefore, the concept of equivalent
spectrum is used to eliminate local minima of the original one (see [5]).
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In the below examples, A and B are regarded as control parameters. When the amplitude is
constant, e.g. A = 0.1 m, transitions between periodic (P) and quasi-periodic (QP) oscillations of
the rope can be observed as value of B is increased. For example, the sequence of selected fre-
quencies can be analyzed: B = 0.5 Hz (QP), B = 0.6 Hz (P), B = 0.9 Hz (QP), B = 1.0 Hz (P,
see Fig. 2a), B = 1.2 Hz (QP, see Fig. 2b), B = 1.75 Hz (P, see Fig. 2¢). In the QP cases, the
phase portraits show trajectories whose projections form very close and similar curves. The fre-
quency spectra, in turn, illustrate several frequencies f € (0, B), but the characteristic ratio f/B

is irrational.
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Figure 2 Phase portraits and frequency spectra related to the last element of the system (A = 0.1 m):
a) B=1.0Hz, b) B=12Hz c) B= 175 Hz

Similar analysis can be performed for constant frequency. When B = 1.0 Hz, changes in the
amplitude values produce the following behaviour: A = 0.09 m (QP), A = 0.1 m (P, as before),
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A = 0.13 m (P, 3T-periodic oscillations, see Fig. 3a), A = 0.142 m (QP, see Fig. 3b), A = 0.18 m
(CH, see Fig. 3c). In the 3T-periodic case, the order of the subharmonic oscillations can be easily
verified with use of a Poincare section or frequency spectrum. For the periodic motion the MLE,
A, is negative (though close to zero). In the quasi-periodic cases A is very close to zero (negative
or positive). In the chaotic (CH) case 4 = 0.149.
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Figure 3 Phase portraits and Lyapunov maximum exponents related to the last element of the system (B = 1.0 Hz):
a) A=013m, A=-10° b) A =0.142m, A = 5x107, c) A = 0.18 m, 4 = 0.149
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Figure 4 Bifurcation diagram of coordinate ¢y versus the excitation amplitude A for constant B = 1.0 Hz:
a) 0.1 < A <0.3 m, b) a clipped view of the diagram for 0.11 < 4 <0.15 m

The bifurcation diagram of the system shown in Fig. 4 presents the dependence of the last
element position ¢, on the amplitude A in the range 0.1 < A < 0.3 m. The band associated with

chaotic motion seems to be the most noticeable here. Moreover, the window of the 17 and 37T
behaviour can be seen. Transitions from periodic motion to chaos involves quasi-periodic behav-
iour. The diagram confirms the particular results presented before.

In the numerical experiments, evolution of the system has been studied for 0 < ¢ < 500 s. The
frequency spectra have been generated for 1000 < ¢ < 500 s to neglect any transient motion. The
values of the largest Lyapunov exponent have been estimated for initial disturbance
&= "5010" =10". Although all the figures are related to behaviour of the last member, similar

results could be shown for the other elements of the system.

3.2 Influence of damping on the system behavior

In order to investigate the influence of damping on the vibrations character, a series of similar
experiments has been performed, whose selected results are presented below. In each case the rope
parameters (excluding damping), initial conditions and the type of kinematic excitation are the
same as in Sect. 3.1. Due to richness of nonlinear effects encountered, the analyses are restricted

to changes of the amplitude A, whereas the frequency is constant: for comparison purposes
B =1Hz.

Latin American Journal of Solids and Structures 10(2013) 81 — 90



P. Fritzkowski and H. Kaminski / Non-linear dynamics of a hanging rope ~ 87

@20 [rad]

P oee

0.1 0.15 0.2 0.25 0.3
A [m]

20 [rad]

0.16 0.165 0.17 0.175 0.18
A [m]

Figure 4 Bifurcation diagram of coordinate ¢y versus the excitation amplitude A for constant B = 1.0 Hz and
¢ =0.01 Nm-s: a) 0.1 < A <0.3m, b) a clipped view of the diagram for 0.16 < A < 0.18 m

Firstly, lest us consider the case when the damping coefficient is increased: ¢ = 0.01 Nm-s. As
can be seen in Fig. 5, such a value considerably reduces diversity of the system’s behaviours. Ac-
cording to the bifurcation diagram, in a wide range of the amplitude one can expect periodic mo-
tion of the rope: now two of the values from Fig. 3 (A = 0.13 m, A = 0.142 m) correspond to
1T-periodic oscillations (see Fig. 6a). Transition to the dominating range of chaos is related to
quasi-periodicity, for instance: A = 0.169 m (QP, see Fig. 6¢), A = 0.17 m (QP, see Fig. 6d),
A =0.175 m (QP, see Fig. 6e). However, when analysing the diagram in details, one can find
more elaborate forms of the quasi-periodic behaviour, very close to subharmonic vibrations as
presented in Fig. 6b.

Like in the previous numerical experiment, the chaotic behaviour is spread out over an appre-
ciable range of the control parameter. Presumably, it is caused by high values of the amplitude in
relation to the rope length. It should be noted that, taking into account the mild perceptible
boundary between the regular and chaotic regions, increasing the damping coefficient does not
seem to shift the boundary to the right.

Perhaps the highest richness of nonlinear effects can be observed in the third selected case: for
¢ = 0.002 Nm-s. Bifurcation diagram is shown in detail in Fig. 7. Even for small values of the
excitation amplitude, periodic solutions are rather rare: the most noticeable is the range around
A = 0.099 m, well visible in Fig. 7d. However, quasi-periodic behaviour is very common, in some
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ranges it seems very similar to subharmonic vibrations. The chaotic region, in turn, is moved to
the left.

Figure 8 presents phase portraits for selected values of A. Nature of the given solutions is as
follows: A = 0.0872 m (QP), A = 0.0877 m (QP), A = 0.097 m (QP), A = 0.0994 m (P,
11 T-periodic oscillations). Obviously, the character of the vibrations can be verified with a use of
frequency spectra and the largest Lyapunov exponent.

4 CONCLUSIONS

The selected results have shown that the given system with multiple degrees of freedom can expe-
rience regular as well as chaotic motion. Parameters of the kinematic excitation play a crucial
role, however, an appropriate combination of the stiffness and damping constants is fundamental
too. Influence of the latter one on the system dynamics has been analyzed. The greater value of
the damping significantly reduces variety of nonlinear effects but extends the range of periodic
solutions. The smallest selected value, in turn, enriches the scope of the system behaviour, espe-
cially with quasi-periodic vibrations of different type. In the comparative analyses only the excita-
tion amplitude has played a role of a control parameter. In the future, results of the frequency
changes should be investigated too, which is more typical in studies of dynamical systems.

Additionally, qualitative changes in behaviour of the rope, as the number of members is al-
tered, merit attention; it may cast light on the question about validity of the discrete model of a
rope.
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Figure 6 Phase portraits related to the last element of the system (B = 1.0 Hz, ¢ = 0.01 Nm-s): a) A = 0.16 m,
b) A = 0.168688 m, c) A = 0.169 m, d) A = 0.17m,e) A =0.175m, f) A =02 m
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Figure 7 Bifurcation diagram of coordinate ¢y versus the excitation amplitude A for constant B = 1.0 Hz and
¢ =0.002 Nm-s: a) 0.05 < 4 <0.3m, b) — d) clipped views of the diagram
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Figure 8 Phase portraits related to the last element of the system (B = 1.0 Hz, ¢ = 0.002 Nm-s):
a) A =0.0872 m, b) A = 0.0877 m, c) A = 0.097 m, d) A = 0.0994 m

Thus, the work can be treated as the first step to consider bifurcations of the system and to

study its nonlinear dynamics in a more systematic way, with use of the advanced numerical tools.
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