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Abstract

This paper presents an inverse procedure for the determination of external loads, given
the dynamic responses of the loaded structure and its corresponding finite element model.
The influence of the stress-stiffening effect on the dynamic characteristics of structural sys-
tems is used to establish a relation between the dynamic responses and the applied external
loading. An optimization problem is formulated in which the objective function represents
the difference between the measured modal characteristics of the loaded structure and their
finite element counterparts. The loading parameters (magnitude, position and direction)
assumed as being unknown, are considered as design variables. The identification proce-
dure is illustrated by means of numerical simulations, in which the identification problem
is solved by using heuristic techniques coupled with classical optimization methods. Two
heuristic techniques are considered, namely the LifeCycle Model and Particle Swarm Op-
timization. The classical optimization strategy is the Lagrange-Newton SQP (Sequential
Quadratic Programming) method.
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1 Introduction

In the realm of Structural Engineering, it is very important to determine the external loading
under real service conditions, aiming at evaluating the level of security of the structure, to verify
the design configurations that were adopted at the design stage, or for redesigning structural
elements for new operating conditions. However, the determination of external loading is not
simple from the experimental point of view because, in general, transducers cannot be easily
introduced in the structure during its construction and/or assembling. Consequently, in most
real-life structures, experimental determination of external loading is not feasible.

By taking into account the influence exerted by the external loading on the dynamical
response of the system through the so-called stress-stiffening effect, it is possible to obtain
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information about the loading distribution, given the dynamic responses, through an inverse
problem approach. Depending on the size of the structure, such a procedure presents a number
of practical advantages:

• requires simple measurement and processing of dynamical responses by using a limited
amount of sensors and signal conditioners;

• possibility of performing the measurement in various points along the structure, since the
dynamic responses represent the global characteristics of the structure;

• availability of experimental techniques for excitation and data acquisition, as currently
used in classical experimental modal analysis.

On the other hand, some difficulties that are intrinsic to inverse problems may arise, such
as:

• it is required an accurate mathematical model of the structure, since the results of the
identification procedure rely upon the mathematical model used;

• in general, identification problems are ill conditioned from the mathematical point of view.
This means that the procedure is sensitive to noise that can contaminate experimental
data;

• the experimental data are incomplete either in the spatial sense (responses are available
only in a limited number of positions along the structure), as in the spectral sense (re-
sponses are obtained in a given frequency band). Consequently, the uniqueness of the
solution cannot be assured.

In structural systems for which operation, integrity and security rely on the dynamic charac-
teristics, the effect of external loading on the dynamic behavior of the system is to be carefully
analyzed. The study of the dynamic behavior of mechanical systems can be done through numer-
ical modeling techniques or by means of experimental modal analysis. Each technique exhibits
its own hypotheses, limitations, advantages and disadvantages as shown in [18]. In this sense,
parameter identification by model updating involves various steps and the main objective is to
improve the model, in such a way that numerical results mimic those obtained from experimental
testing.

Many modeling techniques are available, however the Finite Element Method - FEM is
recognized as being the most flexible tool for structural analysis and for that reason has become
very popular in the engineering community, as described in [38]. It is worth mentioning that,
in parallel with the development of the finite element method, modal analysis techniques have
been improved significantly in the past twenty years and are considered as being fairly reliable
in determining the dynamic characteristics of mechanical systems. Parameter identification
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methods and model updating techniques result from the necessity of constructing more reliable
mathematical models, considering that finite element models and experimental models are only
approximations of real structure behavior, as illustrated in [7].

It is well known the fact that external loads can influence the static and dynamic behavior
of structural systems, through the so-called stress-stiffening effect [9, 17].

Reference [22] was the first one to put in evidence the effect of axial loads on the natural
frequencies of structural components. In [28] it was recognized a common theoretical foundation
underlying free vibration and stability analyses. In [35] the authors investigated the dynamic
behavior of a clamped plate subjected to uniform membrane tension. In [4] it was demonstrated
the existence of a linear relation between the axial load and the natural frequencies corresponding
to the lateral motion of a simply supported column.

The changing of natural frequencies as related to stability problems was also discussed in
the works reported in [36] and [3]. More recently other authors investigated analytically and
experimentally the influence of axial loads on the vibration of beams under various boundary
condition configurations [8, 34].

In [1] the authors demonstrated the possibility of introducing residual stresses as a mean to
improve the mechanical behavior of thin plates. Further, Reference [12] showed that such stresses
can be generated by piezoelectric actuators bonded to the plates. In [6] it was investigated the
efficiency of piezoelectric actuators in controlling the natural frequencies of laminate plates
through the introduction of membrane stresses.

In the context of inverse problems, Reference [16] used modal parameters combined with
Least Squares to estimate the axial loads of Euler-Bernoulli beams having elastic supports.
In [10] it was studied the effect of the application of an axial load to one of the bars in a truss
structure by using experimental dynamic responses in a model fitting approach, in which the
axial loads were considered as parameters to be adjusted. The results were then compared
to the static loads as calculated from experimental measurements by using strain gages. The
sensitivity analysis of the parameters to be adjusted has also been carried out. Besides, through
experimental tests in a similar structure, Reference [15] analyzed the effect of residual stresses
due to the construction process on the modal characteristics of the structure.

It is also important to mention the contribution from the work done by [19] in which it was
investigated the influence of non-uniform temperature distribution on buckling and dynamic
behavior of thin plates by using Rayleigh-Ritz approach.

More recently, [32] and [33] proposed a methodology for the identification of membrane
stresses in rectangular thin plates from the transverse vibration responses, validating the pro-
cedure by numerical simulations and experiments. A particular application in this case was the
determination of welding induced residual stresses.

There exist various techniques to solve inverse problems by using optimization methods,
involving either classical as well as heuristic approaches. Once the parameters are identified,
the mathematical model becomes an effective tool to analyze and predict the dynamics of the
structure under different operating conditions.
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It is well known that the solution of inverse problems by using classical gradient-based
optimization methods is a difficult task due to the existence of local minima in the design space.
Moreover, such methods require an initial guess to the solution and it is not possible to assure
global convergence. These aspects have motivated the authors of this paper to explore a hybrid
approach for the determination of external loading in structures, based on two heuristic methods,
namely the LifeCycle model and the Particle Swarm Optimization (PSO) that were introduced
in References [14] and [13] respectively, coupled with a classical approach to refine the local
search in the optimum neighborhood. The Lagrange-Newton sequential quadratic programming
(SQP) technique is used [29].

In this paper the optimization procedure uses modal parameters obtained through numerical
simulation as ”experimental values” in the objective function. Since this methodology is devoted
to further experimental developments, it is important to take into account errors that arise in
experimental modal analysis. Consequently, modal data are corrupted by random perturbations
and the results are compared to those obtained for the case without noise.

The present contribution results from two previous recent conference papers, each of which
focusing on one of the above mentioned heuristics [25,26].

2 Dynamic modeling of two dimensional structures including the stress-stiffening effect

In this section it is briefly reviewed the finite element modeling of two-dimensional beam-like
structures, according to the theory of Euler-Bernoulli, including the effect of the axial load, as
illustrated in Figure 1.
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Figure 1: Two-dimensional beam element.
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i are the longitudinal nodal displacements,
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i andvR

i are the transversal nodal displacements,

• θL
i and θR

i are the nodal cross section rotations,
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• li is the length of the element,

• Ei is the modulus of elasticity of the material,

• Ai is the area of the cross section,

• Ii is the area moment of inertia,

• pi is the distributed longitudinal load,

• qi is the distributed transversal load,

• Ni is the nodal load applied in the axial direction, equivalent (in the virtual work sense)
to all the external loading.

The indexes L and R indicate, respectively, the displacements and rotations at the left hand
and right hand nodes of the element.

Using a linear interpolation function to represent the longitudinal displacement and a cubical
function for the transversal displacement, the following expressions for the element stiffness and
mass matrices are obtained [5]:
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where mi = ρiAili and ρi represents the density of the material.
The effect of the axial load can be observed in the stiffness matrix at the elements corre-

sponding to the bending stiffness, representing, therefore, the so-called stress-stiffening effect.
The global equations of motion are represented in the matrix form by (3):

MẌ (t) + K (p) X (t) = Q (t) (3)

where p is the vector of the axial loads applied to the beam elements that form the finite element
model of the structure.
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From the equations of motion, the following eigenvalue problem can be derived:

[K (p)− λM ] X = 0 (4)

where λ = ω2 is an eigenvalue (natural frequency) and X is an eigenvector (mode shape).
The matrix form of the frequency response functions (FRFs) is calculated as:

H (Ω) =
[
K (p)− Ω2M

]−1 (5)

where Ω is the excitation frequency.
The equations above show that the dynamic responses depend on the applied axial loads in

the elements of the structure, which depend directly on the external load applied to the structure
as a system. Before performing the dynamic analysis of the structure, a static analysis must be
carried out to determine the axial loads for each element, as explained in [24].

3 Inverse problem formulation

The identification procedure to determine the external loads consists in solving a constrained
optimization problem, in which the cost function represents the difference between the measured
and model-predicted natural frequencies and/or the vibration mode shapes of the loaded struc-
ture. The magnitude, position and direction of the external loads (assumed as unknown) play
the role of design variables.

In this way, one intends to obtain the loads to be applied in the model that optimally
reproduces the experimental responses of the loaded structure.

For that purpose, the objective function used in this work is defined as:
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(6)

with the side constraints:
pL ≤ p ≤ pU (7)

where:
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is the so-called Modal Assurance Crite-

rion,

• m is the number of eigen-solutions used,
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• p is the vector of external load parameters (to be identified),

• ω
(m)
i (p) and V

(m)
i (p) are natural frequencies and vibration mode shapes calculated from

the finite element model, respectively,

• ω
(e)
i (p) and V

(e)
i (p) are experimental natural frequencies and vibration mode shapes of

the loaded-structure, respectively,

• Wω, WV and WM are weighting factors.

The side constraints are introduced to limit the values of the design variables within a feasible
design space, avoiding the possibility of buckling or structural collapse due to extreme external
load levels.

In the applications considered in this work, the cost function was constructed by using the
first six modal parameters and limiting the value of the total load identified between zero and
the first buckling load of the structure. Obviously, when the position and the directions of the
load are to be identified, the design space becomes discrete and its dimension depends on the
maximum number of nodes of the finite element model and the number of degrees of freedom
for each node, respectively. The forth-coming applications illustrate different load configura-
tions (magnitude, position and direction) that are characterized by increasing the number of
load parameters to be identified, aiming at evaluating the influence of the number of unknown
parameters in the performance of the identification procedure, as in [24]. Also, it is intended to
present examples showing structures with different levels of complexity.

4 Particle Swarm Optimization

The social psychologist James Kennedy and the electrical engineer Russel Eberhart introduced
the PSO in 1995 [13], as emerged from experiences with algorithms inspired in the social behavior
of some bird species [21].

Consider the following situation: a swarm of birds is searching for food around a delimited
area. Suppose there is just one place where food can be found and the birds do not know where
it is. If a bird is well succeed in its search, it can attract other birds, and as a result of the
social behavior, the others will find the food too. From the socio-cognitive viewpoint this means
that mind and intelligence are social features, as demonstrated in [21]. Following this principle,
each individual learns (and contributes) primarily to the success of his neighbors. This fact
requires the balance between exploration (the capacity of individual search) and exploitation
(the capacity of learning from the neighbors).

The essence is the learning from the experience of other individuals. From the optimization
viewpoint, find the food is similar to reach the optimum. In this sense, the adjustment between
exploration (the act of traveling around a place in order to learn about it) and exploitation
(taking advantage of someone else’s success) is required. If there is little exploration, the birds
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will all converge on the first good place encountered. On the other hand, if there is little
exploitation, the birds will never converge or they will try alone to find food. The individuals
must be individualistic, as well as they have also to be able to learn from their neighbors in
order to maximize their efforts in finding the best results [21].

4.1 A basic Particle Swarm Optimization algorithm

As shown in the previous section, the main idea of the PSO is to mimic the social behavior of
birds, which are referred to as particles in the remainder. This is achieved by modeling the flight
of each particle by using a velocity vector, which considers a contribution of the current velocity,
as well other two parts accounting for the own knowledge of the particle and of the knowledge
of the swarm about the search space. In this way, the velocity vector is used to update the
position of each particle in the swarm [13,21,23,30,31,37].

It can be seen in Figure 2 an outline of a basic PSO algorithm.

N o Yes

E xit

C reate the  In itia l S w arm

U pdate  the ve loc ity vec tor
for each  partic le

U pdate  the pos ition  o f
each partic le

C onvergence

 

Figure 2: Basic PSO algorithm.

The position of each particle is updated according to the following equation:

xi
k+1 = xi

k + vi
k+1∆t (8)

where, xi
k+1 is the position of the particle i in the iteration k + 1, vi

k+1 is the corresponding
velocity vector and ∆t is the time step (it is assumed to be equal to one in this work).

Latin American Journal of Solids and Structures 1 (2004)



Identification of external loads in mechanical systems 305

The velocity vector is updated as follows:

vi
k+1 = wvi

k + c1r1
(pi − xi

k)
∆t

+ c2r2
(ps

k − xi
k)

∆t
(9)

where r1 and r2 are random numbers between 0 and 1, pi is the best position found by the
particle i and ps

k is the best position achieved by the remaining particles of the swarm in the
iteration k.

There are three problem-dependent parameters, namely the inertia of the particle (w), and
the two “trust” parameters c1 and c2. The inertia controls the exploration capacity of the
algorithm: the larger the inertia value, the more global (as opposed to individualistic) will be
the behavior [31]. The trust parameters indicate how a particle trusts on itself (c1) and on the
swarm (c2). Figure3 shows the application of the equation above when two particles are flying
in a bi-dimensional search space.
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Figure 3: Velocity vector in action.

4.2 Initial swarm

The initial swarm is created by randomly distributing the particles throughout the search space.
The initial position and the initial velocity vectors are given by the following equations:

xi
0 = xmin + r1(xmax − xmin) (10)

vi
0 =

xmin + r2(xmax − xmin)
∆t

(11)

where r1 and r2 are random numbers between 0 and 1, xminis the lower bound vector and xmax

is the upper bound vector for the variables.
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4.3 Problem parameters

The formula used to update the velocity vector, Eq. (9), contains some parameters that are
adjusted according to the problem, namely the trust parameters, c1 and c2, and the inertia
weight, w. The trust parameters must be set to balance the influence of the knowledge that
was acquired by an individual particle and the knowledge acquired by the swarm. The inertia
weight is set to give the portion of the current velocity that will remain in the next iteration.
The literature proposes using c1 = c2 = 2 and 0.8 ≤ w ≤ 1.4 [13, 21, 23, 30, 31, 37]. In addition,
the trust parameters can be set with different values, generally satisfying c1 + c2 = 4. In this
work the values are c1 = 1.5 and c2 = 2.5. As for the inertia weight, a scheme of reduction
is available, the so-called mass extinction [30, 31, 37]. The idea is to start with a large value
for w, which provides a more global search, and then reduces continually the value during the
optimization, providing a more local search behavior. This approach results in a faster algorithm
convergence and makes the problem independent from the value assigned to w. The following
equation gives the updating of w:

wnew = fwwold (12)

where wnew is the updated value; wold is the previous value and fw is a constant between 0 and
1. fw = 0.975 is used throughout this paper.

The w value is not updated each iteration. A coefficient of variation (CV ) for a subset of
the best particles is monitored. If CV falls below a pre-defined threshold value, it is understood
that the algorithm is converging towards an optimum [31], then Eq. (12) is applied. The CV is
given by the following equation:

CV =
StdDev

Mean
(13)

where StdDev is the standard deviation and Mean is the mean of the objective function for the
considered set of particles. In this work, a subset of the best 20% of particles from the swarm
is monitored.

4.4 Dealing with Violated Constraints

When in an optimization problem the particles violate the constraints, they must be dealt with
repairing such violation. As suggest by [31], the idea of feasible directions [29], is used to achieve
this goal.

Consequently, the velocity vector is recomputed according to the equation:

vi
k+1 = c1r1

(pi − xi
k)

∆t
+ c2r2

(ps
k − xi

k)
∆t

(14)

After obtaining the new velocity vector, the position is recalculated by using Eq. (8). The
difference between this formula and the initial one is that the current velocity is neglected.
According to [30], in most cases this new velocity vector will bring the particle back to a feasible
region of the search space.
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4.5 Discrete/Integer Variables

The PSO algorithm and the Genetic Algorithm differ in this point, the first one was originally
introduced to solve continuous problems and the second one was first introduced to solve discrete
problems. However, an implementation of PSO algorithm to solve discrete problems is available.
In this work, a simple modification is made by considering the position of each particle as an
integer number. The approach is straightforward. The position of each particle is rounded to
its closest integer value after applying Eq. (8) or Eq. (10). This method, although simple, was
shown to be quite effective in the tested problems.

4.6 Craziness Operator

As the Genetic Algorithm has the mutation operator, the PSO algorithm has the craziness
operator to avoid premature convergence. There are different ways to implement the craziness
operator. In this work, the procedure suggested by [31] is adopted. The position is randomly
changed while the velocity vector is recomputed following the equation:

vi
k+1 = c1r1

(pi − xi
k)

∆t
(15)

This operator is applied to the particles that are identified by the previously defined coefficient
of variation (CV ), at the end of each iteration. If the CV falls below a pre-defined threshold
value it is understood that the swarm is becoming too much uniform [31]. In this case, those
particles located more than two standard deviations from the center of the swarm are subjected
to the craziness operator. In this work a CV threshold of threshCV = 1 is used.

4.7 Stop criterion

The maximum number of iterations is defined previously and the algorithm runs until this num-
ber is reached. However, convergence criteria could be used, such as monitoring the maximum
change in the objective function for consecutive iterations.

4.8 Simplifications and Enhancement to the Basic Algorithm

The goal of this work is to implement a basic algorithm that can be applied to solve constrained
inverse problems. To achieve this goal, a simplification in consideration of the side constraints
and a way to take into account the coefficient of variation (CV ) that is adopted in the mass ex-
tinction and in the craziness operator, are introduced. When a particle violates a side constraint,
its position is changed arbitrarily to a random value by applying Eq. (10). In [31] the procedure
to compute CV includes the standard deviation (StdDev) and the mean value (Mean) of the
objective function. Here, the position of each particle is monitored by the CV , instead. It is
possible to exist particles that correspond nearly to the same value of the objective function but
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occupy distant positions in the search space. In this way, the position of each particle is more
significant than the value of its objective function.

In this work, the craziness operator was tested in the load identification problem. The
results showed a worsening of the identification algorithm and because of that the PSO was
implemented without the craziness operator.

5 The LifeCycle model

LifeCycle model is an optimization method based on artificial life (ALife) principles. The term
Alife is used to describe the study of systems that have some essential features of life. ALife can
be divided in two important topics:

• how computational techniques can help in biologic phenomenon studies.

• how biologic principles can help to solve computational problems.

In this context, the LifeCycle model is a computational tool inspired in the biologic concept
of life cycle. From a biology viewpoint, the term is used here to define the passage through the
phases during the life of an individual. Some phases, as sexual maturity, are one-time events,
others, as the mating seasons, are re-occurring. Although it does not happen in every case, the
transitions between life cycle phases are started by environmental factors or by the necessity to
fit to a new condition [21]. The transition process promotes the maturity of an individual and
contributes to the adaptation and evolution of its species.

From the optimization viewpoint, the capability of changing to a different stage by searching
a way to improve the own fitness to the environment can be used to inspire a new optimization
method. In this sense, the fitness provides a criterion used by each individual to shift its life
stage. Different from what happens in genetic algorithms, where the natural evolution inspires
the optimization method as a whole, in the LifeCycle model the transitions between the stages
inspire just a part of the method. The transitions are used to deal with the mechanism of self-
adaptation to the optimization problem. To close the definition, the LifeCycle stages must be
defined. In the present work, two heuristics are used as stages, namely the GA and the PSO.
Others versions of the LifeCycle model can be proposed by considering other heuristics and a
mix of them as shown in [21]. This means that the optimization approach does not follow a rigid
scheme as proposed in [2], in which various techniques are used sequentially in a cascade-type
of structure.

5.1 Basic LifeCycle model algorithm

The outline of a basic LifeCycle algorithm is as follows:

1. Initialize the algorithm parameters for the PSO and GA.
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2. Evaluate the fitness for all particles (PSO) and individuals (GA).
If there is no recent improvement, switch the LifeCycle stage (change from GA to PSO or
vice-versa).

3. For all PSO particles, run the PSO algorithm.

4. For all GA individuals, run the GA algorithm.

5. Go to step 2 and iterate until a stop criterion is achieved.

In the above LifeCycle model the algorithm is initialized with a set of particles of a PSO
swarm, which can turn into GA individuals, and then, according to their performance, back to
particles again and so on. A LifeCycle individual switches its stage when there is no fitness
improvement for more than a previously defined number of iterations. In this work, this will be
a parameter that can be adjusted according to the problem.

5.2 Parameters of LifeCycle model

Since the algorithm is composed by various heuristics, it is necessary to set the parameters of
every heuristic used in the LifeCycle model. Nevertheless, there is a parameter inherent to the
LifeCycle model, namely the number of iterations that represents a stage of the LifeCycle. The
authors, to improve the algorithm performance, have introduced this parameter differently from
what is usually done by simply fixing this number, as in [21]. We call this number as stage
interval. At the end of each stage interval, the less well-succeeded individuals must change their
stage in order to improve their fitness.

5.3 Stop criterion

In this work no convergence criterion is used. Simply, the number of iterations was defined
previously and the algorithm iterates until this number is achieved. However, relative errors
calculated for successive iterations can be used to stop the algorithm.

6 Genetic Algorithm

GA is an optimization algorithm based on Darwin’s theory of survival and evolution of species,
as explained in [11] and [20]. The algorithm starts from a population of random individuals,
viewed as candidate solutions to the problem. During the evolutionary process, each individual
of the population is evaluated, reflecting its adaptation capability to the environment. Some of
the individuals of the population are preserved while others are discarded; this process mimics
the natural selection in the Darwinism. The remained group of individuals is paired in order to
generate new individuals to replace the worst ones in the population, which are discarded in the
selection process. Finally, some of them can be submitted to mutation, and as a consequence, the
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chromosomes of these individuals are altered. The entire process is repeated until a satisfactory
solution is found.

The outline of a basic GA is as follows:

1. Define the GA parameters (population size, selection method, crossover method, mutation
rate, etc.).

2. Create an initial population, randomly distributed throughout the design space (other
distributions can be performed).

3. Evaluate the objective function and take it as a fitness measure of each individual.

4. Select mates to the crossover; this mimics the natural selection.

5. Reproduce and replace the worst individuals in the population by the offspring.

6. Mutate, to avoid premature convergence (other parts of the design space are explored).

7. Go to step 3 and repeat until the stop criterion is achieved.

Although the initial proposed GA algorithm was dedicated to discrete variables, nowadays,
improvements are available to deal with discrete and continuous variables, see [11] and [20] for
more details.

7 Sequential quadratic programming (SQP)

The linear search algorithm used in this paper is based on the Lagrange-Newton Sequential
Quadratic Method (SQP) and is devoted to the minimization of a function of several variables
f(x),subjected to linear/non-linear equality and inequality constraints (Ax ≤ B, Aeqx = Beq,
Cx ≤ 0, Ceqx = 0) and side constraints (lb ≤ x ≤ lu). To obtain the optimal solution it is
required an initial estimation of the optimization parameters [29]. Obviously, in the case of
the present contribution, the results obtained from SQP depend on the initial estimation of the
external forces and the number of variables to be identified.

8 Numerical Applications

8.1 Two-dimensional portal frame

Figure 4 shows a finite element model of a simple frame structure used in the identification
process, which is submitted to four different load configurations. The identification problem
consists in determining the loading parameters, namely the magnitude, position and direction.
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The following scenarios are studied: 1- identification of the magnitude of F 1; 2 - identification
of the magnitude and position of F 1; 3 - identification of the magnitude, position and direction
of F 1; 4 - identification of the magnitude and position of forces F 2 and F 3. Table 1 presents
the natural frequencies with and without the external load for all studied scenarios.

 

Figure 4: Portal frame structure FEM model (F1 and F3 are applied at the same position).

Table 1: Natural frequencies of the portal frame structure.

Scenario
Natural Frequencies [Hz]
1 2 3 4 5 6

Without load 4.42 15.07 22.74 28.30 51.85 59.64

1, 2, 3 F 1 (N) 3.49 13.20 21.69 28.56 49.89 58.05

4 F 2 and F 3 (N) 1.66 10.59 20.34 28.71 47.30 56.22

The results obtained by using PSO and LifeCycle were used as an initial configuration for a
second optimization run. This way the SQP method was used in this final step, thus forming
a hybrid optimization approach. The most significant results of this approach are that the
continuous design variables (force magnitudes) could be improved with respect to the previous
step as obtained at the end of the PSO and LifeCycle runs.

Table 2 and Table 3 present the identification results to various loading configurations (sce-
narios) for the portal frame structure, as obtained by using PSO and LifeCycle model, respec-
tively. As in real applications, identification methods have to be robust enough to deal with
experimental errors, it is also considered a situation in which ”experimental” data are corrupted
with 10% of random error, as presented in Table 2 and Table 3. In the following tables F i refers
to the magnitude of the external loading and P i, Di denote the position and direction of F i,
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respectively.

Table 2: Identification results for the portal frame structure using PSO and PSO+SQP.
Without corrupted data With corrupted data
PSO Hybrid PSO Hybrid

Scenarios Exact Identified Identified Error [%] Identified Error [%] Identified Error [%]

1 F 1 [N] 8049.00 8039.6098 8049.0043 3.73x10−6 8826.3381 9.6575 8881.6772 10.345

2
F 1[N] 8049.00 7742.55 8049.0034 7.45x10−6 7552.7869 6.165 7552.7869 12.3875
P 1 11 11 - 0 11 0 - 0

3

F 1[N] 8049.00 8465.32 8049.0043 3.73x10−6 7822.2389 2.8173 7802.5716 3.0617
P 1 11 11 - 0 11 0 - 0
D1 2 2 - 0 2 0 - 0

4

F 2[N] 7545.94 7117.46 7545.95 1.33x10−4 8014.89 6.21 7372.31 2.30
P 2 10 10 - 0 10 0 - 0
F 3[N] 10061.26 11387.70 10061.249 1.09x10−4 10174.94 1.13 10423.92 3.60
P 3 11 11 - 0 11 0 - 0

Table 3: Identification results for the portal frame structure using LifeCycle and LifeCycle+SQP.
Without corrupted data With corrupted data
LifeCycle Hybrid LifeCycle Hybrid

Scenarios Exact Identified Identified Error [%] Identified Error [%] Identified Error [%]

1 F 1[N] 8049.00 8053.03 8049.00 2.76x10−5 8653.93 7.5156 8881.66 10.3448

2
F 1[N] 8049.00 8278.40 8049.00 4.73x10−5 8584.71 6.6556 9046.13 12.3882
P 1 11 11 - 0 11 0 - 0

3

F 1[N] 8049.00 8044.98 8049.00 5.05x10−5 8219.06 2.1127 7802.57 3.0616
P 1 11 11 - 0 11 0 - 0
D1 2 2 - 0 2 0 - 0

4

F 2[N] 7545.94 6547.86 7545.94 5.12x10−5 8315.7 10.20 10345.60 6.8945
P 2 10 10 - 0 10 0 - -
F 3[N] 10061.26 11023.11 10061.25 6.73x10−5 9018.95 10.36 7025.69 2.8262
P 3 11 11 - 0 11 0 - 0

The behavior of the LifeCycle model along the iterations can be observed in Figure 5 for
scenario 4, with noise. Figure 5-a shows the transitions due to its self-adaptation skills and
Figure 5-b shows which heuristics is conducting the optimization process at a given iteration.

In the case illustrated in Figure 5, the stage interval is equal to 5 iterations; this means that
transitions between PSO and GA happen at each group of 5 iterations. Since LifeCycle starts
with PSO particles (in this case), in the first 5 iterations there are no GA individuals in the
population. During the optimization process it can be observed that the LifeCycle individuals
switch their stage (transition) to improve the value of the objective function.

The results show that both optimization approaches used in the force identification proce-
dure were efficient for all scenarios analyzed. It is worth mentioning that both identification
strategies lead to essentially the same results. As expected the identification errors are larger
when corrupted data are considered. However, it can be seen that the methods are robust
enough to provide meaningful results even in the presence of noise.
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Figure 5: Evolution and performance of LifeCycle — portal frame structure.

8.2 Two-dimensional tower-like structure

Also, the authors intended to evaluate the efficiency of the identification algorithm when applied
to a more complex finite element model. For this aim, a mechanical structure for which the first
buckling load is 4669060 [N] is presented in Figure 6. In this case, the magnitude of a single
force was determined (its position and direction were known a priori).

Table 4 presents the natural frequencies with and without the external load for the complex
structure.

Table 4: Natural frequencies of the two-dimensional tower-like structure.

Scenario
Natural Frequencies [Hz]
1 2 3 4 5 6

Without load 29.51 82.12 145.49 161.58 217.74 333.44

1 F 1[N] 23.50 62.48 111.83 161.39 175.81 315.47

Table 5 and Table 6 present the identification results for the complex structure for the two
identification approaches studied in the present contribution, respectively. As in the previous
case, ”experimental” data were corrupted with 10% of random error for comparison purposes.
Again, the results demonstrate the efficiency of the identification procedures.

As it was illustrated for the simpler structure (Figure 5), Figure 7 shows how the self-
adaptation has performed in the complex structure case, when the LifeCycle approach was
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Figure 6: FEM of the two-dimensional tower-like structure.

Table 5: Identification results for the tower-like structure using PSO and PSO+SQP.
Without corrupted data With corrupted data
PSO Hybrid PSO Hybrid

Scenario Exact Optimum Optimum Error [%] Optimum Error [%] Optimum Error [%]

1 F 1[N] 2334530.00 2352868.19 2364767.89 1.2952 2279644.7 2.351 2280107.1 2.3312

Table 6: Identification results for the tower-lie structure using LifeCycle+SQP.
Without corrupted data With corrupted data
LifeCycle Hybrid LifeCycle Hybrid

Scenario Exact Optimum Optimum Error [%] Optimum Error [%] Optimum Error [%]

1 F 1[N] 2334530.00 2275699.84 2334529.84 6.91x10−6 2276273.11 2.50 2364767.91 1.2952
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used. The transitions between PSO and GA (Fig. 7-a) and the objective function value through
the iterations (Fig. 7-b) can be seen.

 

Figure 7: Evolution and performance of LifeCycle for the tower-like structure.

9 Conclusions

This paper presented an identification procedure to determine external forces applied to me-
chanical structures. Two identification strategies have been tested based on hybrid optimization
methods as performed by PSO and LifeCycle model together with SPQ techniques. The in-
fluence of experimental errors was taken into account to test the robustness of the procedure.
Various identification scenarios were investigated, in such a way that the efficiency of the iden-
tification procedure was checked in tests exhibiting increasing difficulty, ranging from a simple
case in which a single force magnitude was determined to a configuration in which two force
magnitudes and positions were obtained. In the cases for which the force positions were to be
determined, the optimizer was able to deal with discrete design variables together with continu-
ous ones. In most cases, the second optimization run using SPQ was very important to improve
the results obtained, since heuristic techniques alone could not able to reach the global optimum.
However, when corrupted data are used, SQP was no able to improve the results obtained from
PSO and LifeCycle for all cases studied. This can be explained by the fact that SQP requires
the computation of gradients of the cost function (partial derivatives). The corrupted data may
locally increase the noise effect in calculating such derivatives, thus compromising the resulting
optimal value obtained, as demonstrated in [27]. Random data errors smaller than 3influence
the identification procedure. The results obtained are encouraging in the sense that real experi-
mental data can be used in the near future to test the methodology developed under real-world

Latin American Journal of Solids and Structures 1 (2004)



316 J.E. Rojas, F.A.C. Viana, D.A. Rade and V. Steffen, Jr

conditions.
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