
 ORIGINAL ARTICLE 

 

Received: April 09, 2018. In Revised Form: November 21, 2018. Accepted: January 03, 2019. Available online: January 04, 2019. 
http://dx.doi.org/10.1590/1679-78255022 

Latin American Journal of Solids and Structures, 2019, 16(2), e163  1/31 

Fatigue degradation strategies to simulate crack propagation using 
peridynamic based computational methods 

Soheil Bazazzadeha,b*  

Mirco Zaccariottoa,b  

Ugo Galvanettoa,b  

a Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy. E-mail: soheil.bazazzadeh@phd.unipd.it, 
mirco.zaccariotto@unipd.it, ugo.galvanetto@unipd.it 
b Center of Studies and Activities for Space “Giuseppe Colombo”. CISAS, Via Venezia 15,35131 Padova, Italy, 

*Corresponding author 

http://dx.doi.org/10.1590/1679-78255022 

Abstract 
The aim of this paper is to develop new computational tools to study fatigue crack propagation in structural 
materials. In particular we compare the performance of different degradation strategies to study fatigue crack 
propagation phenomena adopting peridynamic based computational methods. Three fatigue degradation 
laws are proposed. Two of them are original. Initially a cylinder model is used to compare the computational 
performance of the three fatigue laws and to study their robustness with respect to variations of discretization 
parameters. Then the fatigue degradation strategies are implemented in a peridynamic framework for fatigue 
crack propagation analyses. Both cylinder model and peridynamic simulations show that the third proposed 
degradation law is unique in its combination of high accuracy, high stability and low computational cost. 
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1 INTRODUCTION 

Fatigue is a major cause of structural failure in many structures. Prediction of fracture propagation under cyclic 
loading is a challenging problem for two main reasons: from a theoretical point of view the discontinuous nature of 
fracture phenomena conflicts with the underlying mathematical structure of classical continuum mechanics, and from a 
more practical side the slow damaging effect of a large number of load cycles (high cycle fatigue) is not easy to model 
(Weinert and Gergely 2011). Traditional finite element method (FEM), or various modified versions of the FEM, have 
been used to simulate fatigue crack growth (Allix and Corigliano 1996; Branco et al. 2015; Point and Sacco 1996; 
Schellekens and Borst 1993). FEM models are based on the classical continuum mechanics theory, which cannot directly 
be used to simulate problems with discontinuities, such as cracks, requiring extra relationships that control the crack 
growth speed, direction and remeshing techniques. For example, the FEM with a remeshing technique is widely used to 
model fatigue crack growth (Branco et al. 2015). However, implementation of automatic remeshing techniques is difficult 
in 3D cases (Baydoun and Fries 2012; Boroomand et al. 2016; Boroomand et al. 2017), and is computationally costly to 
remesh geometries when multiple cracks exist. Interface elements equipped with cohesive zone models have been used 
(Alfano and Crisfield 2001; Alfano and Crisfield 2003; Blackman et al. 2003; Chen et al. 1999; Crisfield and Alfano 2002; 
Ostergaard et al. 2011; Qiu et al. 2001) in the cases in which the crack path is predictable. The extended finite element 
method (XFEM) (Belytschko and Black 1999; Bidokhti and Shahani 2015; Dolbow and Belytschko 1999; Shi et al. 2010) 
allows cracks to pass through the elements leading to better approximations of crack paths without remeshing. 
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Nevertheless, one common problem for XFEM is that additional criteria are needed to study crack coalescence or 
branching. 

Peridynamics, a newly presented continuum theory, has been developed to deal mainly with dynamic fracture 
problems by Silling in (Silling 2000). It is a non-local continuum theory proposed with the specific goal to tackle the 
shortcomings of the classical theory. Peridynamics consists of integral equations and does not need any spatial 
differentiation, for these reasons it is proper to describe problems affected by discontinuities (Bazazzadeh et al. 2018; 
Bobaru et al. 2016; Madenci et al. 2016; Shojaei et al. 2019). One of the significant features of the peridynamic approach 
is that it allows for spontaneous formation, interaction, and growth of discontinuities in a consistent framework (Xu et 
al. 2008). Using this theory, promising results have been attained in elastic bar (Aguiar et al. 2018) dynamic brittle fracture 
in glass (Ha and Bobaru 2010, 2011; Bobaru and Ha 2011; Hu et al. 2013), fiber-reinforced composites (Ghajari et al. 
2014; Hu et al. 2012), functionally graded materials (Cheng et al. 2015) and corrosion damage (Chen and Bobaru 2015; 
Chen et al. 2016). 

A peridynamic model for fatigue cracking has been proposed in the recent past by Silling and Askari (Silling and 
Askari 2014), which enables the simulation, in a single model, of the three phases of fatigue failure: crack initiation, 
fatigue growth and final failure controlled by quasi-static crack growth. In (Silling and Askari 2014), the dynamic relaxation 
method is used to obtain the static solution, and fatigue crack growth. References (Zhang and Bobaru 2016; Zhang et al. 
2016) study fatigue crack propagation obtaining the static solution adopting a conjugate gradient energy minimization 
method, which is matrix-free and much faster than dynamic relaxation method, see (Le 2014). In a recent work (Hu et al. 
2015; Hu and Madenci 2017) peridynamics is applied to simulate the fatigue life and residual strength in composite 
laminates. Moreover, by using peridynamic approach, mixed-mode fatigue crack propagation has been investigated in 
(Jung and Seok 2017). Other studies to simulate fatigue phenomena based on the peridynamic theory can be found in 
(Baber and Guven 2017; Jung and Seok 2016; Oterkus et al. 2010). 

In the present paper a cylinder model (Galvanetto et al. 2009) is used to efficiently compare the computational 
performance of three fatigue laws. Three fatigue degradation strategies have been implemented in conjunction with a 
bilinear constitutive law. The computational performance of the three fatigue degradation strategies is examined by 
making use of various discretization parameters. Then the same constitutive laws and fatigue degradation strategies are 
implemented in a peridynamic based computational code. Due to the non-local nature of peridynamic methods, they are 
computationally more expensive than those based on classical continuum theories. In the conventional peridynamic 
approach, a constant horizon size and a uniform grid are assumed all over the domain. Accordingly, the efficiency of the 
peridynamic approach is strongly affected when a fine grid spacing is used. There have been many attempts, so far, to 
maintain the computational accuracy and reduce the cost by coupling peridynamics with local theories (Bobaru and Ha 
2011; Seleson et al. 2013; Shojaei et al. 2016; Galvanetto et al. 2016; Shojaei et al. 2017; Zaccariotto et al. 2017; 
Zaccariotto et al. 2018), or by using parallel computing techniques (Lee et al. 2017; Mossaiby et al. 2017) and adaptive 
refinement algorithms (Dipasquale et al. 2014; Gu et al. 2017; Ren et al. 2016; Shojaei et al. 2018). Among the 
aforementioned techniques the FEM-PD coupling enhanced with adaptivity represents an efficient approach the use of 
which will be explored in future works. 

The paper is organized as follows: in section 2 kinematics and statics of the cylinder model are defined. Then, the 
bilinear interface constitutive law is recalled in section 3. In section 4, three fatigue degradation strategies are described. 
In section 5 the computational performances of the three fatigue laws are compared. Finally the implementation of the 
three fatigue laws in a peridynamic code is illustrated in section 6 where the results they provide are also compared. 
Section 7 gives the conclusions. 

2 THE CYLINDER MODEL 

The mathematical model consists of a cylinder of radius R which rolls on a horizontal surface initially composed of 
two coinciding zero-thickness layers, see Figure 1(a) and ref. (Galvanetto et al. 2009). One of the layers is fixed and the 
other adheres to the surface of the cylinder at the contact point C. The upper layer remains adhered while the cylinder 
rotates and the contact point moves to the right (see Figure 1(b)). In the initial state the contact point is at 0x =  (see 
Figure 1), the rotation, θ, of the cylinder is zero and the line OA, on the cylinder cross section, is vertical. The value of the 
rotation of the cylinder is defined as the angle between the line OA and the vertical line connecting O to the current 
contact point. 
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Figure 1: (a) Cylinder model in its initial configuration (b) The cylinder model after a rotation θ  has occurred, adhesion between the 

layers is represented as a discrete system of springs. 

If a clockwise moment is applied, the cylinder will rotate in the same direction and it will move to the right of its 
initial position and one layer will be lifted and separated from the other, as shown in Figure- 1(b). An adhesion stress 
acting between the two layers opposes the motion of the cylinder. The model represents one of the two symmetric 
halves of the tip of a crack opening in mode I as depicted in Figure- 2. 

 
Figure 2: Pure moment loading for mode I specimen. 

2.1 Continuum equations of the model 

The model has only one degree of freedom, the rotation of the cylinder θ  . The coordinate of the contact point conX  
represents the crack length, which is linked to the rotation θ  as 

conX Rθ=  (1) 

The applied moment, aM , is in equilibrium with the reaction moment, tM , due to the stresses in the interface 

0

( ) ( )
conX

t conM x X x dxσ= −∫  (2) 

2.2 Discretization of the model 

The motion of the cylinder detaches the two layers. The adhesion between them can be represented as a discrete 
system of vertical springs, with uniform spacing Δl, that oppose the separation, Figure 1.b. The springs are initially 
unstressed but become stressed as the two layers separate behind the advancing contact point. 

A constitutive law for the springs has to be defined to describe the mechanical behavior of the interface which is 
progressively damaged: the force in the spring eventually reduces to zero (representing complete failure) as the layer 
separation increases. 

The value of R is to be chosen as very large compared to the displacement at which the stretched springs fail so that 
the springs can be considered to remain vertical while they are stressed. 
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2.2.1 Kinematics 

Once conX  is known and given the spring spacing Δl, it is easy to identify the number of springs that become active 
(n) and their coordinates ( 1,2,3, )ix i n= 

. 
Figure 3 shows that simple geometry is sufficient to define the elongation δi of the i-th spring and its distance id  from 

the contact point. 

 
Figure 3: Angle, opening displacement and distance from contact point of springs. 

Since the springs have a zero initial length, the elongation will be defined as the vertical displacement ( iδ ) of the top 
of the spring. Moreover it was previously mentioned that the spring eventually degrades as the displacement is increased 
and the stress finally reduces to zero. If cδ defines the critical displacement at which failure occurs, then the angle α  at 
which such a displacement is achieved is given by (Figure 3): 

1cos cR
R
δ

α − − =  
 

 (3) 

2.2.2 Equilibrium 
As the cylinder advances, a number of springs become active. The interface stress ( iσ ), which is a function of the 

opening displacement ( ( )i ifσ δ= ) can be obtained by using an interface constitutive law. 
The interface stress of each spring can then be used to find the spring force ( iF ) generated by multiplying this value 

iσ  by the area which the spring ‘represents’. For dimensional reasons the cylinder is assumed to have a width of 1. The 
interface area associated with a typical spring is therefore 1·Δl. An exception is for the area of the first spring which is 
taken as 1·Δl/2. The value of the force for a typical spring is given by 

1i iF lσ= ⋅ ∆  (4) 

The moment ( iM ) generated by the spring force with respect to the contact point (C ) is obtained by multiplying the 
force by the distance to the current contact point 

i i iM d F=  (5) 

and the total moment ( tM ) generated by the springs is found by adding the moments iM  of all the active springs 

1

n
t ii

M M
=

= ∑ , (6) 

This is the moment which has to be applied to the cylinder to maintain it in equilibrium for a given applied rotation. 
The critical moment cM , which is the minimum value of the moment to break the interface is (Galvanetto et al. 2009): 

c cM G R=  (7) 
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where Gc is the critical energy release rate. The moment Mc of the cylinder model can be found by imposing static 
equilibrium for a rotation of magnitude α. 

3 INTERFACE CONSTITUTIVE LAWS 

As it was mentioned previously, a constitutive law is required to describe the behavior of σ  as a function of δ . The 
constitutive law should be defined in such a way that for every value of δ  there is a unique value of σ . In this research 
the bilinear interface constitutive law has been considered (Alfano and Crisfield 2001; Alfano and Crisfield 2003; Crisfield 
and Alfano 2002; Galvanetto et al. 2009; Peerlings et al. 2000; Qiu et al. 2001; Robinson et al. 2005). There are two 
parameters, additional to the critical displacement value, cδ , that are needed to define an interface constitutive law: 
the critical energy release rate ( cG ) and the maximum stress value ( 0σ ). In the present case of the bilinear law the elastic 
limit relative displacement ( 0δ ) is also required (Galvanetto et al. 2009; Peerlings et al. 2000; Robinson et al. 2005). 

 
Figure 4: Mode I bilinear interface constitutive law. 

The critical energy release rate is a physical quantity used in Linear Elastic Fracture Mechanics (LEFM) for defining a 
criterion of propagation of the delamination in the interface. Its value is measurable in lab tests. It is indirectly used in 
the definition of the constitutive laws by equating the areas under the stress-displacement curves to the critical energy 
release rates. Therefore, the total energy dissipated during the delamination is correctly computed at each point 
although it is not released instantaneously as is assumed in LEFM (Alfano and Crisfield 2001). 

δ0 is the maximum displacement for which the spring behavior is still linear elastic, whereas the ratio ( 0 0/σ δ ) is 
clearly linked to the stiffness of the interface. 

The constitutive behavior for monotonic increasing relative displacement δ will be described below. 
The bilinear interface law, as seen in Figure 4, is divided into three parts: linear elastic, stiffness degradation and 

failure. In the first part a linear-elastic behavior is assumed for a relative displacement that is increased from zero, where 
there is no stress ( 0σ = ), until it reaches the elastic limit 0δ . At the elastic limit the stress assumes its maximum value, 

0σ . The linear-elastic part of the law is described by the following expression: 

00Kσ δ δ δ= ≤ ≤  (8) 

where K  is the initial stiffness of the interface and is given by 

0 0/K σ δ=  (9) 

The second part of the interface constitutive law defines the behavior between the elastic limit and the critical 
displacement cδ . Once the elastic limit is exceeded the interface starts to be degraded. This degradation is described by 
the following relationship: 

0 0
0

c
c

c

δ δσ σ δ δ δ
δ δ

 −
= < <  − 

 (10) 
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The third and last part of the interface constitutive law is for relative displacement values that are equal or larger 
than the critical displacement value. When this critical value is reached or exceeded the element fails irreversibly so that 
no stress can be carried by the interface: 

0 cσ δ δ= ≥  (11) 

As it was stated previously the critical energy release rate cG  is equal to the area under the δ σ− curve, so in this 
case 

0

2
c

cG δ σ
=  (12) 

Therefore of the four parameters cG , cδ , 0δ , 0σ  only three are independent. 
The constitutive law of the interface can be written as well in terms of a damage variable D as: 

(1 )K Dσ δ= −  (13) 

where the damage variable is: 

0

0
0

0

0 0

1

c
c

c

c

D

D

D

δ δ

δ δ δ
δ δ δ

δ δ δ
δ δ

= ≤ ≤


 − = < <  − 
 = ≥

 (14) 

The increment of the opening displacement from 1δ  to 2δ  ( 2 1δ δ> ) causes an increment of the damage variable: 

0
2 1 0 1 0 2

0 1 2

1 1 , ,c
c c

c

D D D whereδ δ
δ δ δ δ δ δ

δ δ δ δ
 

∆ = − = − < < < < −  
, 2 1δ δ>  (15) 

4 FATIGUE DAMAGE 

If the fatigue phenomenon is involved a time-like independent variable has to be considered, the number of cycles 
N of the external load. The applied load history consists of two components: quasi-static ramping phase and fatigue 
phase as shown in Figure 5. 

 
Figure 5: (a) Envelope cyclic load approach and (b) envelope of the displacement for a large number of cycles. 
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In order to simplify the calculation process some assumptions are made (Peerlings et al. 2000). The first one is 
related to the cyclic load which is assumed to be sinusoidal and oscillating between zero and a maximum value. Since it 
would be very computationally expensive to simulate the relative displacement history for each spring, the load 
numerically applied to the structure, or to the cylinder model in this paper, is taken as constant and equal to the 
maximum value of the actual cyclic load as shown in Figure 5. Consequently, the relative displacement calculated at the 
crack tip will be the envelope of its true cyclic variation with time, as shown in Figure 5(b) (Galvanetto et al. 2009; 
Peerlings et al. 2000; Robinson et al. 2005). 

We assume that the total damage rate in a spring can be obtained as the sum of the static and the fatigue damage 
rates as follows 

s fD D D= +    (16) 

sD  is the rate of static damage due only to the increase in magnitude of δ ; 
fD  represent the fatigue damage 

increment due to the repetition of the load cycles and is greater than zero even if δ is constant. As the novelty of this 
work is in the fatigue part we use the same static damage rate based on the bilinear constitutive law for all different 
fatigue approaches. 

Three strategies are considered to estimate the fatigue part of the damage. 

4.1. Static damage rate 

The static damage rate with respect to time can be obtained from Equation (14) as 

0
02

0

s c
s c

c

DD
t

δ δ δ δ δ δ
δ δ δ

∂
= = < <

∂ −



  (17) 

One may integrate Equation (17) over an increment of the number of load cycles ( N∆ ) as 

0

0

1 1c
s N N s N

c N N N

D D δ δ
δ δ δ δ+∆

+∆

 
− = − −  

 (18) 

in which, s ND  and s N ND +∆  denote the static damage component corresponding to the opening displacements Nδ  and 

N Nδ +∆
 where N N Nδ δ+∆ ≥ . Equation (18) provides the same expression as Equation (15) and therefore clarifies that the 

static damage component is due only to the increment of the opening displacement. 

4.2 First fatigue degradation strategy 

In the first strategy, originally presented in (Galvanetto et al. 2009; Robinson et al. 2005) the fatigue rate is assumed 
to have the following form: 

f D
f

c

D
D Ce

N

β

λ δ
δ

∂  
= =  ∂  

  (19) 

C , λ  and β  are parameters to be determined by fitting of experimental data. The physical meaning of Equation 
(19) is that the fatigue damage rate is bigger for bigger relative displacement δ and for higher values of the current total 
damage. 

Integrating Equation (19) over a number of loading cycles ( N∆ ), one may write the increment of fatigue damage as 

1

1
D

f N N f N
c

CD D N e µ

β
λ µδ

β δ

+

+∆

 
− = ∆  +  

 (20) 
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Moreover, based on the reference (Galvanetto et al. 2009), Dµ  and µδ  are taken as 

(1 )
(1 )

N N N

N N N

D D Dµ

µ

µ µ

δ µ δ µδ
+∆

+∆

= − +

= − +
 (21) 

Where µ  value is 0.7. Additionally, by putting (18) and (20) into Equation (16), the total damage increment, based on 
the bilinear constitutive law and stiffness degradation damage (see Figure 6), can be obtained as 

1

0

0

1 1
1

Dc
N N N

c N N N c

static fatigue

CD D N e µ

β
λ µδδ δ

δ δ δ δ β δ

+

+∆
+∆

   
− = − + ∆   − +   

 

 (22) 

 
Figure 6: First (and third) fatigue law based on stiffness degradation strategy. 

Note that in usual numerical procedures the only unknown variable in Equation (22) is N ND +∆
, it appears on both 

sides of Equation (22) which makes it implicit and nonlinear. 

4.3 Second fatigue degradation strategy 

The second fatigue degradation strategy, originally proposed by the authors in (Zaccariotto et al. 2015b), is based 
on the reduction of the value of the failure displacement, due to the fatigue phenomenon (Figure 7). It can be assumed 
that the failure elongation of a spring in each increment of load cycle, N∆ , is a function of displacement as follows. 

0( )n
c N N c N N NB Nδ δ δ δ+∆ +∆= − − ∆  (23) 

Where B  and n  are parameters related to the material behavior when it is subjected to fatigue load cycles and c N Nδ +∆  

is the failure displacement of a spring after N N+ ∆  loading cycles. 
The total damage at the end of each load cycle increment can be obtained as 

0

0 0

1 1c N N
N N

c N N N N

D
δ δ

δ δ δ δ
+∆

+∆
+∆ +∆

 
= − −  

 (24) 

Accordingly, the total damage increment in this approach is given by 

0 0

0 0 0 0

1 1 1 1c N N c N
N N N

c N N N N c N N

D D
δ δ δ δ

δ δ δ δ δ δ δ δ
+∆

+∆
+∆ +∆

   
− = − − −   − −   

 (25) 
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In the above formula if 0N∆ → , only the static damage takes place due to the increment of external load so that 
Equation (25) is simplified to 

0 0 0

0 0 0 0 0

Static Damage

1 1 1 1 1 1c N c N c N
N N N

c N N N c N N c N N N N

D D
δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ+∆
+∆ +∆

     
− = − − − = −     − − −     



 (26) 

which is consistent with Equation (18). In Equation (24), the dependence on the number of cycles is implicit in c N Nδ +∆  

(see Equation (23)) and in the value of the current displacement. Since N ND +∆
 doesn’t appear on both sides of Equation 

(25), this numerical approach, differently from the first strategy, is explicit. 

 
Figure 7: Second fatigue law, failure stretch shortening. 

4.4. Third fatigue degradation strategy 

In the third law, which has not presented before, it is assumed that the derivative of fatigue damage with regard to 
N  is given in Equation (27) 

m
f

f
c

D
D A

N
δ
δ

′
∂  

′= =  ∂  
  (27) 

In the above formula, A′  and m′  are constants related to the material behavior while δ  represents the elongation 
of the spring. Equation (27) differs from equation (19) because in (27) the damage rate does not depend on the current 
value of total damage D. 

Updated fatigue damage for crack growth can be determined as (see references (Bak et al. 2016; Peerlings et al. 
2000)) 

N N
f

f N N f N
N

D
D D dN

N

+∆

+∆

∂
= +

∂∫  (28) 

Using a mid-point rule, one may approximately calculate the integral of the fatigue damage rate as 

1 ( )
2

mN N
f N N N

c cN

D
dN A N

N
δ δ
δ δ

′+∆
+∆

∂  
′≈ ∆ + ∂  

∫  (29) 
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Accordingly, by combining Equations (29) and (18) in Equation (16), the increment of total damage due to an 
increment N∆  of the number of cycles is given by the following expression, explicit in the unknown N ND +∆

: 

0

0

1 1 1 ( )
2

m

c N N N
N N N

c N N N c c

static fatigue

D D A Nδ δ δ δ
δ δ δ δ δ δ

′

+∆
+∆

+∆

   
′− = − + ∆ +   −    

 

 (30) 

Note that in the third law, as in the first one, damage directly affects the stiffness of the springs as shown in Figure 
6. 

Once the sum of static and fatigue damage increments has been computed, Equation (13) is used to compute the 
stress in the spring. 

5 COMPARISON OF THE PERFORMANCE OF THE THREE FATIGUE DEGRADATION STRATEGIES APPLIED TO THE 
CYLINDER MODEL 

In this section we compare the computational performances of the three fatigue degradation strategies proposed 
in section 4. The fatigue phenomena considered are described by the following Paris law, based on the experimental 
data gathered from (Asp et al. 2001), (the specimen is under pure mode I loading): 

0

Im

con
I c

c

X GC G G G
N G

 ∂
= < < ∂  

 (31) 

where IC  and Im  are material parameters, conX  and N  represent the crack length and number of load cycle 
respectively. G , cG  and 0G  express the maximum, critical and threshold energy release rates respectively. For the 
cylinder model, using Equation (7), one may rewrite Equation (31) as 

Im

con a
I

c

dX MC
dN M

 
=  

 
 (32) 

IC  and Im  assume the values given in Table 1, provided in reference (Bak et al. 2017). In a log-log graph 
representing /condX dN vs / cG G Paris law is a straight line, as shown by the red line in Figure 8. 

 
Figure 8: Paris law and results produced by the three fatigue degradation strategies. 
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Table 1: Parameter values of Paris law and cylinder model. 
 Parameter  Value  

 
IC   0.00308 mm/cycle  

 
Im   5.4  

 cG   0.260 Nmm/mm2  
 R   100 mm  

 l∆   0.005 mm  

 N∆   100  

 0σ   30 N/mm2  
 

0δ   10-6 mm  

 cδ   0.01733 mm  

 
The parameters of the three fatigue degradation strategies are chosen so that they reproduce the Paris law and the 

relevant results are shown in Figure 8. The parameter values are shown in Table 2. 
Figure 9(a) and 9(b) show the excellent agreement among the results obtained with the three fatigue laws for two 

cases 0.2a cM M= and 0.3a cM M= . Given the initial static ramp of the load phase, the crack fatigue propagation starts 
from a value different from zero. 

Table 2: Parameters used in the three proposed fatigue degradation strategies. 
 Fatigue laws  Model specific parameters  

 First  62 10 , 0.5, 2.0C λ β= × = =   

 Second  2540, 3.8B n= =   

 Third  61.099 10 , 3.0A m−′ ′= × =   

 
Figure 9: Crack length 

con
X  for (a) 0.2

a c
M M=  and (b) 0.3

a c
M M=  using the three different strategies. 

As depicted in Figure 9, the fatigue crack propagation is divided into two phases. At the beginning of crack 
propagation, one may observe a slow increase of the crack length, and then the crack grows more quickly with a constant 
slope. It is also apparent that the slope /condX dN is bigger for the case 0.3a cM M= . All three proposed approaches 
are able to produce the same slope, /condX dN , with an excellent agreement. 

All the codes are developed using standard Matlab 2016 language.The run times reported later are measured on an 
Intel Core i7-6700HQ 2.60 GHz CPU, on a 64 bit Windows 10 Enterprise system. 

It takes 59.84 CPUs and 57.32 CPUs to solve this example using the second and third fatigue laws respectively when
0.2a cM M= , while this computational time in the first law is 68.01 CPUs which is approximately 15-20% slower than 

the other two. 
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Normalized stress vs. displacement graphs are shown in Figure 10 for an energy release rate of 0.5 cG G= , i.e. the 
applied moment is 0.5a cM M= . The three graphs show the stress-elongation curve (σ−δ curve) for the same spring in 
the constant slope propagation phase. The three approaches generate a similar curve due to the simultaneous action of 
increasing displacement and fatigue cycles. For all cases the area under the σ−δ fatigue curve approximates well the 
green area which represents half of the area under the bi-linear law. 

 
Figure 10: Single spring behavior under static and fatigue load using (a) the First, (b) the second and (c) the third approach. The 

green area represents half of the triangular area under the bi-linear law, which is a measure of the energy dissipated during static 
crack propagation. 



Fatigue degradation strategies to simulate crack propagation using peridynamic based computational 
methods 

Soheil Bazazzadeh et al. 

Latin American Journal of Solids and Structures, 2019, 16(2), e163 13/31 

In many practical problems, the applied G  is not constant. So, following what was done also in (Bak et al. 2016), 
we compare the performance of the three fatigue degradation strategies when used with a variable G (i.e a aM  in the 
case of the cylinder model). We alter the applied moment instantly as shown in Figure 11. The response to this energy 
release change can be observed in the crack length vs. the number of load cycles as depicted Figure 11. It can be noticed 
that there is a good agreement between all proposed approaches and the Paris law. The results of the Paris law are 
obtained by integrating numerically Equation (31) to evaluate the crack length as a function of energy release rate as 
(see Reference (Bak et al. 2016)) 

( )
m

con
con

c

G XX C dN
G

 
=  

 
∫  (33) 

 
Figure 11: Blockwise constant energy release rate G . 

Moreover, in many engineering problems gradual energy release changes occur. Assuming the energy release rate 
as a function of crack length, one may change the loading condition in a way to obtain an increasing/decreasing energy 
release rate as depicted in Figure 12. 

 
Figure 12: Simulation linear dependency of the energy release rate ratio ( ) /con cG X G  on the crack length. 

For increasing aM  the first fatigue degradation strategy provides results slightly better than the third law, whereas 
the results of the second law are worse. For decreasing Ma the three laws have a similar performance (see Figure 13). 
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Figure 13: Crack growth for an linearly variable energy release rate as a function of the crack length. 

5.1 Stability of the results with respect to variations of discretization parameters 

The results presented in the previous section seem to suggest that the performance of the three degradation 
strategies are rather similar; the second law has a worse performance in the case of increasing Ma; and the first law 
requires a longer computational time than the other two, but the overall behavior of the three laws does not exhibit 
apparent differences. In this section we want to compare the stability of the results provided by the three laws with 
respect to variations of two important discretization parameters: l∆ , the spring spacing, and N∆ , the increment of load 
cycles in one step. The best approach is the one for which the slope /condX dN  is affected the least by changes in l∆  
and N∆ . All parameters are given in Table 2. The applied moment is set to be 0.2a cM M=  and the “exact slope” is 
generated by adopting small values of N∆ (=100) and l∆  (=0.005mm). The ‘exact slope’ is the same for all fatigue 
degradation strategies. Note that smaller values of l∆  and N∆  increase the cost of the procedure but reduce the error 
in the slope /condX dN . We consider values of l∆  in the range 0.005 mm 0.21 mml< ∆ < , which is divided into 206 
uniform subintervals of amplitude equal to 0.001. N∆  is considered in the range 100 60000N< ∆ < , which is divided 
into 600 uniform subintervals. Consequently, 123600 different parameter pairs are taken into account to produce three 
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contour plots of the error, shown in Figure 14. For every pair of values (Δl, ΔN) the relevant slope is computed and 
compared to the value of the ‘exact slope’. Different colors in Figure 14 represent different percent errors in the 
computed slope with respect to ‘exact slope’. Analyzing these error-plots, we observe that as l∆  and N∆  increase the 
error in general rises. The region of small error is much wider for the third law and much smaller for the second. 
Therefore, the third law, not only is computationally cheaper than the other methods for the same values of Δl and ΔN, 
but also can be used with larger values of l∆  and N∆ . 

 
Figure 14: Error plots using bilinear constitutive law for (a) first (b) second and (c) third fatigue laws. 
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Therefore, the cylinder model suggests that the third fatigue law is preferable. In the next section, we verify such a 
suggestion by implementing the three laws in a peridynamic-based code. In particular, the bilinear constitutive law 
equipped with the three fatigue degradation strategies will be adopted as constitutive law that defines the force in the 
bond as a function of the bond stretch. 

6 PERIDYNAMICS FATIGUE MODEL 

Bond based peridynamics (BBPD) is a non-local theory of continuum proposed in Reference (Silling 2000). Since the 
formulation of the theory avoids differentiations and is only based on spatial integration BBPD is particularly suited for 
describing crack propagation problems. For a point, x , and time, t , the peridynamic static equilibrium equation is written 
as (see Figure 15) 

ˆ 0ˆ ˆ( ( , ) ( , ), )dV ( , ) [ , ]
x

f
H

t t t for and t t t= − − + ∈Ω ∈∫ x0 f u x u x x x b x x  (34) 

 
Figure 15: Neighborhood of a generic material point x . 

In which, Ω  is the body domain, f  is the pairwise force function in each peridynamic bond between node x  and x̂
, u , is the displacement vector field, xH  is a local spherical region of radius Hδ , in which the integral is defined. ξ  and 
η  are the initial relative position and current relative displacement respectively: 

ˆ
ˆ( , ) ( , )t t

= −
= −

ξ x x
η u x u x

 (35) 

The stretch of the bond can be expressed as 

s
+ −

=
ξ η ξ

ξ  (36) 

6.1. Spatial Discretization of the model 

We discretize the solution domain with a grid of points called nodes (see Figure 16), to approximate the peridynamic 
equation. 
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Figure 16: A spatial discretization for a peridynamic model. 

By adapting the one-point Gauss quadrature rule to proceed with the spatial integration, one can discretize Equation 
(34) as 

1
0 ( ( , ) ( , ), ) ( ) ( , )

N

j i j i j j
j

t t V tβ
=

= − − +∑f u x u x x x ξ b x  (37) 

where, ix  is the point of interest and jx  denotes the family nodes located within the horizon of the node ix . jV  represents 

the volume of the collocation point 
jx  . Moreover, β  is the volume correction factor which determines the portion of jV  

within the neighborhood of source node ix  . In this study, β  value is determined as proposed in (Yu et al. 2011): 

1                            for   0.5

0.5
    for   0.5 0.5

0                            otherwise

H

H
H H

x

x
x x

x

δ

δ
β δ δ

 ≤ − ∆


+ ∆ −= − ∆ < ≤ + ∆ ∆



ξ

ξ
ξ  (38) 

Equation (38) expresses that the volume of nodes close to the boundary of the neighborhood falls only partially 
within the horizon of the source node. Additionally, the distance between two adjacet nodes is referred to as the grid 
spacing. 

As proposed in (Silling 2000), in the prototype microelastic brittle material (PMB), the pairwise force function f and 
the stretch s  are related according to the following equation 

( ) ( )c s c sµ µ+
= ≅

+
η ξ ξf ξ ξ
η ξ ξ

 (39) 

in which c  is the micro-modulus that can be interpreted as the bond stiffness, ( )µ ξ  is a history-dependent function which 
takes the value of 1 for active bonds and 0 for broken bonds. Furthermore, for “small deformations” the magnitude of 
the bond force, f , is approximated as the second part of the Equation (39): f csµ= . Considering the elastic deformation 
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energy, one can define the micro-modulus c  in terms of the Young’s modulus E  and of the horizon radius Hδ  as 
represented in Equation (40) and Equation (41) for 3D and and planar cases respectively. 

4

12 3D case
H

Ec
π δ

=  (40) 

3

3

9 Plane stress

48 Plane strain
5

h H

h H

Ec
t

Ec
t

π δ

π δ

 =

 =


 (41) 

in which, ht  represents the thickness. The value for Poisson’s ratio for the 3D and plane strain cases is fixed to 0.25ν = ; 
however, for the plane stress cases this value is restricted to 1 3ν = . 

The limitation of Poisson’s ratio is resolved in (Silling et al. 2007) and (Warren et al. 2009) by using the state-based 
formulation of the peridynamic theory. 

6.2 Pairwise force function 

Based on Reference (Silling and Askari 2005), for a PMB material the stretch in a bond is related to the pairwise 

function f  by Equation (39). When the stretch reaches its limit value, 0s , the bond breaks so that the global behavior of 
the system is nonlinear. In this section the constitutive law of the bond ( )f f s=  is assumed to be bilinear of the type 

presented in Section 3. The stretch of the bond plays the same role as the elongation of the spring. 0s  is the elastic limit, 
and cs  is the failure limit of the stretch, as shown in Figure 17. According to reference (Ha and Bobaru 2010), following 
expressions are assumed: 

0
0

5 3D case
6 H

Gs
Eδ

=  (42) 

0
0

0
0

4 Plane stress
9

5 Plane strain
12

H

H

Gs
E

Gs
E

π
δ

π
δ


=



 =


 (43) 

where, 0G , is the energy required to start the damaging process. The ratio between cG  and 0G , called rk , is defined as 
(see Reference (Zaccariotto et al. 2015a)): 

0 0

c c
r

G sk
G s

= =  (44) 

Equation (44) provides the value of cs  for the bilinear constitutive law. 
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Figure 17: Magnitude of the bond force f vs bond stretch s  law: (a) elastic brittle material (b) elastic-progressively damaging 

material. 

Using a bilinear constitutive law, one may define the pairwise force function magnitude, f , as 

0

0

(s) 0
(s) (1 )

(s) 0
c

c

f c s s s
f c D s s s s

f s s

= ≤ ≤
 = − < <
 = ≥

 (45) 

in which, D , represents the total damage (sum of the static damage and the fatigue damage) in the bond. 
The damage rates are defined according to the equations shown in section 4.The increment of static damage in a 

bond can be obtained with respect to Equation (18) as follows 

0

0

1 1c
s N N s N

c N N N

s sD D
s s s s+∆

+∆

 
− = − −  

 (46) 

Moreover, similar to the cylinder model, the increment of total damage in each bond for the first fatigue strategy is 
given by (see Equation (22)) 

1

0

0

1 1
1

Dc
N N N

c N N N c

static fatigue

ss s CD D N e
s s s s s

µ

β
λ µ

β

+

+∆
+∆

   
− = − + ∆   − +   

 

 (47) 

where, 

(1 )sN N Ns sµ µ µ +∆= − +  (48) 

Similarly, for the second fatigue law, the total damage of each bond at the end of a load cycle can be obtained as 
(see Equation (24)) 

0

0 0

1 1c N N
N N

c N N N N

s s
D

s s s s
+∆

+∆
+∆ +∆

 
= − −  

 (49) 

Finally, for the third fatigue law, the increment of total damage in each bond, can be written as (see Equation (30)) 
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0

0

1 1 1 ( )
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c N N N
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s s s sD D A N
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′

+∆
+∆
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 (50) 

The damage level in a point x , at cycle number N , can be expressed by 

( )

( )

( , )
( , ) 1

x
H x

x
H x

N dV
N

dV

µ
φ

′

′

= −
∫

∫

ξ
x  (51) 

In Equation (51), φ , indicates the ratio of the number of broken bonds to the total number of bonds originally 
connected to the point x . The damage level, φ , takes a value between 0 and 1, 0 1φ≤ ≤  . 1φ =  means there is no 
interaction between the point and all surrounding points within its horizon, while 0φ =  denotes an undamaged state. 

6.3. Nonlinearity of the system 

The problem becomes nonlinear after the bonds get damaged, therefore, the stiffness matrix of the structure is not 
constant. Various techniques have been used to satisfy the equilibrium in the whole structure. In this paper, the Newton-
Raphson (N-R) method is adapted to solve Equation (37) and update the stiffness matrix in each iteration. 

Using the conventional finite element concept, one is able to write the relationship between external and internal 
forces as follows: 

ext=Ku F  (52) 

in which, K  represents the global stiffness matrix of the structure, u and extF  stand for the nodal displacements and 
external force vector respectively. 

An out of balance force in the whole system is generated due to the nonlinearity of the problem. Therefore, out of 
balance force vector is represented by 

int ext ext= − = −g F F Ku F  (53) 

The equilibrium is satisfied when the norm of g  is lower than a given tolerance. 
According to the Newton-Raphson solution, the derivatives of g with respect to the nodal displacement vector,u , 

have to be calculated as follows 

( )ext
∂ ∂ ∂

= − = +
∂ ∂ ∂

g KKu F K u
u u u

 (54) 

At a given point in which 0=u u , the term 
0

| =

∂
∂ u u

g
u

 stands for the tangent stiffness matrix, TK . One may calculate 

each component of this matrix by 

1
ij

N
im

T ij m
m j

KK K u
u=

∂
= +

∂∑  (55) 

in which, N, represents the total number of degrees of freedom. i and j denote the rows and the columns of the K  and 
TK  respectively. 

In the case that the stretch of a bond exceeds the failure stretch, cs , the bond is removed from the whole structure. 
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6.4. Loading and boundary conditions 

The application of boundary conditions in peridynamics is a significant issue: since integral operators, rather than 
partial differential operators, are used to calculate the peridynamic equilibrium equations, the traction boundary 
conditions should be applied over a volume (Madenci and Oterkus 2014). 

In order to converge to the equilibrium solution, static forces are applied gradually. After static equilibrium is 
satisfied, the fatigue phase initiates in the model, as shown in figure 5(a). 

Numerical models with static damage have been comprehensively investigated in (Zaccariotto et al. 2015a), where 
deformations of the structures have been compared to the exact and FEM numerical solutions. Since the main 
contribution of this work is on the fatigue damage, the authors just present the examples with static and fatigue damage 
to further validate the fatigue degradation strategies in a peridynamic framework. 

6.5. Double cantilever beam peridynamic example 

In order to verify the indications of the cylinder model, a double cantilever beam is simulated with a BBPD code as 
depicted in Figure 18. The beam has the length of 0.0161L =  m and width of 0.0029W =  m. Its Young’s modulus and 
pre-crack length are specified as 70E =  GPa, 0.005a =  m. The applied moment is 0.048 NmaM =  which is sufficient to 
introduce static damage in several bonds during the initial static ramp. Furthermore, based on Equation (44): 20rk = . 

 
Figure 18: Double cantilever beam model discretized with a BBPD software; (a) Initial structure with a pre crack of 0.005a =  m (b) 

Deformed structure after 64 10×  load cycles (a scale factor of 20 has been applied to displacement values). 

Assuming a constant horizon size, 43.75 10Hδ
−= ×  m, and the grid spacing, l∆ , namely /Hm lδ= ∆ , we are able to 

examine the efficiency of each fatigue low by using m -convergence approach, three different values of m and l∆ are 
used as: 2,3,4m = and 4 4 51.8971 10 ,1.25 10 ,9.4298 10l − − −∆ = × × ×  m respectively. In Figure 19, the slope of the lines 
‘crack-length vs number of cycles’ in the third law converge for m values equal to 3 and 4. Due to the fact that 3m =  is 
computationally less expensive than 4m = , 3m =  is employed for the rest of analysis. 
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Figure 19: Slope of the lines ‘crack-length vs number of cycles’ by using fixed values of Hδ  and N∆ ( 43.75 10Hδ

−= ×  and 1000N∆ = ) 
and different m values for the (a) first (b) second and (c) third fatigue laws. 
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This example has been solved using different grid spacing as 56.27 10 ml −∆ = × , 41.06 10 ml −∆ = ×  and 
41.25 10 ml −∆ = × ; and different increments of load cycles, ΔN=1000, 10000 and 50000 for the first and the third 

proposed fatigue laws, in contrast, due to convergence problems we used smaller values of 500, 1000 and 10000 for the 
second fatigue law. (See Table 3). 

Table 3: Ranges of N∆  and l∆  investigated using the first (purple triangle), the second (red square) and the third (green circle) 
fatigue laws 

(m)∆l  ∆N  
 500 1000 10000 50000 

56.27 10−×  ------ ------ ■ ▲● 
41.06 10−×  ■ ▲■● ▲■● ▲● 
41.25 10−×  ■ ▲■● ▲■● ▲● 

 
Assuming a constant parameter, 3m = , one can examine the efficiency of the fatigue laws via Hδ  -convergence 

approach (see Figure 20). The horizon size, Hδ , is reduced and the grid spacing is equal to /Hl mδ∆ =  . 
In this example, the crack length with respect to the number of load cycles, N , is computed by using the three 

fatigue strategies (See Figure 21). 
 

 
Figure 20: Hδ  - Convergence with a fixed m ratio. 
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Figure 21: Number of cycles vs. crack length for different values of Hδ  and N∆ for (a) the first (b) the second and (c) the third 

laws. 

Figure 21 shows the second law to be much more sensitive to parameter variations than the other two: it does not 
work for ΔN= 50000 and for smaller values of ΔN provides results that are clearly more scattered than those produced 
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by third law. Moreover the comparison between Figure 21(a) and 21(b) shows that if the lines in Figure 21(a) obtained 
for ΔN= 50000 are neglected, since there is no equivalent counterpart in Figure 21(b), the results of the second law are 
worse even than those of the first law. Finally comparing Figure 21(a) and 21(c) confirms the findings of the cylinder 
model: the third law is much more stable than the other two and provides very similar values of the slope of the line 
‘crack-length vs number of cycles’ in a reasonably wide range of values of Hδ  and ΔN. 

Additionally, Figure 21 shows that the third fatigue law is less sensitive than the other two to the horizon size, Hδ . 
Both the cylinder model and the DCB discretized with the peridynamic based code confirm that the third law is the 

best of the three considered in the present work because it is more stable with respect to the variations of the 
discretization parameters and it is cheaper from a computational point of view. 

6.6. Experimental validation of the model 

To further validate the presented numerical methods, we simulate a DCB, which is taken from an experimental 
study (Juntti et al. 1999), using BBPD code. Due to the good convergence and high computational speed of the third 
fatigue law which represented in previous sections, hereinafter we only use the third law for the rest of the examples. In 
this example, we investigate the effectiveness of the selected fatigue degradation strategy by comparing with the 
experimental data (Juntti et al. 1999). The specimen used for this simulation is shown in Figure 22. The beam has the 
length of 0.15L =  m, thickness of 0.0031W =  m and width of 0.02B =  m. Its Young’s modulus, Poisson’s ratio and pre-
crack length are specified as 120E =  GPa, 0.3ν =  and 0.035a =  m. Although the specimen is 3D we simplify it into a 2D 
plain strain peridynamic model. The specimen arms are loaded under pure mode I with opposing moments as depicted 
in Figure 2. (This type of loading with constant applied moment, aM , should cause a constant crack growth length so that 
the energy release rate is independent of crack length). Bilinear constitutive law parameters are set as: 260cG =  J/m2 
and 4.38rk = . Moreover, fatigue constant parameters of the fatigue approach are shown in Table 4. 

 
Figure 22: Geometry of the specimen. 

Table 4: Parameters used in the proposed fatigue degradation strategies for the DCB model. 
 Fatigue law  Model specific parameters  

 Third  710 , 4.0A m′ ′= =
 

 

 
The energy release rate under pure mode I for a DCB, is related to the applied moment, aM , as (Mi and Crisfield 

1996) 

2
aMG

B E I
=

 (56) 

Where, I , is the second moment of area of the specimen arm. 
In a log-log graph representing /condX dN vs / cG G , the third fatigue law using 3m =  and 4m = , is able to 

produce the linear part of Paris plot (See Figure 23). 
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Figure 23: Paris plot for mode I with experimental and BBPD numerical results. 

6.7. Center cracked beam with a hole 

In this section, fatigue crack propagation is simulated in a single notched beam with a hole by using the third fatigue 
law (see Figure 24). Experimental data on this test can be found in (Miranda et al. 2003). As shown in Figure 24, the beam 
is loaded in two points at the top and supported in two other points at the bottom. This problem has been solved under 
plain strain conditions with the physical parameters of: 205E = GPa, 0.3ν = , 0.025a = m and 100P =  N. Bilinear 
constitutive law parameters are set as: 51.07 10cG = ×  J/m2, 31.143 10Hδ

−= × , 4m =  and 4.00rk = . Moreover, fatigue 
constant parameters are taken as: 82.1 10′Α = ×  and 4.0m′ = .  

 
Figure 24: Beam with a center crack, loaded in two points and supported in two points. 

The solution domain is discretized with a 106×438 uniform grid of nodes which results in 45,390 nodes. This example 
has been solved up to 56.7 10×  load cycles using 50000N∆ =  cycles. As shown in Figure 25, the crack path grows toward 
the center hole. Moreover, the crack path is in a very good agreement with experimental data in (Miranda et al. 2003). 
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Figure 25: Comparison of the crack paths between numerical results and experimental results. 

7. CONCLUSIONS 

The paper compares three fatigue degradation strategies to be used in the simulation of fatigue crack propagation. 
The adopted constitutive law of the material is bilinear. The increment of damage due to fatigue is added to that due to 
the static increment of the opening displacement and is defined in three different ways. A mathematical cylinder model 
is employed to carry out a reasonable comparison of the computational efficiency of the three fatigue degradation 
strategies. 

Fatigue degradation strategy 1 assumes that the fatigue damage rate is a function of the opening displacement δ 
and of the current value of the total damage D. In fatigue degradation strategy 2 the damage directly affects the critical 
value of the opening displacement δc. Finally, fatigue degradation strategy 3 assumes that the fatigue damage rate is a 
function only of the opening displacement δ. 

Then the three laws are implemented in a code using bond based peridynamics to simulate fatigue crack 
propagation, and the sensitivity of the results to variations of the main discretization parameters is assessed. Both the 
cylinder model and the BBPD code provide the same assessment of the three fatigue degradation strategies. Two main 
conclusions can be obtained by the current work: 

1. The third fatigue degradation strategy is the best, among those investigated, for being used in BBPD codes. 

2. The cylinder model appears to provide reliable indications about the computational performance of the fatigue 
laws. 
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