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Analytical Strain-softening Solutions of a spherical cavity 

ABSTRACT 

This paper deals with a spherical cavity excavated in infinite homogeneous 

and isotropic strain-softening rock mass subjected to a hydrostatic initial 

stresses. By simplifying the strain-softening process of the post-failure 

region as a Multi-step Brittle-Plastic model (MBPM), analytical solutions of 

the spherical cavity are derived with the consideration of the deterioration 

of elastic parameters. Meanwhile, critical deterioration conditions of elastic 

parameters are established theoretically. Both Mohr-Coulomb (M-C) and 

Hoek-Brown (H-B) criteria are included in the analysis. The results are 

compared with those obtained by former numerical methods, and the 

solutions are validated. Moreover, the presented results show that 

deteriorated elastic parameters for post-failure rock mass only has a little 

influence on stresses, softening radius and residual radius, but influences 

the deformation significantly. 
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1. Introduction 

Displacements and stresses distributions are two of the most important information for underground 

engineering, for that it can provide a theoretical foundation for geotechnical engineering optimism design and 

stability evaluation. In past few years, many scholars have developed series of (semi-)analytical and numerical 

solutions for circular openings and spherical cavities. 

Brown et al. firstly obtained the closed-form solution of circular openings in elasto-brittle-plastic Hoek-Brown 

(H-B) medium [1]. Later, more studies were done in this area (e.g., Reed [2]; Ogawa and Lo [3]; Gates [4]; Sharan 

[5,6]; Park and Kim [7]; Yuan and Chen [8]; Jiang et al. [9]; Yu [10]). However, most of those solutions are based on 

the common elasto-perfectly-plastic and elasto-brittle-plastic models, because those solutions can be easily 

obtained using simple mathematical methods. However, most of the geotechnical materials display strain-softening 

behavior in the post-failure region. Therefore, the normally used elasto-perfectly plastic model and elasto-brittle-

plastic model can’t well represent the actual failure process. Brown et al. were the earliest ones to analyze the 

stresses and displacements of circular openings excavated in the strain-softening rock mass. But, the assumption 

of constant elastic strain in the plastic region, which should obey the generalized Hooke's law, leads to a poor 

accuracy of the results. And Wang points out that Brown et al.’s solution is difficult to predict the plastic radius [11]. 

Carranza-Torres and Fairhurst’s solution for H-B rock mass, which is based on the so-called self-similarity of H-B 

criterion, is theoretically rigorous. But, it seems rather complicated for practical use and is applicable only to the 
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elasto-perfectly-plastic case [12]. Alonso et al. presented comprehensive reviews about modeling strain-softening 

behavior while studying ground response curve (GRC) in strain-softening M-C and H-B rock masses by a self-similar 

method, which was regarded as the most rigorous one [13]. Additionally, some researchers proposed the simplified 

model by negative Young’s modulus in the post-failure region, but there is no physical meaning for the negative 

Young’s modulus [14]. Park et al. improved Brown et al.’s solution and presented a numerical differential procedure, 

which is accurately correct [15]. At the same time, Lee and Pietruszczak obtained the displacement and stress 

solutions of circular openings and spherical cavities by gradually relieving the supporting pressure using a finite 

difference numerical procedure [16]. Wang et al. analyzed the strain-softening process of circular openings by semi-

analytical and semi-numerical method [17]. The results obtained by the above methods are in accordance with each 

other. On the basis of the presented approach, Wang et al. also implemented it in a finite element code, which is 

used for solving strain-softening problems [18]. The numerical results seem very satisfactory. 

As we see, all of the solutions for strain-softening rock mass are based on semi-analytical and numerical 

method, no analytical solutions are available. Additionally, most of the indoor and field tests show that material 

properties of rock mass change during the failure process, not only strength parameters but also elastic parameters, 

i.e. Yong’s modulus and Poisson’s ratio. This is the so-called elasto-plastic coupling effect. Generally speaking, the 

effect of Young’s modulus is analyzed in two ways. One is the pressure-dependent Young’s modulus model (PDM) 

in which Young’s modulus depends on the confining pressure or minor principal stress (Kulhawy [19]; Brown et al. 

[20]; Asef and Reddish [21]; Verman et al. [22]; Zhang et al [23]); the other is the radius dependent Young’s modulus 

(RDM) in which Young’s modulus is supposed to be the function of radius (Ewy and Cook [24]; Nawrocki and 

Dusseault [25]). Additionally, under the seepage effects [26-27], the progressive failure process may be more 

significant. However, the two models can hardly be solved with analytical method. Considering the different tensile 

and compressive Young’s modulus, Luo et al. obtained the closed-form solutions of spherical cavities in elasto-

brittle-plastic rock mass [28]. The difficulty of analytical methods for strain-softening rock mass is the coupling 

effect between softening index and material properties. In view of this, the Multi-step Brittle-Plastic model (MBPM) 

is proposed to solve the stress, strain, and displacement in the post-failure region for the spherical cavity. Moreover, 

the deterioration process of elastic parameters and strength parameters are also considered. 

2. Problem description 

2.1. Physical model 

Figure 1 shows a spherical cavity with radius R0 excavated in isotropic rock mass subject to a hydrostatic stress 

field p. The supporting stress σ0 uniformly distributed along the excavation surface. In the present problem, the 

polar coordinate is considered. Then, the spherical cavity turns to be a spherically symmetric problem, in which the 

stresses, strains and displacements in the surrounding rock are only functions of radius r. Moreover, the tangential 

stresses are uniform in each direction, i.e. σθ =σφ. 
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Figure 1. Principle stresses of a spherical cavity 

 

Generally speaking, the post-failure rock mass is composed of two regions. One is the strain-softening region, 

and the other is the residual region. In the residual region, material parameters take the residual value and they are 

constant. But, the material properties vary with the deformation changes in the strain-softening process. Usually, a 

softening index, which is determined by plastic strains, is defined to relate the strength parameters to deformation. 

So, the strain-softening character usually induces difficulties for both analytical and numerical methods. In the case 

where the closed-form solutions of spherical cavities in elasto-brittle-plastic rock mass are available, the strain-

softening problem can be easily deal with MBPM. 

Figure 2 shows the simplified mechanical model for spherical cavities excavated in the strain-softening rock 

mass, and the post-failure rock is divided into k spherical shells. If number k is large enough, each spherical shell 

would be so thin that its material properties can be approximately assumed as uniform. In this way, each spherical 

shell is assumed to be a separate perfectly-plastic material. Moreover, the simplified mechanical model converges 

to the actual strain-softening model with increasing k. 

 

Figure 2. (a) Simplified physical model for a spherical cavity and (b) Simplified mechanical model for a spherical cavity 
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In this paper, the subscript “(i)” is employed to denote the material property parameters and variables of the 

ith shell, and symbol “(·)” denotes the corresponding variable is a function of radius r. The default value of i varies 

from 1 to k. Meanwhile, the compressive stress is supposed to be positive, and the tensile stress to be negative. 

2.2. Yield criteria 

The linear Mohr-Coulomb criterion (M-C) and the non-linear Hoek-Brown criterion (H-B) are commonly used 

in geotechnical engineering. Here, both criteria are employed. 

The linear M-C yield criterion can be written in principle stress space as 

 1 3 1 3, , 0F Y       
 (1a) 

where 1  and 3  are respectively the major and minor principal stress; η is an internal parameter indicating 

the softening process; α=(1+sinφ)/(1-sinφ), Y=2·c·cosφ/(1-sinφ), c and φ, which are functions of η, are cohesion 

and internal friction angle, respectively. 

The nonlinear H-B yield criterion is expressed in the principal stress space as 

  2
1 3 1 3 3, , 0c cF m s           

 (1b) 

where m and s are strength parameters, and they are also functions of η; σc is the uniaxial compressive strength of 

the intact rock. 

3. Stresses and displacements in the elastic region 

3.1. Lame’s solution for the elastic region 

The elastic solution (Lame’s solution) for a spherical cavity with radius Rk, which is excavated in infinite 

homogeneous and isotropic rock mass subjected to hydrostatic initial stress p, can be written in the following form. 
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      
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      
 

     
    (2) 

where σk is the internal pressure of the spherical cavity, and Gk is the shear modulus of the medium. )1( kr , )1( k  

and )1( ku are the radial stress, the tangential stress and radial displacement, respectively. 

3.2. Critical internal pressure σk 

Stress and displacement in the surrounding rock mass depend on the initial stress and internal supporting 

pressure. If the supporting pressure is lower than its critical value, a post-failure region would form around the 

surrounding rock mass. 
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At the interface of the elastic and strain-softening zone, properties of rock mass take the peak value. By 

substituting elastic stress components of Equation (2) at r=Rk into Equation (1), critical supporting pressure for 

M-C rock mass and H-B rock mass can be obtained as follows: 

3 2

2 1
M C k
k

k

p Y


 



 (3a) 

2
2

/
3 3 3

H B k k
k c k c k

m m
p m p s  

             (3b) 

The superscript “M-C” and “H-B” denotes the M-C and H-B rock mass, respectively. Meanwhile, Equation (3) 

denotes the critical supporting pressure is the only function of p and material properties, but independent of radius 

Rk. So, once plastic region forms, the radial stress at the elastic-softening interface can be determined by Equation 

(3). 

Although solutions for elasto-perfectly-plastic and elasto-brittle-plastic models can be easily obtained, 

solutions for softening rock mass can hardly explicitly expressed because of the varying properties. In the next 

section, an efficient approach is proposed for the complicated strain-softening process. 

4. Stresses and displacements in the post-failure region 

As shown in Figure 2(b), the strain-softening process is simplified as multi brittle-plastic steps with uniform 

and isotropic material in each step. The elasto-perfectly plastic analysis, which would be firstly presented in this 

section, is the foundation of a strain-softening process for the proposed analytical method. 

4.1. Theoretical equations 

In each spherical shell, the stresses satisfy the equilibrium equation. If the body force is neglected, it can be 

formulated as 

( ) ( ) ( ) ( )2
0r i r i i id

dr r
     

 
 (4) 

Since ( ) ( )i i    in the present problem, Equation (4) can be rewritten as 

( ) ( ) ( )2 0r i r i id

dr r
  

 
 (5) 

In each spherical shell, the geometric equations can be expressed as 

( ) ( )
( ) ( ) ( ),i i

r i i i

du u

dr r     
 (6) 
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Because of the symmetry of the spherical cavity, the tangential stresses (    ) and radial stress ( r ) are 

the principal stresses, namely, 1       and 3 r  . Then, the yield criteria for the i  th spherical shell 

can be written as 

 ( ) ( ) ( ) ( ) ( ), , 0i i r i i i i r i iF Y         
 (7a) 

for M-C criterion, and 

  2
( ) ( ) ( ) ( ) ( ) ( ), , 0i i r i i i r i i c r i i cF m s            

 (7b) 

for H-B criterion. 

When the yield criteria are satisfied, the nonlinear deformation would occur. In order to get the plastic strain, 

the following plastic potential function is employed. 

( ) ( )i i i r iΦ   
 (8) 

where    1 sin 1 sini i i     , and ψi is the dilation angle. 

Additionally, the stress and displacements of rock mass should be continuous at the interface of adjacent 

spherical shells 

0 (1) 0

( ) ( 1) ( ) ( 1)

, ( )

, ( )

r

i r i r i r i r i

r R

r R u u

 

   

  
   ，

 (9) 

4.2. Stress in each post-failure shell 

By submitting Equation (7a) into equilibrium Equation (5), the differential equation of radial stress ( )r i  can 

be obtained. By solving the differential equation and using boundary conditions of Equation (9), the stresses in the 

surrounding rock mass can be formulated as 

 
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   
   (10) 

where 1
M C M C
i i iA B 

  , cotM C
i i iB C   , and 1i  is the radial stress at r=Ri-1, i.e. 

11 ( 1) |
ii r i r R 
   . 

In the same way, when H-B yield criterion is considered, the stresses in each spherical shell can be formulated 

as 
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   

    
  (11) 

where 
/ 4H B

i i cA m 
, 2

1
H B
i i c i i cB m s  

  . 

4.3 Displacement in each post-failure shell 

The total strain is composed of elastic strain and plastic strain, and it can be written as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

e p
r i r i r i

e p
i i i

e p
i i i

  

  

  

  

  

  
  


   (12) 

By means of Equation (8) and Equation (12), the plastic components of the radial strain and tangential strain 

can be related by 

( ) ( )2 0p p
r i i i  

 (13) 

Substitutions of Equation (6) into Equation (12) and then into Equation (13) result in the compatibility 

function for radial displacement. 

( ) ( )2 ( )i i
i i

du u
f r

dr r
 

 (14) 

where 
  ( ) ( )2e e

i r i i if r   
. 

The radial displacement at the elasto-plastic interface can be determined by Equation (2), i.e. ( 1) |
kk k r Ru u   . 

For the ith shell, if the displacement at outer radius is known as ui, the displacement of the differential Equation 

(14) can be obtained. 

 
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( ) 2

1 i
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i i
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i i iR
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r r



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    
 

 (15) 

The elastic strain is supposed to obey the generalized Hooke’s law. Considering the symmetry of this problem, 

the elastic strains induced by excavation can be expressed as 

( ) ( ) ( )

( ) ( ) ( )

1+
[(1 )( ) ( )]

1+
[(1 )( ) ( )]

e i
r i i r i i i

i

e i
i i i r i
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 
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     

     
  (16) 
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where E is Young’s modulus. 

Then the function  if r  in Equation (14) can be rewritten as 

       ( ) ( )

1
1 2 2i i i r i i i i i i

i

f r p p
E                

 (17) 

Using Equation (10) in the ith spherical shell, the function fi(r) can be expressed as 

     2 1

1 2 1

1
/ iM C M C

i i i i
i

f r D D r R
E

  


   
 (18) 

where 
     1 1 2 1 2M C M C

i i i iD B p     
,

   2 11 2 2M C M C
i i i i i i i i iD A       

       . 

Substituting Equation (11) and Equation (16) into Equation (17), function fi(r) for H-B criterion can be 

expressed as 

  2
1 2 3

1 1

1
ln lnH B H B H B

i i i i
i i i

r r
f r D D D

E R R
  

 

    
      

      (19) 

where 
     1 2 1 2 1 2H B H B

i i i i i i i i riD B p             
, 

     2 2 1 2 1 2 8H B H B H B
i i i i i i i i iD B A            

, 
  3 4 1 2 1 2H B H B

i i i iD A    
. 

Then, substitution of Equations (18) and (19) into Equation (15), respectively and integral manipulation, 

displacement for the ith spherical shell for both M-C and H-B rock mass can be written in a compact way as follows. 

            2
( ) 1 1 2 2 3 3 1 1 2 2 3 32
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        
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 

2 1
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3 2
1 1

2 2
ln ln

2 1 2 1 2 1

i
H B

i i i i i

r r r
f r

R R



  




 

    
             

. 

5. Calculation of spherical shell radii 

5.1. Evolution of material parameters 

Whether material parameters changes with internal variables or not is the main difference between strain-

softening model and elasto(-brittle)-plastic model. In strain-softening rock mass, material parameters evolve as 

deformation continues in the post-peak region. Different rock mass should have different strength evolution law. 

C.D. Martin proposed the cohesion weakening- frictional strengthening model (CWFS), in which cohesion weakens 

and frictional strength increases with the accumulation of deformation [29]. The wave velocity tests show that 

elastic modulus and Poisson’s ratio also change with deformation. In reality, the evolution law of rock mass can be 
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obtained through loading-unloading tests in the laboratory. For simplicity, a linear deterioration process of material 

properties is considered as shown in Equation (21). 

( ) (1) *
( ) ( ) ( )*

( )

*
(1) ( )

, 0k
k i i

i

i

w w
w

w

w

  


 


   

   (21) 

where w(i) represents any one of the material parameters, such as strength parameters of c, φ, m, s and deformation 

parameters of E, μ, ψ; w(k) and w(1) are the peak and residual value, respectively; ( ) ( ) ( )
p p

i i r i     is the shear 

plastic strain, and 
 is the critical shear plastic strain. 

In view of the assumption of uniform properties in each spherical shell, the real evolution law of material 

properties can be expressed by staircase linear functions, as shown in Figure 3. 

 

Figure 3. Evolution of material properties 

 

In this way, Equation (21) can be rewritten as 

*1
*

*
1

, 0k
k i i

i

i

w w
w

w

w

  


 

    
   (22) 

where wi is any of the rock mass property parameters with a predetermined value, and it’s corresponding to the 

shear plastic strain ηi. ηi is the shear plastic strain of representation point in the ith spherical shell, which will be 

described in the following sub-section. 

5.2. Compatibility conditions of material property parameters 

In section 4, stresses and displacement are derived with the hypothesis that rock mass properties are assumed 

to be constant values for each spherical shell. Theoretically speaking, material properties in each spherical shell are 

probably different because shear plastic strain varies. Here three representative points located at the outer point 
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(A1), middle point (A2) and inner point (A3) are considered as shown in Figure 4. Shear plastic strain at any one of 

the representative points can be used to determine wi in Equation (22). 

1
3






 

Figure 4. Three kinds of representation point 

 

Later, we will show that the spherical shell is so thin that the numerical results are the same for any one of the 

three representative points when the number of a spherical shell is large enough. 

For M-C rock mass, the compatibility conditions are formulated by Equations (23), (24) and (25) for points A1, 

A2 and A3, respectively. 

Case 1: In this case, rock mass properties are determined by shear plastic strain at the outer point in the ith 

shell, namely point A1 shown in Figure 4, ( ) |
ii r R i   . By means of Equations (6), (10) and (16) the compatibility 

condition can be obtained 
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 (23) 

where 
 2 2 1

i i i
i i

i i i
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
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 
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i i i i i i i i i iM B                , 1/ kE E   is Young’s modulus deteriorated 

coefficient. 

Case 2: If the property parameters of the ith spherical shell are determined by the shear plastic strain at the 

middle point, (point A2 shown in Figure 4), 
1( ) ( )/2|

i ii r R R i 
   . By means of Equations (6), (10) and (16) the 

compatibility condition can be written as 
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where 

  i 2 2 1
M Ci

i i i i i i
i i

M
T B    

 
    

 
. 

Case 3: In the same way, the compatibility conditions corresponding to point A3, i.e. 
1( ) |

ii r R i 
  , can be 

formulated as 
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For H-B rock mass, the compatibility condition can be obtained in the same way. Equations (26), (27) and (28) 

are the proposed three kinds of compatibility conditions corresponding to representative points of A1, A2 and A3, 

respectively. 

Case 1: 
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Case 2: 
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where 1/2i   is the radial stress at r=(Ri-1+Ri)/2. 

Case 3: 
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5.3. Calculation of spherical shell radii 

As shown in sub-section 5.2, any one of the compatibility conditions (Equations (23) ~ (28)) is functions of 

spherical shell radii. When the rock mass outside the spherical cavity is divided into k shells, there will be a k-order 

nonlinear equation about spherical shell radii. Although the radii can be calculated using the Newton method 

theoretically, the difficulty will arise because of coupling effect between stress, displacements and property 

parameters. Therefore, an efficient calculation method was proposed in the following way: 
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● Firstly, the radius Rk of the elastic region is predetermined and it is used as an input. So, the radial stress k  

and displacement ku  can be calculated using Equations (2) and (20). 

● Then, the inner radius Rk-1, together with the radial stress 1k   and displacement 1ku   of the kth shell can 

be obtained. In the same way, the rest radii of spherical shells can be calculated until the first shell radius of R1. 

● Finally, we can calculate the needed supporting pressure 0
cal corresponding to predetermined softening 

radius Rk using the stress expression in the first shell. If the calculated supporting pressure equals to the actual 

supporting pressure 0 , the radii for spherical shells would be absolutely correct; if 0 0
cal  , it means the 

elasto-softening radius Rk is less than real value, and vice versa. 

The above process is looped and the radius Rk is updated using the secant method until the tolerance between 

0  and 0
cal  is significantly small. The lower and upper radius of Rk can be determined by elasto-perfect-plastic 

and elasto-brittle-plastic solutions, respectively. 

6. Restrictive condition in the post-failure region 

Both strength weakening and elastic parameter deterioration are taken into account in this study. Generally 

speaking, the irrecoverable part of the displacement never decreases while the deformation increases in the post-

peak region. Therefore, strength parameters and elastic parameters in the post-failure region should obey the 

general rule. 

Figure 5 shows the unloading path in the post-failure region with the various deterioration of Young’s modulus. 

Three kinds of unloading path are shown. L1 is an unloading path from point C1, and L2 and L3 are the unloading 

paths from point C2. They are corresponding to plastic strains (shear plastic strains) 1
p ( 1

p ), 2
p ( 2

p ) and 3
p

( 3
p ). If the unloading path from point C2 is L3, this means that the plastic strain at point C2 is smaller than that at 

point C1 and that the plastic strain will decrease as the deformation goes on. It is not true in reality. 
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Figure 5. Unloading path of post-failure rock mass 

 

Moreover, it may be zero or negative when the deformation parameters, such as Young’s modulus, Poisson’s 

ratio and dilatancy angle, satisfy certain conditions. So, this would violate the basic theory of continuum medium. 

As described in the former paper [30], the MBPM supposes that the rock mass experiences elasto-perfectly-

plastic deformation and brittle-failure in each spherical shell. The material deterioration process only occurs in the 

brittle-failure process. The restrictive condition is set up based on the above explanations. It means the shear plastic 

strain at point C2 should be no less than that at point C1. The restrictive condition can be written as 

0i 
 (29) 

where i  is the increment of shear plastic strain at r=Ri while a brittle failure occurs. 

6.1. Restrictive condition for M-C rock mass 

At the interface (r=Rk) between the elastic region and plastic region, stresses satisfy the continuum equation, 

0k  . On the other interfaces, the increment of shear plastic strain between (i+1)th and ith shells can be 

obtained using the Equation (6) and generalized Hooke's law. 
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 (i=1…k-1) (30) 

6.2. Restrictive condition for H-B rock mass 

In the same way, the increments of shear plastic strain between the adjacent spherical shells can be formulated 

as 
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7. Analysis of examples 

7.1. Convergence of the proposed solutions 

Although the analytical solutions have been derived, the radii of spherical shells should be calculated with the 

numerical method as described in subsection 5.3. Usually, a different number (k) leads to different results. So before 

detailed analysis, the convergence is tested for determining the reasonable divided number of the post-failure 

region. In this sub-section, solutions of representing point A2 and η*=0.025 is considered for strain-softening M-C 

and H-B rock mass. Figure 6 and Figure 7 shows the dimensionless displacements curve with different numbers of 

post-failure regions for M-C and H-B rock mass, respectively. The relative error Abs(A-B)/B×100% between A and 

B is used to quantitatively analyze the convergence. Moreover, four kinds conditions with k=5, 10, 20 and 50 are 

considered. 
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Figure 6. Convergence of dimensionless displacement in strain-softening region for M–C rock mass 
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Figure 7. Convergence of dimensionless displacement in strain-softening region for H–B rock mass 
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For M-C rock mass, Figure 6 shows the dimensionless displacement 4uGk/[R0(p-σk)]=55.72 for k=5 and 

4uG/[R0(p-σk)]=56.68 for k=50 at the excavation surface when supporting pressure σ0=0. The relative error of 

dimensionless displacement between k=5 and k=50 is 1.69%. For H-B rock mass, Figure 7 shows the dimensionless 

displacements are 4uGk/[R0(p-σk)]=18.15 for k=5 and 4uGk/[R0(p-σk)]=18.75 for k=50. And the relative error of 

dimensionless displacement between k=5 and k=50 is 3.31%. The tolerance is thought to be acceptable and k=50 

is taken in the following analysis. 

7.2. Consistency test of three compatibility conditions 

There is a unique solution for the proposed problem. And the solutions of three compatibility conditions 

should theoretically converge to the unique solution when k is large enough. So, the consistency test of three kinds 

of compatibility conditions is performed. Also, the critical shear plastic strain η*=0.025 and k=50 is considered. 

Figures 8 and 9 show the dimensionless displacements for M-C and H-B rock mass, respectively. As we can see, 

dimensionless displacements obtained from the three representative points are of the same distribution. The 

maximum relative errors occur at the excavation surface. The maximum errors of dimensionless displacement 

between represent point A1 and A3 are 4.28% and 6.11% for M-C and H-B rock mass, respectively. We can imagine 

that the relative error will decrease with the increase of k. When the number of post-failure regions is large enough, 

the results of three representative points would converge. In the following, representative point A2 is chosen for 

the further analysis. 

 

 

Figure 8. Consistency of compatibility conditions for strain-softening M-C rock mass 
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Figure 9. Consistency of compatibility conditions for strain-softening H-B rock mass 

7.3. Validation for strain-softening rock mass 

Several of critical shear plastic strains η* are considered for the stain-softening rock mass. The residual region, 

plastic region and displacement with different shear plastic strain is illustrated in Figures 10-15. Figures 10, 11 and 

12 are for M-C strain-softening rock mass and Figures 13, 14 and 15 for H-B strain-softening rock mass. 

 

Figure 10. Ground reaction curves for strain-softening M-C rock mass 
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Figure 11. Evolution of softening radii for strain-softening M-C rock mass 

 

 

Figure 12. Evolution of residual radii for strain-softening M-C rock mass 
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Figure 13. Ground reaction curves for strain-softening H-B rock mass 

 

Figure 14. Evolution of softening radii for strain-softening H-B rock mass 
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Figure 15. Evolution of residual radii for strain-softening H-B rock mass 

 

Elasto-perfectly-plastic model and elasto-brittle- plastic model are extreme cases of coupling strain-softening 

rock mass. When η*=0, the proposed model become the classic elasto-brittle-plastic model, and when η*→∞, it will 

change into the elasto-perfectly-plastic model. 

For the M-C rock mass, the critical internal pressure σk=4.91MPa (σk/σ0=0.196). Figure 10 shows the 

dimensionless displacement with various internal supporting pressure, and Figures 11 and 12 show the softening 

radius Rk and residual radius R1 evolution as internal pressure decrease from critical value to zero. When η*=2, the 

softening radius Rk and dimensionless displacement (u/R0)4Gk/(p-σk) of excavation surface reaches the smallest 

value. Rk/R0=1.20 and (u/R0)4Gk/(p-σk)=3.93. When η*=1.25e-5, the softening radius Rk/R0=1.88 and 

dimensionless displacement (u/R0)4Gk/(p-σk)=126.24, the softening radius and radial displacement of excavation 

surface reach the maximum. 

Figure 10 also shows that the dimensionless displacement overlaps with the elasto-brittle-plastic solution 

when η* takes the value of 1.25e-5 and that it overlaps with the elasto-perfectly-plastic solution when η* takes the 

value of 2.0. Figure 12 shows that there would be no residual region occurs when η* increase to a certain value. 

For H-B rock mass, the critical internal pressure σk=6.45MPa (σk/σ0=0.258). The softening radius Rk, residual 

radius R1 and cavity wall displacement change with the supporting pressure, which has the same trend as those for 

M-C rock mass. 

The results shown in Figures 10~15 indicate that the proposed analytical method is in excellent agreement 

with the numerical method by Wang [31].  
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7.4. Influence of elastic parameters in the post-failure region 

The linear distribution form of elastic parameters is assumed, and ζE=E1/Ek and ζμ=μ1/μk are employed to 

denote the deterioration degree of Young’s modulus and Poisson’s ratio in the residual region. Restrictive condition 

Equations (33-35) show that the critical value of elastic parameters also related to its strength characters in the 

post-failure region. The smallest elastic parameters tend to nil because of the poor strength character. In this part, 

the influence of Young’s modulus and Poisson’s ratio on stress and displacement of surrounding rock mass are 

studied separately. That is to say, the deterioration coefficient of Young’s modulus is set to be 1 when Poisson’s 

ratio is studied, and vice versa. Besides of the condition of ζE=ζμ=1.0, another two sets of deteriorated elastic 

parameters ζE= ζμ=0.3 and 0.5 are employed to study its influence on stress and displacement. When case 3 are 

considered, the influence of elastic parameters on displacement and plastic radius are shown in Table 1 and Figures 

16~19. 

 

Table 1. Calculated results with different deterioration degree of elastic parameters 

Rock 

mass 
ζ 

R1/R0 Rk/R0 (u/R0)4Gk/(p-σk) 

ζE ζμ ζE ζμ ζE ζμ 

M-C 

0.3 1.56 1.52 1.73 1.73 111.36 82.97 

0.5 1.50 1.50 1.72 1.72 79.95 74.89 

1.0 1.44 1.44 1.69 1.69 56.68 56.68 

H-B 

0.3 1.33 1.30 1.53 1.52 38.44 29.97 

0.5 1.28 1.28 1.50 1.51 26.93 26.33 

1.0 1.22 1.22 1.47 1.47 18.75 18.75 

 

Figure 16. Influence of Young's modulus on dimensionless displacements for M-C rock mass 
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Figure 17. Influence of poisson ratio on dimensionless displacements for M-C rock mass 

 

 

Figure 18. Influence of Young's modulus on dimensionless displacements for H-B rock mass 
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Figure 19. Influence of poisson ratio on dimensionless displacements for H-B rock mass 

 

The results indicate that softening radius, residual radius and dimensionless displacement at r=R0 increase 

with the increasing deteriorated degree of Young’s modulus and Poisson’s ratio. In fact, the Poisson’s ratio of failure 

rock mass increases, which leads to a decreasing plastic radius and displacement. For the M-C rock mass, the 

residual radius, plastic radius and displacement at excavation surface increase by 8.33%, 2.37% and 96.47% when 

ζE decreases to 0.3, and that of 5.56%, 2.37% and 46.39% corresponds to ζμ=0.3. For the H-B rock mass, R1/R0, 

Rk/R0 and (u0/R0)4Gk/(p-σk) increase by 9.02%, 4.08% and 105.01% when ζE decreases from 1.0 to 0.3. Meanwhile, 

while ζμ decreases from 1.0 to 0.3, R1/R0, Rk/R0 and (u0/R0)4Gk/(p-σk) increase by6.58%, 3.40% and 59.84%. 

Clearly, the influence of Young’s modulus and Poisson’s ratio affect the residual and plastic radius slightly with a 

percentage less than 10%. However, the displacement increases more than 45%, with a maximum value of 105%. 

Thus, the elastic parameters mainly enlarge the displacement of surrounding rock. 

8. Conclusions 

In this paper, analytical solutions for a spherical cavity problem subject to hydrostatic initial stresses in strain-

softening M-C and H-B rock mass were proposed by simplifying the strain-softening rock mass as a multi-step 

brittle plastic spherical shell. Meanwhile, the deterioration process of elastic parameters (Young’s modulus and 

Poisson’s ratio) was also considered. The closed-form solutions for elasto-perfectly-plastic rock mass were firstly 

derived. Then, using the continuum conditions between adjacent shells, the compatibility equations for obtaining 

the shell radii were presented and they can be solved with a simple and efficient method. Meanwhile, the restrictive 

condition in the post-failure region was proposed theoretically considering the deteriorated limitation. Finally, the 

proposed solutions were validated with two sets of the strain-softening rock mass and the proposed analytical 

solution is in excellent agreement with the former study. The results also show the strain-softening solutions 
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respectively converge to an elasto-perfectly-plastic solution and elasto-brittle-plastic solution when critical shear 

plastic strain is big enough and zero. 

The influence of elastic parameters was also analyzed. The results show deteriorated Young’s modulus 

decrease residual radius, softening radius and displacement in the surrounding rock. The change of residual and 

softening radii is little, but the change of displacement is significant. However, increasing Poisson’s ratio has the 

opposite influence. Moreover, the restrictive conditions can be used to check whether the data from indoor and 

field tests are correct. 
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