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Abstract 
The present paper proposes a new procedure to determine the optimal parameters of a dynamic vibration 
absorber (DVA), considering both damped and undamped primary system. The DVA design is formulated as 
an optimization problem in which the objective function is constructed based on Den Hartog's equal-peak 
method. The DVA parameters are selected to minimize the response of the primary system when it is 
subjected to harmonic force or base motion. Firstly, we propose a numerical strategy based on Frequency 
Response Curve (FRC) in which the parameters of the absorber are updated by minimizing the objective 
function. The results are presented for a set of reference parameters, which demonstrate the feasibility of 
the proposed method for determining the optimal parameters of the absorber for both excitations. Taking 
into account the system response with respect to reference parameters, the bilinear interpolation 
technique was employed in order to obtain explicit formulas of the damping and frequency ratios of the 
DVA. 

Keywords 
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1 INTRODUCTION 

Dynamic vibration absorbers (DVAs) are devices used to reduce the vibration amplitudes of a primary system at 
certain frequencies, especially close to the resonant frequency. The DVA can be characterized by as a mass-damper-
spring system that when correctly tuned, reduces the steady-state motion of the primary vibratory system. The first 
design of an absorber was made by Frahm in 1909, and this first DVA did not have a damping element, only a second 
mass was attached to the principal one via a secondary spring. This first DVA proved to be effective in a small range of 
frequencies very close to the natural frequency of the principal system (or also called primary system). When the 
primary system is excited with a frequency close to natural one, the amplitudes are significantly reduced due to the 
presence of the DVA, if compared with the results of the primary system without the absorber. However, in this 
coupled system two resonant frequencies appear one before and other after the resonant frequency of the original 
system. This kind of system was called a tuned mass damper (TMD). 

In order to extend the frequency range and improve the response of the primary system, Den Hartog (1943) 
proposed a damped DVA. In his design, Den Hartog gave optimal parameters of the DVA, where an analytical solution 
for the frequencies corresponding to the two maxima of the frequency response curve is determined. It is possible to 
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say that a DVA is optimal (in the Den Hartog sense) if it minimizes the maximum vibration amplitude of the main mass, 
and besides that the magnitude at these two points are equal. This strategy was known as the equal-peak method. 

The study of linear absorbers with the undamped primary system is well-established and the first work about 
syntonization of an optimal absorber was performed by Ormondroyd and Den Hartog (1928). In this work, the authors 
showed that the introduction of a damper not only dissipates energy but also increases the frequency interval over 
which the device is effective. A large number of works have been devoted to the study of both linear and nonlinear 
aspects of DVAs (Shaw et al. (1989), Pai and Schulz (2000), (Oueini and Nayfeh (2000), Ashour and Nayfeh (2003), 
Viguié and Kerschen (2009), Habib et al. (2015)). The responses of many systems have been studied treating the main 
aspects of the primary system with DVA devices. Absorbers have been applied on vibration reduction in beams (Cheung 
and Wong (2008), Ouled Chtiba et al (2010a)), vibration control of structure excited by ground motion (Wong and 
Cheung (2008), Oliva et al. (2017)), under random loads (Guo et al. (2002)), DVA with viscoelastic connections (De 
Espíndola et al. (2008), Doubrawa Filho (2011)), DVA with hysteretic connections (Piccirillo et al. (2016), Carpineto et al. 
(2014), Elahinia et al. (2005)). Since the work of Den Hartog which found an analytical optimal solution for an 
undamped primary system, most studies focus on the numerical optimization techniques for more complex single-
degree-of-freedom vibration absorber models, especially damped vibration absorbers. In Jordanov and Cheshankov 
(1988) considers the use of nonlinear programming techniques to obtain the optimal tuning and damping parameters 
for DVAs with both linear and nonlinear springs. In Thompson (1980) and Thompson (1981) presents studies where the 
frequency locus method is used to describe the optimal damper parameters that would minimize the main system 
response as well as the motion of the absorber. In Viana et al. (2008) uses the ant colony optimization technique to 
arrive at the optimal parameters of a vibration absorber. In Pennestri (1998) applied a Chebyshev’s min-max criterion 
for finding the optimal damper parameters, and others numerical studies based on minimax optimization are reported 
in (Ouled Chtiba et al. (2010b), Randall et al. (1981), Brown and Singh (2011). 

In this context, the main objective of the present paper is to develop a linear absorber that can mitigate the 
vibrations of a linear primary system considering either harmonic force or base motion. First, for set parameters, the 
damping of the absorber and the frequency ratio between the primary system and the absorber are obtained by a 
numerical optimization process. Second, based on system response with respect to reference parameters, the bilinear 
interpolation technique was employed in order to obtain explicit formulas of the damping and frequency ratios of the 
DVA. It is worth mentioning here that the optimal solution is always in the Den Hartog sense, namely, the two peaks 
generated with the introduction of the absorber has set equal level. 

The paper is organized as follows. Section 2 presents the equations of motion of the DVA considering the 
harmonic force and base-excitation. In Section 3, a brief discussion about the equal peak methodology is done. In 
Section 4, a numerical methodology for tuning the DVA is developed. Numerical results of the system behavior are 
presented in Section 5. In section 6 the bilinear interpolation is used to obtain analytical formulas for the absorber 
damper and frequency ratio. Section 7 was made a comparison between the strategy proposed here and others that 
can be found in the literature. The conclusions of the study are drawn in Section 8. 

2 MATHEMATICAL MODEL 

Figure 1 shows a schematic model of the DVA, where 𝑚𝑚1 and 𝑚𝑚2 are the masses of the structure and DVA, respectively, 
and 𝑘𝑘1 is the stiffness of the primary structure and 𝑘𝑘2 is the stiffness of the absorber connected to the primary structure. We 
further assume that the structure has a linear viscous damping with damping coefficient 𝑐𝑐1, while 𝑐𝑐2 is the damping 
coefficient of the DVA. The displacement of the structure is denoted by 𝑥𝑥1, while the displacement of the absorber is 
denoted by 𝑥𝑥2. We considered two systems: one with harmonic force 𝐹𝐹(𝑡𝑡) = 𝐹𝐹0𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡) directly applied to the primary 
mass 1m  (figure 1(a)), and the other system is harmonically excited by a displacement 𝑥𝑥0(𝑡𝑡) = 𝐹𝐹1𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡) applied to the 

base of the primary system (figure 1(b)), where we assuming that 𝐹𝐹1 = 𝐹𝐹0
𝑘𝑘1

. 
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Figure 1: Primary system with viscous damped DVA (a) Force excitation system and (b) Motion excitation system 

The equations of motion of the system with DVA for the harmonic force (equation 1) and base-excitation 
(equation 2) assumes the form 

𝑚𝑚1𝑥𝑥1′′ + 𝑐𝑐1𝑥𝑥1′ + 𝑐𝑐2(𝑥𝑥1′ − 𝑥𝑥2′ ) + 𝑘𝑘1𝑥𝑥1 + 𝑘𝑘2(𝑥𝑥1 − 𝑥𝑥2) = 𝐹𝐹0𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡) (1) 

𝑚𝑚2𝑥𝑥2′′ + 𝑐𝑐2(𝑥𝑥2′ − 𝑥𝑥1′) + 𝑘𝑘2(𝑥𝑥2 − 𝑥𝑥1) = 0 

𝑚𝑚1𝑥𝑥1′′ + 𝑐𝑐1𝑥𝑥1′ + 𝑐𝑐2(𝑥𝑥1′ − 𝑥𝑥2′ ) + 𝑘𝑘1𝑥𝑥1 + 𝑘𝑘2(𝑥𝑥1 − 𝑥𝑥2) = 𝑘𝑘1𝑥𝑥0 + 𝑐𝑐1𝑥𝑥0′  (2) 

𝑚𝑚2𝑥𝑥2′′ + 𝑐𝑐2(𝑥𝑥2′ − 𝑥𝑥1′) + 𝑘𝑘2(𝑥𝑥2 − 𝑥𝑥1) = 0 

For our purposes, it is worth to rewrite the equations (1) and (2) in nondimensional form, by incorporating the 
following dimensionless parameters, 

𝜏𝜏 = 𝜔𝜔1𝑡𝑡 ,𝑢𝑢1 = 𝑥𝑥1
𝑥𝑥𝑠𝑠𝑠𝑠

,  𝑢𝑢2 = 𝑥𝑥2
𝑥𝑥𝑠𝑠𝑠𝑠

 (3) 

where 𝑥𝑥𝑠𝑠𝑠𝑠 means a static displacement of the system, 𝑢𝑢1 and 𝑢𝑢2 are the nondimensional displacements of the main 
mass 𝑚𝑚1 and 𝑚𝑚2, respectively, 𝜏𝜏 is the nondimensional time, 𝜔𝜔1 and 𝜔𝜔2 are the natural frequencies of the primary 
system and the absorber, respectively. Substitution of the equation (3) into the equations (1) and (2), the 
nondimensional form of the equations of motion are obtained 

�̈�𝑢1 + 2𝜉𝜉1�̇�𝑢1 + 2𝜉𝜉2𝜇𝜇𝜇𝜇(�̇�𝑢1 − �̇�𝑢2) + 𝑢𝑢1 + 𝜇𝜇𝜇𝜇2(𝑢𝑢1 − 𝑢𝑢2) = 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐(Ω𝜏𝜏) (4) 

�̈�𝑢1 + 2𝜉𝜉2𝜇𝜇(�̇�𝑢2 − �̇�𝑢1) + 𝜇𝜇2(𝑢𝑢2 − 𝑢𝑢1) = 0 

�̈�𝑢1 + 2𝜉𝜉1�̇�𝑢1 + 2𝜉𝜉2𝜇𝜇𝜇𝜇(�̇�𝑢1 − �̇�𝑢2) + 𝑢𝑢1 + 𝜇𝜇𝜇𝜇2(𝑢𝑢1 − 𝑢𝑢2) = 𝐴𝐴�𝑐𝑐𝑐𝑐𝑐𝑐(Ω𝜏𝜏)− 2𝜁𝜁1Ω𝑐𝑐𝑠𝑠𝑠𝑠(Ω𝜏𝜏)� (5) 

�̈�𝑢1 + 2𝜉𝜉2𝜇𝜇(�̇�𝑢2 − �̇�𝑢1) + 𝜇𝜇2(𝑢𝑢2 − 𝑢𝑢1) = 0 

where 

𝜔𝜔1 = �
𝑘𝑘1
𝑚𝑚1

,  𝜔𝜔2 = �
𝑘𝑘2
𝑚𝑚2

,  2𝜉𝜉1 =
𝑐𝑐1

𝑚𝑚1𝜔𝜔1
, 2𝜉𝜉2 =

𝑐𝑐2
𝑚𝑚2𝜔𝜔2

, 𝜇𝜇 =
𝜔𝜔2

𝜔𝜔1
=

1
√𝜇𝜇

�
𝑘𝑘2
𝑘𝑘1

 , 
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𝐴𝐴 =
𝐹𝐹0

𝑚𝑚1𝜔𝜔12𝑥𝑥𝑠𝑠𝑠𝑠
,Ω =

𝜔𝜔
𝜔𝜔1

,𝜇𝜇 =
𝑚𝑚2

𝑚𝑚1
 . 

3 DYNAMIC VIBRATION ABSORBER - EQUAL-PEAK METHOD 

The first study about a device designed to suppress the vibration amplitudes of a primary system (case 1) was 
performed by Frahm (1909). The idea was to consider an undamped linear TMD attached to an undamped linear 
oscillator (see figure 1(a) with 𝑐𝑐1 = 𝑐𝑐2 = 0). In this design, the choice of the values of mass and stiffness of the 
absorber is based on tuning between the natural frequency of the absorber and the frequency of the harmonic 
excitation which value is fixed. In this sense, this absorber is efficient in a narrow frequency range close to the 
resonance frequency, which tends to lose efficiency when the excitation frequency changes and the TMD is no longer 
tuned. In summary, we can say that are two principal strategies to improve this tuning. In order to increase the 
effective bandwidth and decrease the resonance peak, i.e., improving the performance of the TMD, Den Hartog found 
analytical formulas to frequency and damping ratios to a damped DVA (i.e., 𝑐𝑐2 ≠ 0). The other strategy is to find the 
optimal values of the absorber based on numerical optimization procedures. This strategy is mainly used in DVA 
coupled to a dissipative linear oscillator (i.e., 𝑐𝑐1 ≠ 0). 

In his classical study (case 1), Den Hartog (1943) showed that the frequency-amplitude response curves of the 
undamped primary mass always pass through two invariant points (P and Q) independent of the absorber damping. 
Den Hartog proposed to optimize the parameters of the absorber in such a way to have two fixed points in the FRC at 
the same amplitude. This methodology was called the equal-peak method and, under such circumstances, Den Hartog 
(1943) derived approximate analytic formulas for the absorber stiffness and damping, respectively. The optimal 
frequency ratio 𝜇𝜇 (i.e., the ratio between the frequency of the TMD and main structure) and optimal damping ratio 𝜉𝜉 of 
the TMD can be expressed as 

𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 = 𝜔𝜔2
𝜔𝜔1

= �𝑘𝑘2𝑚𝑚1

�𝑘𝑘1𝑚𝑚2
= 1

1+𝜇𝜇
, 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 = 𝑐𝑐2

2𝑚𝑚2𝜔𝜔2
= � 3𝜇𝜇

8(1+𝜇𝜇)3  (6) 

where 𝜇𝜇 is the mass ratio (i.e., relation between the absorber mass and the main mass). 
To illustrate this method, we shall consider that the absorber mass is 5% of the main mass, therefore 𝜇𝜇 = 0.05, 

and using the equation (4) the optimized parameters 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 and 𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠 are 0.9524 and 0.1273, respectively. As illustrated 

in figure 2, this tuning condition minimizes the maximum response amplitude of the primary system, and according to 
equation (6) the optimal value of 𝜉𝜉2 is 0.1273 (equal-peak method); besides, it is possible to observe two invariant 
points (P and Q) (see figure 2(b)). 

 
Figure 2: (a) Frequency Response Curves for various values of the damping ratio 𝜉𝜉1 = 0 (𝑐𝑐1 = 0), and (b) zoom of a particular 

region of the Fig. (a) 

The optimization theory of linear absorbers when 𝜉𝜉1 = 0 (𝑐𝑐1 = 0) is well-established (see figure 2). On the other 
hand, if 𝜉𝜉1 ≠ 0 (𝑐𝑐1 ≠ 0) the two peaks are not at the same level, and therefore, the optimal solution (equal peaks) 
cannot be derived using the parameter of the equation 6. A comparison of the results obtained with 𝜉𝜉1 ≠ 0 (𝑐𝑐1 ≠ 0) 
and 𝜉𝜉1 = 0 (𝑐𝑐1 = 0) is shown in figure 3. Note that, as expected, when 𝜉𝜉1 ≠ 0 (𝑐𝑐1 ≠ 0) the two peaks are not equal. 
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Figure 3: Frequency Response Curves. (a) 𝜉𝜉1 = 0.01 and (b) 𝜉𝜉1 = 0.1 

As mentioned before, the Den Hartog's theory shows a good accuracy between the peaks in FRC taking into 
account an undamped primary system, however, for the damped primary system the response is not accurate. In order 
to obtain equal peaks in FRC of a damped primary system �𝜉𝜉1 ≠ 0 (𝑐𝑐1 ≠ 0)�, we formulate a numerical optimization 
problem to find the set of physical parameters of the absorber. This procedure will be described in the next section. 

4 OPTIMIZATION PROCEDURE 

The optimization objective is; for any value of mass relation,  , we will find the optimal values of the damping 
ratio coefficient (𝜉𝜉2) , and frequency ratio (𝜇𝜇). Therefore, the optimization problem for the primary system with 
attached DVA can be described as: 

Find the design variables: 𝜉𝜉2 and 𝜇𝜇 
To minimize: 𝐽𝐽 (7) 
Subjected to: 𝜉𝜉2𝑙𝑙𝑜𝑜𝑙𝑙 ≤ 𝜉𝜉2 ≤ 𝜉𝜉2

𝑢𝑢𝑜𝑜, 𝜇𝜇𝑙𝑙𝑜𝑜𝑙𝑙 ≤ 𝜇𝜇 ≤ 𝜇𝜇𝑢𝑢𝑜𝑜 
where 𝜉𝜉2𝑙𝑙𝑜𝑜𝑙𝑙, 𝜉𝜉2

𝑢𝑢𝑜𝑜, 𝜇𝜇𝑙𝑙𝑜𝑜𝑙𝑙, 𝜇𝜇𝑢𝑢𝑜𝑜are the respective lower and upper bounds of the absorber damping and frequency, and 𝐽𝐽 is 
a functional that must be defined. Note that in this case, the mass ratio 𝜇𝜇, is a given input in the optimization problem. 

4.1 Proposed optimal criterion 

Based on what was discussed earlier, the original resonance frequency of the primary system is eliminated with the 
inclusion of the absorber. As a consequence, two new resonance peaks are observed in FRC. This situation is illustrated in figure 
4, where the second mass is attached to the primary system and two resonance emerges from the FRC curve. The peaks are 
denoted by 𝐴𝐴 ≔ 𝐴𝐴�ΩA, u1(ΩA)� and 𝐵𝐵 ≔ 𝐵𝐵�ΩB, u1(ΩB)�, where ΩA(or ΩB) is the frequency value at point A (or B), and 
u1(ΩA)�or u1(ΩB)� is defined, with some notation abuse, as the maximum value of the state u1 when Ω = ΩA(or ΩB). As it 
can be seen between the points A and B there is a minimum point that we denote by 𝐶𝐶 ≔ 𝐶𝐶�ΩC, u1(ΩC)�, besides ΔAB 
represent the distance between the values u1(ΩA) andu1(ΩB), namely, ΔAB: = |u1(ΩA)− u1(ΩB)|. 
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Figure 4: Frequency Response Curve of the primary system 

As stated before, the optimization objective (in a Den Hartog sense) is obtain equal peaks of the primary system 
response when subjected to harmonic or base motion excitation. The numerical problem discussed in this paper is 
therefore to find the optimal values of 𝜉𝜉2 and 𝜇𝜇, from which, the steady-state peaks u1(ΩA) and u1(ΩB) are in the 
same level, i.e., ΔAB ≈ 0. Besides, will try to maximize the value u1(ΩC), or equivalently, minimize the value of 1

u1(ΩC), 

therefore, this was included as an additional criteria. In other words, one should seek the optimal value of the absorber 
parameters 𝜉𝜉2 and 𝜇𝜇 in the form of 

min J
𝜉𝜉2,𝜀𝜀 

≔min
𝜉𝜉2,𝜀𝜀

�ΔAB + 1
u1(ΩC)� (8) 

Then, the optimization problem is reformulated as 

min
𝜉𝜉2,𝜀𝜀

�ΔAB + 1
u1(ΩC)� (9) 

subject to constraints: 

𝜉𝜉2𝑙𝑙𝑜𝑜𝑙𝑙 ≤ 𝜉𝜉2 ≤ 𝜉𝜉2
𝑢𝑢𝑜𝑜, (10) 

𝜇𝜇𝑙𝑙𝑜𝑜𝑙𝑙 ≤ 𝜇𝜇 ≤ 𝜇𝜇𝑢𝑢𝑜𝑜  (11) 

Once defined the functional 𝐽𝐽, is possible to describe the idea of the optimization. Initially, the absorber 
parameters 𝜉𝜉2 and 𝜇𝜇 must be guessed and the equation (4) (or equation (5)) must be solved using a numerical method 
(here, the 5th-order Runge-Kutta algorithm (RK5) is used), to determine the FRC curve. Just to clarify, the FRC is 
calculated as follows: by varying the parameter Ω ∈ [0.1, 2], the system is numerically integrated, and the maximum 
amplitude of the primary system 𝑚𝑚𝑚𝑚𝑥𝑥(𝑢𝑢1) is evaluated for each value of Ω. In the next step, the points 𝐴𝐴�ΩA, u1(ΩA)� 
and 𝐵𝐵�ΩB, u1(ΩB)�, are determined in FRC (see figure 4). If ΔAB ≤ δ (δ is given according to the accuracy of the desired 
response) and ΩA ≠ ΩB then, an optimal solution is found, otherwise, only two possibilities are possible, either, 𝐴𝐴 = 𝐵𝐵 
(only one peak is found in FRC) or 𝐴𝐴 ≠ 𝐵𝐵 (two peaks are found but ΔAB > 𝛿𝛿). Considering that 𝐴𝐴 ≠ 𝐵𝐵 ⟹ ΩA ≠ ΩB and 
u1(ΩA) ≠ u1(ΩB) then, two peaks are found, and the next step is to find the point 𝐶𝐶�ΩC, u1(ΩC)� in FRC curve, and 
therefore, the objective function 𝐽𝐽, described in equation (9) subject to constraints given in equations (10) and (11) are 
evaluated. During the minimization of the objective function, the value of 𝜉𝜉2 and 𝜇𝜇 are changing, and for each new 
value found, the equation (4) (or equation (5)) is numerically solved. This step is repeated until the functional 𝐽𝐽 reach 
the minimum. The procedure is then repeated until satisfies the conditions ΔAB ≤ δ and ΩA ≠ ΩB. 

It is worth mentioning here that depending on the choice values of the absorber parameters the FRC can present 
only one peak, for example, if 𝜉𝜉2 assumes a high value, the two masses are virtually clamped and we have a system 
equivalent to a single-degree-of-freedom system. This situation is illustrated in figure 5, so it should be taken into 
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account as well. Considering that 𝐴𝐴 = 𝐵𝐵 ⟹ ΩA = ΩB and u1(ΩA) = u1(ΩB), namely, only one peak is found, we 
define a new functional 𝐿𝐿, that minimizes the amplitude of this peak. 

min L
𝜉𝜉2,𝜀𝜀 

≔min
𝜉𝜉2,𝜀𝜀

�max�u1(ΩA)�� (12) 

 
Figure 5: Frequency Response Curve of the primary system 

Here, all the steps are similar to described before. In both cases, we used the interior-point algorithm to 
determine an optimal solution. Figure 6 shows a flowchart of the proposed algorithm for solving the optimization 
problem, and figure 7 shows a flowchart as regards to block 1 and block 2, found inside of figure 6. 
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Figure 6: Flowchart of the optimization algorithm 

 
Figure 7: (a) Flowchart of the Block 1 and (b) Flowchart of the Block 2 
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5 NUMERICAL RESULTS 

In order to verify the effectiveness and validity of the proposed methodology, we provide some numerical 
examples, one may assume that 𝐴𝐴 = 1 and other parameters will be changed. In all simulations we chose δ ≤ 10−2, 
that is, the optimal solution will be found when the difference between the two peaks is equal to this order. In this 
section, we will obtain the optimal values of 𝜇𝜇 and 𝜉𝜉2 to undamped and damped primary system. 

The system of equations (4) and (5) was numerically integrated for a several selected mass ratio, 𝜇𝜇, and damping 
coefficient, 𝜉𝜉1, of the primary system. After selecting the value of 𝜇𝜇 and 𝜉𝜉1, the optimization procedure, described by 
figures 6 and 7, is carried out in order to obtain the corresponding optimal values of 𝜇𝜇 and 𝜉𝜉2. For this purpose, let us 
introduce a set of reference parameters for the combination (𝜇𝜇, 𝜉𝜉1). The optimal parameters 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 and 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 has been 
found for each (𝜇𝜇, 𝜉𝜉1), and they are listed in Table 1 and Table 2, respectively. In both tables, the term HE is used to 
denote harmonic excitation and the term BE refers to base excitation. As can be seen, there are several values of 𝜇𝜇 and 
𝜉𝜉1 where the obtained results of 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 and 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠  coincide independent of the excitation (HE or BE). The optimal values 
coincide especially in the interval 0.0 ≤ 𝜉𝜉1 ≤ 0.04, that is, the damping ratio 𝜉𝜉1 determines how motion is transmitted 
from the base to the primary mass since the transmissibility is a function of the frequency ratio Ω and the damping 
ratio 𝜉𝜉1. Namely, if the base excitation is considered and 𝜉𝜉1 ≤ 0.04 the damping effect on the primary system makes 
the response of the system subject to BE or HE excitation, close to each other. 

Table 1. Optimal frequency ratio of the DVA 
  ξ1 = 0.0 ξ1 = 0.01 ξ1=0.02 ξ1=0.03 ξ1=0.04 ξ1=0.05 ξ1=0.06 ξ1=0.07 ξ1=0.08 ξ1=0.09 ξ1=0.1 

μ excitation εopt εopt εopt εopt εopt εopt εopt εopt εopt εopt εopt 

0.01 
HE 

0.9901 0.9901 0.9879 0.9860 0.9837 0.9809 
0.9783 

0.9758 0.9728 
0.9695 0.9659 

BE 0.9787 0.9698 0.9670 

0.02 
HE 

0.9801 0.9789 0.9768 0.9742 0.9713 
0.9683 0.9652 

0.9621 0.9590 
0.9547 0.9518 

BE 0.9687 0.9659 0.9559 0.9523 

0.03 
HE 

0.9709 0.9677 0.9652 0.9623 0.9594 0.9565 
0.9528 

0.9497 
0.9456 0.9426 

0.9385 
BE 0.9532 0.9469 0.9428 

0.04 
HE 

0.9620 0.9580 0.9551 0.9522 0.9490 0.9458 0.9422 
0.9378 0.9337 0.9296 0.9255 

BE 0.9390 0.9348 0.9309 0.9267 

0.05 
HE 

0.9531 0.9488 0.9455 0.9422 0.9389 0.9354 0.9315 
0.9267 0.9232 0.9179 0.9135 

BE 0.9283 0.9234 0.9196 0.9156 

0.06 
HE 

0.9446 0.9400 0.9367 0.9332 0.9295 
0.9251 0.9209 0.9167 0.9125 0.9083 0.9038 

BE 0.9250 0.9208 0.9185 0.9130 0.9089 0.9049 

0.07 
HE 

0.9364 0.9318 0.9282 0.9244 0.9206 0.9160 0.9123 
0.9071 0.9024 0.8977 0.8930 

BE 0.9094 0.9032 0.8991 0.8956 

0.08 
HE 

0.9279 0.9242 0.9204 0.9161 
0.9116 

0.9075 0.9031 
0.8980 0.8929 0.8878 0.8827 

BE 0.9122 0.9003 0.8934 0.8898 0.8860 

0.09 
HE 

0.9200 0.9164 0.9125 0.9079 0.9039 
0.8990 0.8938 0.8896 0.8844 0.8789 0.8734 

BE 0.8997 0.8947 0.8912 0.8842 0.8805 0.8769 

0.10 
HE 

0.9121 0.9081 0.9041 0.8998 0.8954 0.8909 0.8862 
0.8812 0.8762 0.8700 0.8650 

BE 0.8834 0.8756 0.8715 0.8681 
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Table 2. Optimal damping ratio of the DVA 
  ξ1 = 0.0 ξ1 = 0.01 ξ1 = 0.02 ξ1 = 0.03 ξ1 = 0.04 ξ1 = 0.05 ξ1 = 0.06 ξ1 = 0.07 ξ1 = 0.08 ξ1 = 0.09 ξ1 = 0.1 

μ excitation ξ2opt ξ2opt ξ2opt ξ2opt ξ2opt ξ2opt ξ2opt ξ2opt ξ2opt ξ2opt ξ2opt 

0.01 
HE 

0.0624 0.0177 0.0184 0.0303 0.0361 
0.0497 0.0556 

0.0653 0.0719 
0.0766 0.0812 

BE 0.0527 0.0514 0.0765 0.0823 

0.02 
HE 

0.0927 0.0746 0.0743 0.0757 0.0834 
0.0844 0.0933 

0.1022 0.1111 
0.1132 0.1152 

BE 0.0828 0.0861 0.1144 0.1164 

0.03 
HE 

0.1036 0.1233 0.1256 0.1276 0.1296 0.1316 
0.1328 

0.1335 
0.1339 0.1329 

0.1313 
BE 0.1253 0.1343 0.1327 

0.04 
HE 

0.1134 0.1411 0.1403 0.1395 0.1384 0.1373 0.1363 
0.1351 0.1335 0.1319 0.1303 

BE 0.1352 0.1376 0.1404 0.1315 

0.05 
HE 

0.1232 0.1465 0.1464 0.1463 0.1462 0.1475 0.1484 
0.1489 0.1449 0.1499 0.1504 

BE 0.1369 0.1438 0.1487 0.1332 

0.06 
HE 

0.1311 0.1513 0.1512 0.1511 0.1510 
0.1509 0.1500 0.1491 0.1482 0.1473 0.1464 

BE 0.1577 0.1605 0.1358 0.1506 0.1499 0.1354 

0.07 
HE 

0.1378 0.1506 0.1506 0.1505 0.1504 
0.1502 

0.1505 
0.1508 0.1525 0.1542 0.1559 

BE 0.1621 0.1377 0.1555 0.1519 0.1379 

0.08 
HE 

0.1447 0.1487 0.1496 0.1504 
0.1509 

0.1514 0.1533 
0.1552 0.1571 0.1552 0.1533 

BE 0.1512 0.1396 0.1604 0.1544 0.1401 

0.09 
HE 

0.1516 0.1510 0.1507 0.1514 0.1521 
0.1528 0.1555 0.1582 0.1620 0.1659 0.1698 

BE 0.1513 0.1553 0.1415 0.1648 0.1569 0.1428 

0.10 
HE 

0.1585 0.1585 0.1585 0.1582 0.1580 0.1577 0.1575 
0.1572 0.1569 0.1572 0.1569 

BE 0.1432 0.1698 0.1592 0.1458 

 
Figure 8 depicts the FRC curve for the considered primary system with harmonic excitation in the frequency 

range Ω ∈ [0.1, 2], the mass ratio 𝜇𝜇 = 0.1 and the optimum parameters 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 and 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 are found in table 1 and 2, 
respectively. Figure 8(a) shows the response for the undamped primary system while the other cases are for a damped 
primary system. It can be seen from figure 8 that for all cases the two peaks are on the same level, showing that our 
approach captures the optimal solution. 

The FRC curves shown in figure 9 were constructed for oscillator subjected to base excitation, Ω ∈ [0.1, 2] and 
mass ratio 𝜇𝜇 = 0.07 and, again, the optimal parameters 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 and 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 can be found in the table 1 and 2, respectively. 
Figure 9(a) shows the response for undamped primary system while the other cases are for a damped primary system. 
As can be seen, the general behavior of the oscillator for different damping ratios in the primary system is satisfactory 
in the sense that the two peaks are on the same level, thus our approach has been validated for this reference 
parameters for the case of base excitation. 
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Figure 8: Response curves for harmonic excitation for 𝜇𝜇 = 0.1 with 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 and 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 obtained by tables 1 and 2: a) 𝜉𝜉1 = 0.0, b) 𝜉𝜉1 = 0.04, 

c) 𝜉𝜉1 = 0.07, d) 𝜉𝜉1 = 0.09. 

 
Figure 9: Response curves for base excitation and 𝜇𝜇 = 0.07 with 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 and 𝜉𝜉𝑜𝑜𝑜𝑜𝑠𝑠 obtained by tables 1 and 2: a) 𝜉𝜉1 = 0.0, b) 𝜉𝜉1 = 0.03, 

c) 𝜉𝜉1 = 0.05, d) 𝜉𝜉1 = 0.08 

6 BILINEAR INTERPOLATION 

Interpolation is the method that allows constructing a new dataset from a discrete set of previously known points. 
Linear interpolation is an interpolation method that uses a linear function 𝑝𝑝(𝑥𝑥) (a first-degree polynomial) to 
approximate an assumed function 𝑓𝑓(𝑥𝑥). 

Bilinear interpolation is an extension of linear interpolation that permits to interpolate functions of two variables 
in a regular grid. The key idea is to perform linear interpolation, first in one direction, and then again in the other 
direction. The bilinear interpolation uses the weighted average of the original values that are around the new values. 
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Since we know the value of an unknown function 𝑓𝑓(𝑥𝑥) at four points 𝑃𝑃11 = (𝑥𝑥1,𝑦𝑦1), 𝑃𝑃12 = (𝑥𝑥1,𝑦𝑦2), 𝑃𝑃21 = (𝑥𝑥2,𝑦𝑦1), 
𝑃𝑃22 = (𝑥𝑥2,𝑦𝑦2), we want to find the value of the function at a point 𝑅𝑅 = (𝑥𝑥, 𝑦𝑦), where we defined the point 𝑃𝑃𝑖𝑖𝑖𝑖(𝑠𝑠, 𝑗𝑗 = 1,2) 
as node, and 𝑅𝑅 is the point where we want to perform the interpolation (see figure 10). 

 
Figure 10. Bilinear interpolation 

First we interpolate in the x - direction: 

𝑓𝑓(𝑄𝑄1) ≈ 𝑥𝑥2−𝑥𝑥
𝑥𝑥2−𝑥𝑥1

𝑓𝑓(𝑃𝑃11) + 𝑥𝑥−𝑥𝑥1
𝑥𝑥2−𝑥𝑥1

𝑓𝑓(𝑃𝑃21) (13) 

𝑓𝑓(𝑄𝑄2) ≈ 𝑥𝑥2−𝑥𝑥
𝑥𝑥2−𝑥𝑥1

𝑓𝑓(𝑃𝑃12) + 𝑥𝑥−𝑥𝑥1
𝑥𝑥2−𝑥𝑥1

𝑓𝑓(𝑃𝑃22)  (14) 

where 𝑄𝑄1 = (𝑥𝑥, 𝑦𝑦1); 𝑄𝑄2 = (𝑥𝑥, 𝑦𝑦2). 

We then proceed with the interpolation in y: 

𝑓𝑓(𝑅𝑅) ≈ 𝑦𝑦2−𝑦𝑦
𝑦𝑦2−𝑦𝑦1

𝑓𝑓(𝑄𝑄1) + 𝑦𝑦−𝑦𝑦1
𝑦𝑦2−𝑦𝑦1

𝑓𝑓(𝑄𝑄2)  (15) 

Substituting equations (13) and (14) into equation (15), we obtain, 

𝑓𝑓(𝑥𝑥,𝑦𝑦) ≈ 𝑓𝑓(𝑃𝑃11)
(𝑥𝑥2−𝑥𝑥1)(𝑦𝑦2−𝑦𝑦1)

(𝑥𝑥2 − 𝑥𝑥)(𝑦𝑦2 − 𝑦𝑦) + 𝑓𝑓(𝑃𝑃21)
(𝑥𝑥2−𝑥𝑥1)(𝑦𝑦2−𝑦𝑦1)

(𝑥𝑥 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦) + 𝑓𝑓(𝑃𝑃12)
(𝑥𝑥2−𝑥𝑥1)(𝑦𝑦2−𝑦𝑦1)

(𝑥𝑥2 − 𝑥𝑥)(𝑦𝑦 − 𝑦𝑦1) +
𝑓𝑓(𝑃𝑃22)

(𝑥𝑥2−𝑥𝑥1)(𝑦𝑦2−𝑦𝑦1)
(𝑥𝑥 − 𝑥𝑥1)(𝑦𝑦 − 𝑦𝑦1) = 1

(𝑥𝑥2−𝑥𝑥1)(𝑦𝑦2−𝑦𝑦1)
[𝑥𝑥2 − 𝑥𝑥 𝑥𝑥 − 𝑥𝑥1] �

𝑓𝑓(𝑃𝑃11) 𝑓𝑓(𝑃𝑃12)
𝑓𝑓(𝑃𝑃21) 𝑓𝑓(𝑃𝑃22)� �

𝑦𝑦2 − 𝑦𝑦
𝑦𝑦 − 𝑦𝑦1�  (16) 

Therefore; 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 1
(𝑥𝑥2−𝑥𝑥1)(𝑦𝑦2−𝑦𝑦1)

[𝑥𝑥2 − 𝑥𝑥 𝑥𝑥 − 𝑥𝑥1] �
𝑓𝑓(𝑃𝑃11) 𝑓𝑓(𝑃𝑃12)
𝑓𝑓(𝑃𝑃21) 𝑓𝑓(𝑃𝑃22)� �

𝑦𝑦2 − 𝑦𝑦
𝑦𝑦 − 𝑦𝑦1�  (17) 

Here we propose to use the optimal values given by tables 1 and 2 as nodes of the bilinear interpolation and for 
any pair of (𝜉𝜉1,𝜇𝜇), the equation (17) is used to obtain the optimal values of 𝜇𝜇 and 𝜉𝜉2. A schematic drawing of the 
bilinear interpolation applied to the design of the DVA parameters based on the values of the tables 1 and 2 are 
presented in figures 11 and 12. As can be seen from figure 11, the nodes were taken as known parameters 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 that 
can be found in table 1, and choosing (𝜉𝜉1,𝜇𝜇) inside the box formed by the nodes 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑏𝑏�, 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑎𝑎�, 
𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎 ,𝜇𝜇𝑏𝑏), 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎 ,𝜇𝜇𝑎𝑎) it is possible to obtain the expressions for the optimum parameters 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1,𝜇𝜇) through the 
bilinear interpolation. Here the subscript a represent the value after the selected value of 𝜉𝜉1 (or 𝜇𝜇), and b is the value 
before the 𝜉𝜉1 (or 𝜇𝜇). 
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Figure 11. 4 optimal values of 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 obtained from table 1 surrounding an unknown value of 𝜇𝜇 for the coordinates (𝜉𝜉1,𝜇𝜇). 

In an analogous way we can define the nodes 𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑏𝑏�, 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑎𝑎�, 𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎 ,𝜇𝜇𝑏𝑏), 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎 ,𝜇𝜇𝑎𝑎) (extracted from 
table 2) in order to obtain the expressions for the optimal parameters 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠 given the values of 𝜉𝜉1 and 𝜇𝜇 (see figure 12). 

 
Figure 12: 4 optimal values of 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠 obtained from table 2 surrounding an unknown value of 𝜉𝜉2 for the coordinates (𝜉𝜉1,𝜇𝜇). 

Therefore, using the equation (17), the expressions for the optimal parameters are; 

𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1,𝜇𝜇) = 1
(𝜉𝜉1𝑎𝑎−𝜉𝜉1)(𝜇𝜇𝑎𝑎−𝜇𝜇) �𝜉𝜉1

𝑎𝑎 − 𝜉𝜉1 𝜉𝜉1 −𝜉𝜉1𝑏𝑏� �
𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏 ,𝜇𝜇𝑏𝑏� 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑎𝑎�
𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎,𝜇𝜇𝑏𝑏) 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎 ,𝜇𝜇𝑎𝑎)

� �
𝜉𝜉1𝑎𝑎 − 𝜉𝜉1
𝜉𝜉1 −𝜉𝜉1𝑏𝑏

�  (18) 

𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1,𝜇𝜇) = 1

(𝜉𝜉1𝑎𝑎−𝜉𝜉1)(𝜇𝜇𝑎𝑎−𝜇𝜇) �𝜉𝜉1
𝑎𝑎 − 𝜉𝜉1 𝜉𝜉1 −𝜉𝜉1𝑏𝑏� �

𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑏𝑏� 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑎𝑎�
𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎 ,𝜇𝜇𝑏𝑏) 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎 ,𝜇𝜇𝑎𝑎)
� �
𝜉𝜉1𝑎𝑎 − 𝜉𝜉1
𝜉𝜉1 −𝜉𝜉1𝑏𝑏

�  (19) 

It is worth mentioning here that we do not prove that these solutions obtained by the bilinear interpolation 
(equations (18) and (19)) are optimal (in the Den Hartog sense), but based on numerical evaluations, we conjecture 
that it holds for any pair of (𝜉𝜉1,𝜇𝜇).. For all of the tests performed the difference between the two peaks obtained in 
FRC curve was maintained below of δ ≤ 10−2. 

For example, if we let 𝜉𝜉1 = 0.043 and 𝜇𝜇 = 0.029, and assuming 𝜉𝜉1𝑎𝑎 = 0.05, 𝜉𝜉1𝑏𝑏 = 0.04, 𝜇𝜇𝑎𝑎 = 0.03, 𝜇𝜇𝑏𝑏 = 0.02 then 
from tables 1 and 2, we have 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑏𝑏� = 0.9713, 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑏𝑏� = 0.0834, 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑎𝑎� = 0.9594, 𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠�𝜉𝜉1𝑏𝑏,𝜇𝜇𝑎𝑎� =

0.1296, 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎 ,𝜇𝜇𝑏𝑏) = 0.9683, 𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎,𝜇𝜇𝑏𝑏) = 0.0844, 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎 ,𝜇𝜇𝑎𝑎) = 0.9565, 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠(𝜉𝜉1𝑎𝑎,𝜇𝜇𝑎𝑎) = 0.1316, and using the 
equations 18 and 19, we obtain 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠(0.043,0.29) = 0.9598, 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠(0.043,0.29) = 0.1255. Using this values of 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 and 
𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠 the FRC curve have been evaluated and presented in figure 13. As can be seen in both cases the magnitude of the 

peaks is very close to each other shows that these two parameters are optimal (in a Den Hartog sense). 
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The FRC curves plotted for different values of 𝜉𝜉1 and 𝜇𝜇 are presented in figure 14 (harmonic excitation) and figure 
15 (base excitation). As it can be seen, the values of 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 and 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠 found by equations (18) and (19) are optimal in the 
Den Hartog sense, once the peaks frequency response is in the same level when the oscillator is subject to a harmonic 
excitation or a base excitation. The results presented here are consistent with the equal peak methodology. 

 
Figure 13. FRC response for 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 = 0.9598, 𝜉𝜉2

𝑜𝑜𝑜𝑜𝑠𝑠 = 0.1255 and (𝜉𝜉1,𝜇𝜇) = (0.043, 0.029) (a) harmonic excitation and (b) base 
excitation 

 
Figure 14. FRC curves for harmonic excitation: (a) (𝜉𝜉1,𝜇𝜇) = (0.058, 0.026), (b) (𝜉𝜉1,𝜇𝜇) = (0.072, 0.087), (c) (𝜉𝜉1, 𝜇𝜇) = (0.093, 0.055) 
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Figure 15: FRC curves for base excitation: (a) (𝜉𝜉1,𝜇𝜇) = (0.058, 0.026), (b) (𝜉𝜉1,𝜇𝜇) = (0.072, 0.087), (c) (𝜉𝜉1, 𝜇𝜇) = (0.093, 0.055) 

7 COMPARISONS 

In literature is possible to find different kinds of analytical and/or numerical analysis procedures for the estimation 
of the optimal parameters of damping and tuning frequency. Two objective functions are defined in order to compare 
the response of the method proposed here with others, such optimization criterions are the 2H  and H  norms. 

This two norms are based on the FRCs, the corresponding 2H  norm and H  norm are computed taking into 
account the presence of the absorber: 

𝐻𝐻2 = �∫ �𝑚𝑚𝑚𝑚𝑥𝑥�𝑢𝑢1(Ω)��2𝑑𝑑ΩΩ �
1/2

,𝐻𝐻∞ = max
𝑖𝑖

|𝑢𝑢1(Ωi)|  (20) 

These two norms were chosen due to their widespread adoption and the large body of existing research. The 2H  
optimization criterion has the objective in minimizing the vibration energy transmitted to the system form de energy 
source. On the other hand, the 𝐻𝐻∞ optimization criterion has the objective in minimizing the maximum amplitude 
response of the system. Considering the primary system without damping and harmonic force excitation the method of 
comparison was adopted from Den Hartog (1943) and Asami and Nishihara (2003). On the other hand, assuming the 
viscous damper in the primary system the comparisons were made with Ioi and Ikeda (1978), Tsai and Guan-Cheng (1993), 
and Asami et al. (2002) methodologies. For the case of base excitation, the comparison was made with Asami et al. (2002). 
In order to compare the results among the approaches the parameters 𝜉𝜉1 and 𝜇𝜇 are the same used in table 1. 

7.1 Undamped primary system 

Two diagrams showing this two norms under varying mass relation (𝜇𝜇) is shown in Fig. 16. Here we define the 
subscripts DH as Den Hartog (1943), AN as Asami-Nishihara (2003) and PTB as Piccirillo-Tusset-Balthazar 
methodologies. The equations of the optimal frequency ratio and optimal damping ratio of DH method is given in Eq. 6, 
AN method is detailed in Appendix A (see Eqs. A1-A2) and PTB method is obtained in tables 1 and 2. The diagram 
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constructed taking into account the difference between the norm 𝐻𝐻∞ for each methodology is shown in Fig. 16a). First, 
the profiles show that for almost all values of 𝜇𝜇, 𝐻𝐻∞𝐴𝐴𝐴𝐴𝐴𝐴 < 𝐻𝐻∞𝐷𝐷𝐷𝐷 and 𝐻𝐻∞𝐴𝐴𝐴𝐴𝐴𝐴 < 𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴, confirming that the methodology of 
Asami and Nishihara [28] is the better approach to obtain the 𝐻𝐻∞ optimization of the parameters of the DVA. If the 
comparison is made between the 𝐻𝐻∞𝐷𝐷𝐷𝐷 and 𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴 yields the conclusion that 𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴 < 𝐻𝐻∞𝐷𝐷𝐷𝐷 when 𝜇𝜇 ∈ [0.03, 0.04] for the 
other cases 𝐻𝐻∞𝐷𝐷𝐷𝐷 < 𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴. These results imply that the PTB methodology that realizes equal peaks is not the better 
strategy to minimize the maximum amplitude response of the undamped primary system. Figure 16(b) shows the 
comparison among the strategies taking into account the 2H  criterion. In this case, it should be noted that 𝐻𝐻2𝐷𝐷𝐷𝐷 <
𝐻𝐻2𝐴𝐴𝐴𝐴 for all values of  . Moreover, if 𝜇𝜇 ≥ 0.03 then 𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴 < (𝐻𝐻2𝐷𝐷𝐷𝐷 or 𝐻𝐻2𝐴𝐴𝐴𝐴); otherwise (𝐻𝐻2𝐷𝐷𝐷𝐷 or 𝐻𝐻2𝐴𝐴𝐴𝐴) < 𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴. Based 
on these observations, it can be concluded that the best approach with the objective to minimize the maximum 
amplitude response of the system is the Asami et al. approach. On the other hand, if the objective is to minimize the 
vibration energy transmitted to the system form the energy source the best approach depends on the value of  , if 
𝜇𝜇 < 0.03 then use Den Hartog methodology, but if 𝜇𝜇 ≥ 0.03 then the best approach is to utilize the Piccirillo-Tusset-
Balthazar methodology. 

 
Figure 16: Performance of the norm for different mass ratio with the undamped primary system and harmonic excitation. (a) H  and (b) 2H  

7.2 Harmonic excitation (HE) 

A similar analysis was performed when a damped primary system is considered. The scenario of the H  and 2H  
norm evolution are presented in Figs. 17 and 18. Here, the subscripts in those figures represent the methodology 
adopted: IK is the Ioi and Ikeda approach (see Eqs. A3-A4), TL is Tsai and Lin approach (see Eqs. A5-A6) and ANB is the 
Asami-Nishihara-Baz (see Eqs. A7-A12) methodology, and PTB as Piccirillo-Tusset-Balthazar approach. Figure 17 
compares the solutions of these different approaches for the conditions when 𝜇𝜇 changes and 𝜁𝜁1 is a fixed number. It 
may be observed that the for all cases 𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴 < 𝐻𝐻∞𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐻𝐻∞𝑃𝑃𝑇𝑇 < 𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴. On the other hand, when the comparison is 
made based on our method and the Ioi and Iked approach reads as follows; 

𝐻𝐻∞𝐼𝐼𝐼𝐼 < 𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴, 𝑠𝑠𝑓𝑓 �  0.01 ≤ 𝜉𝜉1  ≤ 0.04 ∧  ∀𝜇𝜇
 0.05 ≤ 𝜉𝜉1 ≤ 0.1 ∧ 0.06 ≤ 𝜇𝜇

 𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴 < 𝐻𝐻∞𝐼𝐼𝐼𝐼,𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 
  (21) 

Comparison of 2H  norm among all of the strategies shows that: 
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𝐻𝐻2𝐼𝐼𝐼𝐼 < 𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴

𝐻𝐻2𝑃𝑃𝑇𝑇 < 𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴
, 𝑠𝑠𝑓𝑓 

⎩
⎨

⎧
 0.01 ≤ 𝜉𝜉1  ≤ 0.02,𝜇𝜇 ∈ [0.01,0.06] ∧  𝜇𝜇 ≠ 0.02 
0.03 ≤ 𝜉𝜉1  ≤ 0.04,𝜇𝜇 ∈ [0.01,0.06] ∧  𝜇𝜇 ≠ 0.02

0.05 ≤ 𝜉𝜉1  ≤ 0.06,𝜇𝜇 ∈ [0.02, 0.06) 
 0.07 ≤ 𝜉𝜉1  ≤ 0.1,𝜇𝜇 ∈ [0.02, 0.06) 

 𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴 < 𝐻𝐻2𝐼𝐼𝐼𝐼 
,𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 

 𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴 < 𝐻𝐻2𝑃𝑃𝑇𝑇 

 𝐻𝐻2𝐴𝐴𝐴𝐴𝐴𝐴 < 𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴, 𝑠𝑠𝑓𝑓 

⎩
⎨

⎧
 0.01 ≤ 𝜉𝜉1  ≤ 0.02,𝜇𝜇 ∈ [0.01,0.06] ∧  𝜇𝜇 ≠ 0.02 
0.03 ≤ 𝜉𝜉1  ≤ 0.04,𝜇𝜇 ∈ [0.01, 0.06)  ∧  𝜇𝜇 ≠ 0.02

0.05 ≤ 𝜉𝜉1  ≤ 0.06,𝜇𝜇 ∈ [0.02, 0.07) 
  0.07 ≤ 𝜉𝜉1  ≤ 0.1,∀𝜇𝜇 

 

 𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴 < 𝐻𝐻2𝐴𝐴𝐴𝐴𝐴𝐴,𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒  

  (22) 

 
Figure 17: Performance of the H  norm for different mass ratio with the damped primary system and harmonic excitation. 

(a) 𝜉𝜉1 = 0.02, (b) 𝜉𝜉1 = 0.04, (c) 𝜉𝜉1 = 0.06 and (d) 𝜉𝜉1 = 0.08. 
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Figure 18: Performance of the 2H  norm for different mass ratio with the damped primary system and harmonic excitation. 

(a) 𝜉𝜉1 = 0.01, (b) 𝜉𝜉1 = 0.03, (c) 𝜉𝜉1 = 0.05 and (d) 𝜉𝜉1 = 0.09. 

7.3 Base excitation (BE) 

Here, the comparison is made between our method and the ANB method (see Eqs. A7-A9 and A13-A15), considering the 
base excitation. Figure 19 shows two comparisons between the difference of the norms ( 2H  and H norms) when 𝜉𝜉1 = 0.01 
and 𝜉𝜉1 = 0.09. As can be seen from Fig. 19(a) that the values of the difference of norms change to positive or negatives values 
depending on the value of 𝜇𝜇. On the other hand, at 𝜉𝜉1 = 0.09 the values are well defined for all values of 𝜇𝜇, that is, 𝐻𝐻2𝐴𝐴𝐴𝐴 <
𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴,∀𝜇𝜇 and 𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴 < 𝐻𝐻∞𝐴𝐴𝐴𝐴,∀𝜇𝜇. Based on figure 19(b), it can be concluded that the best approach with the objective to 
minimize the maximum amplitude response of the system is the PTB approach. On the other hand, if the objective is to 
minimize the vibration energy transmitted to the system form the energy source the best approach is the AN approach. 

 
Figure 19: Performance of the norms for different mass ratio with the damped primary system and base excitation. (a) 𝜉𝜉1 = 0.01 

and (b) 𝜉𝜉1 = 0.09. 

In order to quantify the regions where one strategy is better than another, of course, depending on the norm that 
you wishes to minimize, the following divisions are presented below; 
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𝐻𝐻2𝐴𝐴𝐴𝐴 < 𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴
, 𝑠𝑠𝑓𝑓 

⎩
⎨

⎧
 0.01 ≤ 𝜉𝜉1  ≤ 0.04,𝜇𝜇 ∈ [0.01, 0.07) ∧  𝜇𝜇 ≠ 0.02 

𝜉𝜉1 = 0.05 𝜇𝜇 ∈ (0.02, 0.08) 
𝜉𝜉1 = 0.06,𝜇𝜇 ∈ (0.02, 0.07) 
 𝜉𝜉1 = 0.07,𝜇𝜇 ∈ (0.05, 0.09) 

 

𝐻𝐻2𝑃𝑃𝑃𝑃𝐴𝐴 < 𝐻𝐻2𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 

𝐻𝐻∞𝐴𝐴𝐴𝐴 < 𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴 , 𝑠𝑠𝑓𝑓 𝜉𝜉1 = 0.01 𝜇𝜇 ∈ [0.01, 0.04) ⋃ (0.08, 0.1] 

𝐻𝐻∞𝑃𝑃𝑃𝑃𝐴𝐴 < 𝐻𝐻∞𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 
 

 (23) 

8 CONCLUSIONS 

In this work, the effectiveness of a dynamic vibration absorber (DVA) device in reducing the oscillations of a 
mechanical model has been investigated. The investigation has been focused on the design improvement of a DVA 
when the primary system is subject to a harmonic or base excitation. Since the Den Hartog's formulas are strictly valid 
only for an undamped primary system or systems with very light damping, we have developed a strategy for both high 
or light damping coefficient in a primary system. The goal is to obtain the optimal parameters of the absorber, that is, 
mass, stiffness, and damping. For this, we propose a criterion inspired by Den Hartog to minimize the primary system 
maximum amplitude. Taking into account this criterion and for a set of reference parameters of the mass ratio and 
damping ratio of the primary system, tables 1 and 2 was constructed to produce the optimal values, in Den Hartog 
sense, of the mass and damping ratios of the DVA, independent of the excitation. Based on the optimal results 
expressed in table 1 and 2, analytical formulas of the optimal mass and damping ratios are derived for the absorber 
assuming the bilinear interpolation. We show with numerical examples that the results of our approach lead to the 
design of an absorber with excellent performance in a relatively large range of damping values of the primary system 
and ratio between the masses of the primary system and the absorber. The obtained results point out that the 
absorber can be an effective tool towards the reduction of the vibration amplitude of the main system and then the 
possible damage to the structure. 
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APPENDIX A 

Here the functions of the optimal frequency ratio 𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠, and optimal damping ratio 𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠, for each methodology 

used in this paper are presented below; 
• Asami-Nishihara equations: 

𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 = 2
1+𝜇𝜇

�2�16+23𝜇𝜇+9𝜇𝜇2+2(2+𝜇𝜇)�4+3𝜇𝜇�
3(64+80𝜇𝜇+27𝜇𝜇2)

  (A1) 

𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠 = 1

4
�8+9𝜇𝜇−4�4+3𝜇𝜇

1+𝜇𝜇
   (A2) 

• Ioi and Ikeda equations: 

𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 = 1
1+𝜇𝜇

− (0.241 + 1.7𝜇𝜇 − 2.6𝜇𝜇2)𝜉𝜉1 − (1− 1.9𝜇𝜇 + 𝜇𝜇2)𝜉𝜉12  (A3) 

𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠 = � 3𝜇𝜇

8(1+𝜇𝜇) + (0.13 + 0.12𝜇𝜇 + 0.4𝜇𝜇2)𝜉𝜉1 − (0.01 + 0.9𝜇𝜇 + 3𝜇𝜇2)𝜉𝜉12  (A4) 

• Tsai and Lin equations: 

𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 =
1

1 + 𝜇𝜇
+ ��1 − 2𝜉𝜉12 − 1� − �1.398 + 0.26�𝜇𝜇 − 2.004𝜇𝜇��𝜇𝜇𝜉𝜉1 

−(0.362− 5.897√𝜇𝜇 + 8.553𝜇𝜇)√𝜇𝜇𝜉𝜉12  (A5) 

𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠 = � 3𝜇𝜇

8(1+𝜇𝜇) + 0.15𝜉𝜉1 − 0.321𝜉𝜉12 + 0.195𝜉𝜉1𝜇𝜇  (A6) 

• Asami-Nishihara-Baz equations: 

𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠 = 1
1+𝜇𝜇

− 𝜉𝜉1
1

1+𝜇𝜇�
1

2(1+𝜇𝜇)�3 + 4𝜇𝜇 − 𝐴𝐴𝐴𝐴
2+𝜇𝜇

� + 𝜉𝜉12
𝐶𝐶0−4(5+2𝜇𝜇)𝐴𝐴𝐴𝐴

4(1+𝜇𝜇)2(2+𝜇𝜇)(9+4𝜇𝜇)
  (A7) 

𝜉𝜉2
𝑜𝑜𝑜𝑜𝑠𝑠 = � 3𝜇𝜇

8(1+𝜇𝜇) + 𝜉𝜉1
60+63𝜇𝜇+16𝜇𝜇2−2(3+2𝜇𝜇)𝐴𝐴𝐴𝐴

8(1+𝜇𝜇)(2+𝜇𝜇)(9+4𝜇𝜇) + 𝜉𝜉12
𝐶𝐶1(𝐴𝐴+𝐴𝐴)�2+𝜇𝜇+𝐶𝐶2(𝐴𝐴−𝐴𝐴√𝜇𝜇)

32(1+𝜇𝜇)(2+𝜇𝜇)2(9+4𝜇𝜇)3�2𝜇𝜇(1+𝜇𝜇)
  (A8) 

where 

𝐴𝐴 = �3(2 + 𝜇𝜇) −�𝜇𝜇(2 + 𝜇𝜇), 𝐵𝐵 = �3(2 + 𝜇𝜇) + �𝜇𝜇(2 + 𝜇𝜇)  (A9) 

Being the primary system excited by harmonic force, the following parameters are; 

2
0 52 41 8C       (A10) 

2 3 4 5
1 1296 2124 6509 5024 1616 192C             (A11) 

2 3 4 5
2 48168 112887 105907 49664 11632 1088C            (A12) 

if the base excitation is considered the functions are; 
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2 3
0 52 113 76 16C         (A13) 

2 3 4 5
1 1296 2124 7157 5924 2032 256C             (A14) 

2 3 4 5
2 48168 105111 91867 40172 8784 768C             (A15) 
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