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Abstract

This paper reports on a particularly accurate and precise physical and experimental data
capture and data processing system for high strain rate testing using the split Hopkinson
pressure bar. The data processing incorporated the first four Pochammer-Chree modes and
proved to be suitable for the tests that were carried out. To vindicate the design of the
facility, two materials were tested, namely mild steel and copper, in both the as-received and
annealed conditions. The actual test data, once appropriately processed was compared with
both the Johnson-Cook (JC) and Cowper-Symonds (CS) high strain rate materials models,
as well as with other published data. The correlation with previously published constants for
the JC and CS models was not particularly good, due to perceived differences in the stress
levels and prior work hardening, heat treatment condition and microstructure of these earlier
tests, as these variables affect the constitutive equation constants. Using other published
data, however, the correlation was improved, suggesting there is scope for modification and
improvement of these constitutive equation parameters in the classic approaches.

Keywords: split Hopkinson bar, dynamic material response, material characterisation

1 Introduction

As a result of increasing demand to improve analysis of fast manufacturing techniques as well as
safety in structures, it is necessary to determine accurate and reliable material properties at high
strain rates. Conventional screw-driven or servo-hydraulic methods of testing materials at high
strain rates are not entirely adequate as the strain rates are limited and also there are oscillations
and stress waves set-up within the testing apparatus at high speeds. These oscillations and stress
waves impair the transducer load cell reading, thus making the data obtained more complex to
interpret reliably. These limitations were overcome with the development of the Hopkinson
pressure bar (SHPB) [9], subsequently extended by Davies [5] and Kolsky [13]. Even with such
a SHPB facility, data instrumentation, data capture and processing is of critical importance if
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reliable material data is to be obtained. This paper aims specifically at addressing this accuracy
and reliability issue. The paper first covers the development of data capturing and processing as
well as discussing the relevant theory for the SHPB. Two numerical models, the Cowper-Symonds
and Johnson-Cook constitutive equations are discussed as these were used as a reference for test
results. The full experimental operation is discussed together with experimental results and
findings and concluding with future capabilities of the system.

1.1 Review of the Development of Data Capturing and Processing

The central challenge in SHPB operation and research has always been to obtain reliable stress
wave measurements. This section discusses the development of the data capturing and processing
of the signals from the SHPB.

The initial work by Davies (1948) [5] and Kolsky (1949) [13] used cylindrical condenser
microphones, and capacitive sensors mounted on the bars to measure the stress wave propagation
as conventional resistive strain gauges had not yet been developed. The signal was amplified
approximately 3000 times using valve amplifiers, which limited the frequency response, and fed
into a cathode ray oscilloscope. Along with the signal from the amplifier, a sinusoidal wave was
fed into the second channel, to provide a reference timing trace. When the pulse was applied
to the bar, by either explosive loading or by projectile, an inertial switch mounted on the bar
would trigger a camera to photograph the trace generated by the oscilloscope. The film was
developed and photograph enlarged so that the trace could be used to generated a stress-strain
curve for the material tested.

The analysis of the results from the split Hopkinson pressure bar was based on the assumption
that one dimensional wave theory was adequate. To improve the accuracy of the analysis,
dispersion of the wave had to be considered. Dispersion of the pulse in this case refers to the
fact that the higher frequency components of the pulse travel slower in the bar than the low
frequency components. This meant that the pulse ”broke-up” or dispersed at it moved down the
bar. This is overcome by correcting the signal for dispersion using the so-called Pochhammer-
Chree curves as investigated by Bancroft [4]. These refer to the solution of the equation of
motion for wave propagation in an infinitely long cylindrical bar. The generation and use of the
Pochhammer-Chree curves is discussed in more detail in Section 2.2 and 2.3.

To illustrate the break-up of the pulse due to the dispersion, a trapezoidal shaped pulse
was assumed to be initiated at the end of the pressure bar. As the pulse moved down the bar,
dispersion occurs according to the first Pochhammer-Chree mode. It can be seen in Figure 1
that the low frequency components of the pulse stay within the main body, whereas the high
frequency components form a ”tail” at the rear of the pulse. What is also evident, as a result
of the separation of the frequencies, is the formation of oscillations on the main body of the
pulse. These oscillations result in oscillations on the stress-strain curve, which distort the true
stress-strain state of the specimen.

Davies [5] applied the numerical results calculated from the Pochhammer-Chree equation to
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 Figure 1: Plot showing the break-up of a trapezoidal pulse due to dispersion.

determine the dispersion of a wave travelling in a bar. It was assumed that the pulse initiated
at the end of the bar was trapezoidal and periodic, which could be expressed as a periodic
wave by a Fourier series, allowing each component to travel with its phase velocity. Davies
investigations showed that it was indeed possible to reconstruct a dispersive stress wave in a
long cylindrical bar with prior knowledge of the diameter, Young’s modulus, Poisson’s ratio and
the density of the bar. It was also shown that the wave propagation belonged predominantly to
the first mode of vibration. This investigation method, at the time, was time consuming as all
the calculations were performed manually. The number of Fourier terms was also limited which
reduced the resolution of the corrected wave. Despite the computational limitations, however,
it was possible to show that the wave propagation belonged to the first mode of vibration. In
1958 Hsieh and Kolsky [10] used a simpler method to confirm Davies work.

The development of the transistor and the improvement of computational equipment, made
it possible to use Fast Fourier Transform (FFT) analysis techniques [18]. The FFT algorithm
is used to transform the time domain data to the frequency domain. The final result is a
complex expression of the magnitude and phase of each of the frequencies in the time domain.
In 1978 Yew and Chen [21] captured a wave at two locations in a cylindrical aluminium rod
simultaneously with an oscilloscope (by photographing the image) and a transient recorder.
From the two readings at separate locations, together with the use of the FFT, Yew and Chen
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were able experimentally, to plot the phase velocity. Acceptable correlation of the experimental
phase velocity to the theoretical phase velocity (generated from the first Pochhammer-Chree
dispersion curve) was obtained.

In 1983, Gorham [8] significantly reduced the oscillation on the generated stress-strain curve.
The signal from the pressure bar was digitised, at a sample rate of 20MHz, and processed using
the FFT algorithm on a HP9825 computer. Once the data was transformed he corrected the
phase shift using tabulated data generated by Bancroft [4]. The Inverse Fast Fourier Transform
(IFFT) was used to reconstruct the pulse to the time domain. This method was significantly
different from the former methods as it did not use the assumption that the wave was trapezoidal
and periodic. This meant that pulses that are not trapezoidal in shape, such as those generated
from explosive detonation, could be corrected and processed.

Even though the method used by Gorham reduced the oscillation on the stress-strain curve
it had not been removed completely. Lipshitz and Leber [16] investigated the source of these
oscillations by noting the effect of small errors in the value used for the fundamental wave speed
C0 =

√
E/ρ where E= Young’s modulus and ρ = density of the bar. This was achieved by

measuring the stress pulse in a bar at two locations and then shifting the reading of the first
pulse to the second with the correction for dispersion. The method proposed by Gorham was
used to correct for the dispersion, together with several values close to the correct fundamental
wave speed to note the effect. It became apparent that an error of only 1% in the fundamental
wave speed could significantly increase the oscillation on the stress-strain curve.

Up to this stage dispersion correction that had been employed, used the Pochhammer-Chree
solution for the propagation of the wave, but this solution is only exact for bars of infinite length.
Lee and Crawford [14] developed a method to measure the phase velocity of the stress pulse.
The first version of the method used only one Hopkinson pressure bar and a sphere of high
explosives was detonated at one end. The recorded signal was analysed with the rectangular-
window Fourier transform technique to obtain the time-dependent Fourier coefficients from a
measured signal. From this the phase velocities were obtained. These phase velocities took into
account the time of arrival of each frequency, thus gaining a better representation of the actual
phase velocity. The corrected phase velocities were used to correct for the dispersion of the pulse.
The pulse measure was shifted to the loaded end of the bar and corrected for dispersion. The
new trace of the pulse was compared to the method used by Gorham, and it was shown that the
peak was far more clearly defined. There were also less oscillations ahead of the pulse indicating
that the correct phase velocity had been used. This new method was more computationally
costly, as 3000 data points were processed on an IBM 486 and the new method took 30 minutes
to analyse, whereas the Gorham method took only 3 minutes.

The use of a rectangular-window in the Fourier transform meant that the higher frequencies
were filtered out and any higher modes of vibration present were lost. Lee and Crawford [15] used
the Gaussian-window Fourier transform technique to measure experimentally the Pochhammer-
Chree dispersion curves. The same setup was used as in the previous experiment, but the signal
was sampled by a high speed, high-resolution data recorder (sample rate of 10MHZ, sample size
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of 10000 and 12 bit resolution). The transformed data showed the presence of four modes of
vibration. The Pochhammer-Chree analytical solution and the transformed data were used to
generate the new semi-empirical dispersion curve for the stress wave propagation in the bar. This
new dispersion curve was used to shift the pulse to the loaded end of the bar. This method was
compared to the method used by Gorham and it was noted that the rise time of the explosion
was higher with the new method. The peak was also more defined and there were no oscillations
preceding the pulse.

The work presented in this paper used the FFT along with the first four Pochhammer-Chree
modes to correct for dispersion. The method used and relevant theory is discussed in the section
that follows.

2 Summary of the Relevant Theory

2.1 One Dimensional Wave Propagation Theory 
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Figure 2: Schematic of the SHPB showing the stresses in the bar.

Wave propagation behaviour for elastic bars is well-understood and mathematically pre-
dictable [3]. From elementary wave theory the wave equation can be shown to be [6]:

∂2u

∂x2
=

1
C2

0

∂2u

∂t2

where C0 =
√

E
ρ is the fundamental longitudinal wave velocity, and u is the a displacement.

From the wave equation the stress in the bar can be shown to be

σ = −ρC0V

were ρ is the density of the bar and V the velocity of the particles of the bar subjected to the
pulse.

The stress at the incident bar/specimen interface (σS1) is then
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σs1 =
(σi − σr)ABar

AS (t)

and the stress at the specimen/transmitter(σS2)bar interface is

σs2 =
σtABar

AS (t)

were σi, σr and σt is the incident, reflected and transmitted stress in the bars. Assuming
incompressible plasticity, then A0l0 = ASlS , (where A0 is the original cross-sectional area of
the specimen, AS(t) is the instantaneous cross-sectional area the specimen, and ABAR is the
cross-sectional area of the bar).

Note that once the ringing up of the specimen is complete and the specimen has attained a
stable stress state then σS1 = σS2.

From the displacement of the two bars the true strain of the specimen is found. The true
strain is

εtrue = ln
(

l

l0

)

And by differentiating the strain with respect to time gives the strain rate in the specimen

ε̇ =
v1 − v2

lS(t)

2.2 Solution of the Equation of Motion

The solution to the equation of motion for the wave propagation in an infinitely long cylindrical
bar was solved by Pochhammer (1876) and independently by Chree (1889). The solution relates
the propagation velocity Cp to the wavelength A and is exact only for an infinitely long round bar,
and is approximately correct for bars of finite length. An excellent summary of the Pochhammer-
Chree solution has been given by Love [17], which Bancroft [4] has, for ease of computation,
rewritten in the following form.

(x− 1)2 φ (ha)− (βx− 1) [x− φ (ka)] = 0 (1)

where
x = (1 + v)

(
Cp

C0

)2
Cp = Phase velocity

β = 1−2v
1−v C0 = fundamental velocity =

√
E
ρ

h = γ
√

βx− 1 γ = 2π
Λ Λ =

wavelength
k = γ

√
2x− 1, a = d

2 , d =
diameter of the bar
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φ (ha) = (ha)
J0 (ha)
J1 (ha)

, φ (ka) = (ka)
J0 (ka)
J1 (ka)

J0

is the Bessel function of the first kind of order zero,

J0 (x) =
∞∑

m=0

(−1)m x2m

22m (m!)2

J1

is the Bessel function of the first kind of order one,

J1 (x) =
∞∑

m=0

(−1)m x2m+1

22m+1m! (m + 1)!

The method for determining the Pochhammer-Chree modes is as follows:

1. Choose a value for the Poisson’s ratio v and γa, see Figure 3.

2. Find the value of x that will give the first zero for Equation l. This is achieved by choosing
values for Cp

C0
until equation 1 is satisfied. The first zero crossing is the 1st Pochhammer-

Chree mode. Subsequent zero crossings provide the higher modes.

3. Note that the first choice of Cp

C0
is important, it is therefore recommended that the first

choice of γa be almost zero and use Cp

C0
= 1, then the next choice of x can be determined

form the previous value of x.
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Figure 3: Graph showing the method of determining the Pochhammer-Chree modes.
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The Pochhammer-Chree solution of the first mode of vibration is shown in Figure 3 for a
material with a Poisson’s ratio of 0.3. The graph has been normalised by dividing

the phase velocity Cp by the fundamental velocity Co, where C0 =
√

E/ρ. From Figure 4
it is evident that the propagation velocity decreases with decreasing wavelength, that is a hi g
h frequency wave travels slower than a lower frequency wave.
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Figure 4: Solution of the dispersion equation for the first mode, showing the change in phase
velocity CP with wavelength Λ for a material with a Poisson’s ratio of 0.3.

2.3 Correcting for Dispersion using the Fast Fourier Transform

2.3.1 Fourier Theory

To explain how dispersion correction was achieved using the FFT first some Fourier notation
and concepts are necessary. Only the essential concepts are given as the details are lengthy and
beyond the scope of this paper. The reader is referred elsewhere [18] for more details.

The expression

f (t) ⇔ F ($)

states that the Fourier transform of the function f (t)from the time domain into the frequency
domain is F ($) and the inverse Fourier transform of F ($) is f (t).

This moving a pulse from one point in time to another point in time the Time Shift Theorem
is used, ie

Let f (t) ⇔ F ($).
Then f (t− τ) ⇔ F ($) e−j$τ
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This states that when a function f (t) undergoes a time shift and becomes f (t− τ), the
associated Fourier transform is multiplied by a complex exponential e−j$τ [18].

To shift and correct for dispersion the recorded pulsed is first transformed into the frequency
domain using the FFT. Then the individual frequency components are multiplied by e−j$τ .

Where
ω = radial frequency in rad/sec of the particular frequency component under consideration.
τ = Z/Cp in seconds
Z is the distance to move the pulse in meters
Cp = Phase velocity, of the particular frequency component under consideration, from the

Pochhammer-Chree solution.
The inverse FFT is performed and the corrected pulse is plotted.

2.4 Material Models

Models representing the behaviour of materials at high strain rate have been extensively used
in finite-element simulations. For any of these models the desirable feature would be to be able
to characterise the material with a limited number of laboratory tests so that the simulations
could be used with more confidence. Two of these models are discussed below, these being the
Cowper-Symonds [12] and Johnson-Cook model [11]. These two models were selected as they
are well established in the literature and used extensively in many of the finite-element computer
programmes [1]. The constitutive constants used in the model are, however, not always available
for the specific material under consideration especially as a function of its microstructure and
degree of cold working or work hardening.

2.4.1 Cowper-Symonds Constitutive Equation

In 1957 Cowper and Symonds introduced their constitutive equation (Equation 2) [12] to charac-
terise the effect of strain rate on material properties. Their model was formulated by gathering
test data of the dynamic lower yield stress of various materials at different strain rates. From the
data a best-fit curve was generated and constitutive constants for Equation 2 were generated.
From the material coefficients (D and q) the stress-strain curve of a material at a known strain
rate could be scaled to determine the material properties at an unknown strain rate.

σ′0
σ0

= 1 +
(

ε̇

D

) 1
q

(2)

where
σ′0 was the dynamic flow stress at a uniaxial plastic strain rate ε̇.
σ0 was the conceptual ”static” flow stress (ε̇ = 0s−’) inferred from experimental data.
D and q were constants for a particular material.
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2.4.2 Johnson-Cook Constitutive Equation

The Johnson-Cook model was introduced in 1983 [11] and was primarily intended for compu-
tational work. The model was formulated by gathering test data at different strain rates and
temperatures for a wide range of test procedures.

From these tests the model was expressed as

σ = [A + Bεn] . [1 + C ln ε̇∗] . [1− T ∗m] (3)

where

• ε is the equivalent plastic strain, ε̇ is the strain rate, ε̇∗ = ε̇/ε̇0 is the dimensionless plastic
strain rate for ε̇0 = 1.0s−1.

• T ∗ was the homologous temperature
(
T ∗ = T−TROOM

TMELT−TROOM

)

• A is the yield stress

• B and n represent the effects of strain hardening

• C is the strain rate constant

• m is the thermal softening fraction

These models are used, as appropriate, in the comparison of the experimental results dis-
cussed in Section 4.

3 Experimental Facility

Gas Gun Striker Incident Bar Transmitter Bar

Strain
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Sample

Strain
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Figure 5: A Schematic representation of the split Hopkinson pressure bar used for high strain
rate material testing.
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The operation of the SHPB for a compression test is discussed below. The schematic layout
of the system is given in Figure 5 and a photograph of the layout laboratory is Figure 6. A
gas gun launches a striker bar that impacts upon the end of the incident bar. A stress wave is
generated that travels down the bar and is recorded sequentially by the first and second strain
gauges mounted longitudinally on the bar. The stress wave then passes through the specimen
and the specimen is compressed. Part of the stress wave is reflected in the form of a tensile pulse
and is recorded by the second strain gauge. Part of the wave energy is absorbed by the specimen
and the remainder is transmitted to the transmitter bar and recorded by the third strain gauge
mounted on the transmitter bar. The three readings are used to determine the time dependent
stress state of the specimen. From the time dependent strain state data, a stress vs. strain plot
can be obtained [20].

 

Figure 6: Photograph of the SHPB system.

The measurement of the stress wave was by means of 2mm strain gauges that were wired in
a full bridge arrangement that compensates for bending and temperature. The signal from the
full bridge was fed into a Burr-Brown INAl10 fast settling instrumentation amplifier, which was
mounted on custom built boards, with an amplification of 1000. The signal was then fed into
an ADLINKPCI-9812 high-speed data acquisition card where it was sampled, at a maximum
rate of 20MHz and at 12-bit resolution, and stored as a TXT file. The data that was captured
by the digital oscilloscope was fed into Excel. With an Excel-Matlab link the data was sent to
Matlab, where dispersion correction was performed and then sent back to Excel. This approach
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combined the use of the powerful function available in Matlab and the ease of the Excel spread
sheet environment.

4 Results and Discussion

To test the dispersion correction the reading obtained from the first strain gauge station was
moved to the second station without correcting for dispersion and is shown in Figure 7a. As can
be seen the correlation between the two readings were not exactly coincident. The dispersion
Correction was then applied, and as can be seen in Figure 7b, the correlation was far better,
thus indicating that the dispersion correction was functioning correctly.
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Figure 7: Comparison of data to show the effects of data that has and has not been corrected
for dispersion.

Once the SHPB system was calibrated material testing could be performed. Two materials
were tested namely mild steel (EN1A), and copper, in both the as-received condition as well
as simply annealed copper. A typical reading of the three pulses obtained during a copper test
are shown in Figure 8a. These three readings were then processed to yield the stress-strain and
strain rate curves, which are shown in Figure 8b.

4.1 Comparison between the Test Data with that of Published Results and the Cowper-

Symonds Model for Mild Steel

The mild steel tests were compared using the Cowper-Symonds constitutive model. This model
was selected as there were published constitutive constants available for mild steel. A plot of the
dynamic compression test data and the quasi-static tensile test data is given in Figure 9. The
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Figure 8: Copper test showing a.) Stress reading in the bar and b.) Stress-strain and strain rate
plot.

mild steel dynamic test with strain rates of 360s−1 and 919s−1, and the tensile test (strain rate
= 0.001s−1) were scaled using various constitutive constants for Equation 2 to a reference strain
rate of 1x10−4s−1 and plotted. By scaling the test data to this reference strain rate, the model
could be tested as the lower yield point of the quasi-static and dynamic tests should correlate.

The first case considered dynamic uni-axial tests having small strains in the neighbourhood
of the yield strain with constitutive constants of D=40.4s−1 and q=5 [12]. The next case utilised
constants obtained from Abramowicz [2] with constitutive constants of D=802s−1 and q=3.585.
These constants were determined from more recent dynamic uniaxial tensile experiments per-
formed at the Department of Mechanical Engineering at the University of Liverpool. The last
case utilised calculated values from the present test data, with the constitutive constants being
determined to be D=844s−1 and q=2.207.

From Figure 9 it can be seen that the first set of scaled curves are far from the test data
curves indicating that the constitutive constants do not correlate well. The second and third
sets of scaled lines are positioned effectively on top of one another, as the constitutive constants
are very similar. For the second and third sets the upper yield point of the scaled quasi-static
tensile test lies between the scaled dynamic compression tests, but then deviates as it moves
away from the yield point. The lower yield points of the quasi-static and dynamic scaled test
results do not correlate exactly but are reasonably close. The deviation is not substantial and
are regarded as sufficiently correlating. In order to adjust the lower yield points to coincide the
values of D=2000s−1 and q=5 had to be used.

The mild steel test data was then compared to experimental data generated by Tanimura [19].
The data that Tanimura presented was for an annealed mild steel test at strain rates of 0.001s−1
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 Figure 9: Comparison test data to the Cowper-Symonds constitutive model for mild steel (EN
1A). Note that the solid lines refer to the present experimental work, with the dashed lines
representing the same data suitably scaled with the appropriate Cowper-Symonds coefficients
taken from literature.
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and 2000s−1. Selected points from the Tanimura curve were plotted over the mild steel test data
and are shown in Figure 10.From Figure 10 it can be seen that there is very good correlation
between the quasi-static and dynamic test data. The strain rate of the Tanimura curve is higher
than that of the test data and this is reflected in the upper yield point being higher than that of
the curve at a strain rate of 918s−1. The curve after the lower yield point correlated well except
for the slight oscillation of the curve of Tanimura. These oscillations could result from the lack
of dispersion correction being applied to the captured data from the pressure bars.
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Figure 10: Comparison test data to the data obtained from Tanimura [19] for mild steel.

4.2 Comparison between the Test Data and the Johnson-Cook Model for Copper

The high strain rate tests on copper test were compared to the Johnson-Cook constitutive
model [11], as there were published constitutive constants available for copper. The constitutive
constants used in Equation 3 were A=90MPa, B=292MPa, n=0.31, C=0.025 and m=1.09 as
taken from Johnson and Cook [11].

Figure 11 shows the dynamic compression test data as well as the quasi-static tensile test
data for copper. Also plotted is the Johnson-Cook constitutive model for strain rates of 308s−1

and 1160s−1. In Figure 11 it can be seen that the Johnson-Cook model deviates substantially at
low strains, from the annealed dynamic compression test data, but at the higher strains there
is closer convergence between the two traces. It can also be seen that the degree of strain rate
sensitivity for the dynamic compression test and the Johnson-Cook model are quite similar.
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 Figure 11: Comparison test data for Copper using the Johnson-Cook model.

The annealing conditions could also have resulted in the stress level being lower. The annealing
utilised for specimens of size φ 4 x 3mm long, entailed being held at 450˚C, for 10 minutes,
and allowed to cool in the oven. In Figure 11 it can be seen that the Johnson-Cook model lies
between that of the as received and annealed test results indicating that if the specimens had
been only partially cold worked the stress level would probably have been higher.

The annealed quasi-static and dynamic test data was compared to published results. Firstly
dynamic test data was compared to published dynamic test data, at a strain rate of 451s−1 by
Zerilli [22]. The points published by Zerilli were plotted over the dynamic test data and are
shown in Figure 12.In Figure 12 is can be seen that the published curve shows close correlation
with the test data. The next published results were generated by Follansbee [7]. The quasi-static
results were compared and it can seen that the published stress strain curve by Follansbee is
marginally higher and is shown in Figure [3].The dynamic test stress strain curve published by
Follansbee, at a strain rate of 1800s−1 was slightly lower than the test data but had a similar
trend. The deviation between the test data and the published data was considered acceptable.
The deviation could be the result of different elemental impurities composition as well as the
annealing conditions as Follansbee annealed at 600˚C in a vacuum for 60 minutes compared to
the present test specimens which were annealed at 450˚C for only 10 minutes.
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Figure 12: Comparison of annealed copper test data with published results.

5 Concluding Remarks

A data capturing and processing system has been developed which is accurate for the purposes
required. The Johnson-Cook and Cowper-Symonds material models published in the literature
did not correlate well with the present actual test data, when using conventional constitutive
equation constants. The correlation was much improved, however, if values were used from other
published results, and it is believed there are two main reasons for this. Firstly, the material tests
conducted showed that there is a large difference in the stress level of an as-worked specimen
compared to one that was annealed. Thus, the work hardening state and microstructure of the
specimen could be the source on the discrepancy. Secondly, the value used for the constitutive
constants in the model significantly altered the predicted stress level. As a result, the selection
of the correct values for the constitutive constants is vital, if one is to obtain good correlation
with the models.
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