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Dynamic analysis of gun barrel vibrations due to effect of an unbal-
anced projectile considering 2-D transverse displacements of barrel tip 

using a 3-D element technique 

Abstract 
In this paper, dynamic analysis of two different weapon systems (35 mm 
Anti-Aircraft Barrel (AAB) and 120 mm Grooved Tank Barrel (GTB)) under 
the effect of statically unbalanced projectile has been performed with a new 
12 DOF 3-D element technique using Finite Element Method (FEM). The 
muzzle deviations, which negatively affect the barrel shooting accuracy at 
firing, are calculated in a time dependent manner using Newmark β algo-
rithm with high accuracy at both axes (y and z) considering the Coriolis cen-
tripedal and centrifugal forces. The effect of such fundamental physical pa-
rameters as shift from rotating center and angular velocity belonging to the 
unbalanced projectile on barrel dynamics are analyzed with this new and 
affective FEM. As a result, it was found out that 1% of a millimeter shift from 
projectile belonging to a weapon system leads to excessive vibration on both 
axes and compromises the shooting accuracy of the barrel. 

Keywords 
Vibration of gun barrels, FEM, 2-D vibration, 3-D element, unbalanced pro-
jectile, fire accuracy, weapons. 

 

1 INTRODUCTION 

Dynamic analysis of engineering structures under the effect of moving loads is a fundamental issue in several 
branches, especially defense industry, transportation systems, manufacturing industry and machine design, and 
has been studied by many researchers. Some studies which dealt with the analysis of dynamic behaviors of struc-
tures under the effect of moving loads are given in (L. Fryba, 1999; Oguamanam and Hansen, 1998). The study 
which analyses the dynamic behavior of Timoshenko beam under the effect of moving loads can be found in (Lee, 
1996; T. V. Lien et al., 2017). The FEM studies which took the moving load on structures as a moving mass model 
as a result of which are conducted considering the inertia, Coriolis and centripetal forces of the moving mass are 
given in (Bajer and Dyniewicz, 2009; Dehestani et al., 2009; Esen, 2017, 2011, 2015, 2013; Kahya, 2012; Wu et al., 
2000). Inertia effect of moving load is an essential point in bridge dynamics, railed system transportation and the 
design of high-velocity processing tools which is examined in detail in studies (Dehestani et al., 2009; Michaltsos, 
2002; Michaltsos et al., 1996). The final solutions of moving mass problems has been made easier by using com-
puter technology, and an effort for comparing the dynamic answer of a simply supported beam using different nu-
merical methods is given in (Bulut and Kelesoglu, 2010). One of the important application fields of moving load 
problems is vehicle-bridge interaction (VBA) and a study which handles the interaction between a semi-vehicle 
model with six freedom degrees with passenger and driver seats and a simply supported bridge beam with normal 
section in terms of passenger comfort is given in (Esmailzadeh and Jalili, 2003). Other studies on VBA are given in 
(Koç and Esen, 2017; S. Talukdar and Lalthlamuana, 2016; Wyss et al., 2011). 

Another important application field of moving load problems is defense industry where it is widely used in 
determining the barrel vibrations caused by the interaction between the barrel and moving projectile. Some studies 
modelled using FEM are given in (Esen and Koç, 2015a, 2015b, 2013; Koç et al., 2016) which deal with the dynamic 
interaction between barrel and projectile. The upside and downside movement of the barrel tip caused by the 
movement of projectile in the barrel has a negative effect on the shooting accuracy of the weapon system (Gimm et 
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al., 2012; Littlefield et al., 2002b). The researcher has studied the eight degree of freedom model of a weapon system 
with its body, and analyzed the vibration of its barrel (Balla, 2011). Effect of stepped barrels on the stability and 
the dynamics of barrels have been investigated by (Tawfik, 2008). A study where an ABAQUS finite element model 
was created in order to model the interaction between projectile and the barrel in a 155 mm developed weapon 
system and the results are compared to experimental work is given in (Alexander, 2007; Ding et al., 2017). A com-
prehensive literature study conducted with the purpose of modelling and controlling the vibration of main battle 
tanks can be found in (Dursun et al., 2017). Researchers (Kathe, 1997) have studied the dynamics of barrels and 
pro- posed a muzzle-brake for reducing the tip-deflection of a 120 mm-cannon-barrel. It was reported that, the 
muzzle-brake, working as a passive vibration absorber, could reduce the deflection of the barrel by about half. Other 
studies on reducing the barrel vibrations caused by the interaction between barrel and projectile can be found in 
(Esen and Koç, 2015b; Hua et al., 2015). 

When the studies conducted on interaction between barrel and projectile are examined, it can be seen that 
studying the effect of unbalanced projectile on barrel vibrations ranks among the top topics examined by scientists 
in terms of static and dynamic. A study which examined the transverse vibrations of barrel tip for a sports rifle 
barrel under the effect of unbalanced projectile both in static and dynamic terms is given in (Vitek, 2009). The study 
contains a two-dimensional mathematical model with the purpose of showing the effect of unbalanced projectile 
on barrel vibrations. However, there is need for a more comprehensive, three-dimensional model in order to ana-
lyze the barrel vibrations under the effect of unbalanced projectile as the centrifugal force which affects the barrel 
by means of the unbalanced projectile which progresses inside the barrel by making both rotating and extrapolation 
movements will have components in two different directions. In this case, there is need to develop a three-dimen-
sional mathematical model in order to examine the shooting accuracy of weapon barrel. 

In this study, the effect of statically unbalanced projectile on barrel shooting accuracy for two different weapon 
systems such as 35 mm AAB and 120 mm GTB has been analysed using a special programme prepared in MATLAB 
commercial software, which is a new three-dimensional finite elements technique. In the study, displacements and 
accelerations at barrel-tip were obtained with high time dependent accuracy in both axes. The effect of basic phys-
ical parameters such as axis shift of statically unbalanced projectile on barrel vibrations has been comprehensively 
studied. 

2 MATHEMATICAL MODELLING 

2.1 Problem Definition 

Projectiles belonging to weapon systems usually are symmetrical in their axis. However, seldom the central 
inertia principal axis can be shifted at a certain distance from the geometrical central axis. The reason of this asym-
metry which can be witnessed in projectiles can be explained by manufacturing tolerances, damages that occur 
during rough graining, the lack of homogeneity of the material, and changes during the study (abrasion, corrosion, 
thermal expansion etc.). The unbalance, which occurs due to this asymmetry in projectiles, is evaluated in two 
groups. The first one is static unbalance, which occurs when the central inertia principal axis of the center of gravity 
of projectile is parallel to but not overlapping with the geometric central axis. The second is dynamic unbalance 
which occurs when these two axes are not parallel to each other. In this paper, the effect of unbalanced projectile 
on the shooting accuracy of barrel has been examined. Figures 1a and 1b gives the front and rear images of a stati-
cally unbalanced projectile. As seen in the Figure 1b, centrifugal force has two components in directions y and z. 
The component y is in the same direction with center of gravity. Its orientation is identical or contrary to the center 
of gravity during the movement of projectile in the barrel. The force component of centrifugal force in z direction 
causes the barrel to vibrate in the y direction as well. A projectile which is fully balanced in static and dynamic 
terms suffers from deviation in barrel tip in the direction of center of gravity whereas a projectile which is unbal-
anced in static or dynamic terms leads to deviation at barrel tip in both directions. 
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Figure 1: The statically unbalanced projectile a-) side view b-) rear view. 

 

2.2 Finite element equation of a barrel element under an accelerating statically unbalanced projectile 

For the interaction of an accelerating statically unbalanced projectile with the mass mp and the barrel, a 
clamped-free cantilevered Euler-Bernoulli beam shown in Figure 2 is considered. The projectile moves from the 
left end of barrel to the right end with a variable velocity v(t), and a constant acceleration ac. Figure 3 shows mesh 
discretion of the barrel-beam under accelerating projectile and absorber, while Figure 4 shows the sth beam ele-
ment over which the projectile mp passes at time t. The kth barrel element that interacts with projectile has six 
equivalent nodal forces as well as displacements at each nodal point. The time dependent global position of the 
projectile inside the barrel is represented by xp(t). The time dependent local position of the projectile inside the 
finite element is expressed with xm(t). Barrel beam has n number of elements and n+1 nodes. 

While the barrel under the effect of statically unbalanced projectile is vibrating in transversal (y,z) and longi-
tudinal (x) directions, time dependent dynamic forces occur between projectile and the barrel, which are expressed 
as follows considering the transversal and vertical deformations (wy (x,t), wz (x,t)) that occur at the contact point 
(x) of the projectile on the barrel. 
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Figure 2:  Physical model of barrel-projectile interaction. 
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The expressions fx(x,t), fy(x,t) and fz(x,t) in the Eqs. (1a-c) represent the axial, vertical and transversal forces 
that affect the barrel by projectile at x point in t time inside the barrel respectively. The expressions δ(x-xp) and g 
respectively indicate Direc-delta function and gravity acceleration. The rotating moment Mx(x,t) created by the un-
balanced projectile around the barrel axis (x) which progresses by rotating with fixed acceleration angular velocity 
ω(t) inside the grooved barrel is expressed as follows: 

 
Figure 3: Modelling of the barrel and projectile interaction using 3-D FEM discretion of the barrel system 

 

 
Figure 4: 3-D barrel element s over which the projectile mp passes at time t. 
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Parameters θx(x,t) and Ip given in Eq. (2) represent the mass inertia moment of projectile which shows turning 
and extrapolation movement at that point and the angular deformation which occurred in the barrel at x position 
in t time. The time dependent position, velocity and acceleration of unbalanced projectile inside the barrel is ex-
pressed as follows: 
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 (3) 

x0 and v0 in Eq. (3) respectively represent the initial position of unbalanced projectile at the beginning of anal-
ysis (at r=0) and the initial velocity. ac and αc respectively represent the linear and angular fixed acceleration of 
unbalanced projectile. The inertia effects that emerge along vertical (y) and transversal (z) axes during the move-
ment of unbalanced projectile inside the barrel, namely d2wy(xp,t)/dt2, d2wz(xp,t)/dt2, are calculated by taking sec-
ond-degree derivatives of wy(xp,t) and wz(xp,t) which are barrel dent expressions in the stated directions according 
to time: 
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Taking into consideration the one given by Eq. (3), the acceleration expression given by Eq. (4) is written for 
accelerated and decelerated movements as follows: 
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Eqs. (5a-b) is written as follows: 
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 The expressions “ ′ ” and “ . ” in Eqs. (6a-b) respectively represent the position-bound and time dependent 
derivatives of the displacement function. The expressions wy(xp,t) and wz(xp,t) respectively represent the vertical 
and transversal displacement of the barrel at t time at x point. Parameter θx(xp,t) represents the angular defor-
mation of the barrel at xp position. In this case, expressions (1a-c) are expressed as follows: 
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 (𝑖 = 𝑦, 𝑧) and 2𝑚௣(𝑣଴ + 𝑎௖𝑡)�̇�௜

′
 respectively 

represent the inertia, centripetal and Coriolis forces. Parameters 𝑚௣𝜔ଶ𝑟 sin 𝜃 and 𝑚௣𝜔ଶ𝑟 cos 𝜃 represent the com-

ponents of the centrifugal force of projectile which progresses with both extrapolation and rotation movement in 
respectively y and z directions. In addition, the expression mg represents the weight force of the unbalanced pro-
jectile vertical to axis x.  

Using the expression given with Eq. (6b), the moment expression of Eq. (2) is written as follows: 
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Under the effect of the displacement of the accelerating projectile, the equivalent nodal forces of the kth barrel 
element can be expressed as follows: 
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where Ni (i=1-12) is the hermite shape function of the beam element, as shown below Clough and Penzien (2003) 
(Clough R.W; Penzien J., 2003): 
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The length of the element is l and xm(t) is the variable distance between the accelerating projectile and the left 
end of the kth element at time t as shown in Figure 3. The relationships between the shape functions and the trans-
verse and longitudinal deflection functions and the nodal displacements of the kth element at position xm(t) at time 
t are as follows Clough and Penzien (2003) (Clough R.W; Penzien J., 2003): 

 

 

 

 

1 1 7 2

2 1 6 1 8 2 12 2

3 1 5 1 9 2 11 2

4 1 10 2

,

,

,

,

x

y z z

z y y

x x x

w x t N u N u

w x t N v N N v N

w x t N w N N w N

w x t N N

 

 

 

 

   

   

 
 (11) 

When the displacement functions given in Eq. (11) are derived according to time and location, they are entered 
in Eqs. (9a-d) to obtain the following expressions: 
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The expressions given in Eqs. (12a-d) are written in the form of a matrix as follows: 

       ,f m u c u k u                  
 (13) 

The parameters given in the expression in Eqs. (13) as regards mass, damping and pertinacity matrixes be-
longing to the unbalanced projectile ([m], [c], [k]) are given in additional Appendix A. In addition, the displacement, 
displacement velocity and acceleration vectors in contact with the unbalanced projectile ({𝑢}, {�̇�}, {�̈�}) are ex-
pressed as follows: 

  1 1 1 1 1 1 2 2 2 2 2 2 ,
T

x y z x y zu u v w u v w           (14a) 

  1 1 1 1 1 1 2 2 2 2 2 2 ,
T

x y z x y zu u v w u v w         
          

 (14b) 

  1 1 1 1 1 1 2 2 2 2 2 2 ,
T

x y z x y zu u v w u v w         
          

 (14c) 

  1 2 3 4 5 6 7 8 9 10 11 12  ,  
T

f f f f f f f f f f f f f      (14d) 
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2.3 The time dependent motion equation of the barrel and projectile system 

The motion equation for the system with multiple degrees of freedom including the barrel and accelerating 
projectile is expressed as follows: 

ˆ ˆ ˆ ˆ[ ( )]{ ( )} [ ( )]{ ( )} [ ( )]{ ( )} { ( )}M t z t C t z t K t z t F t   
 (15) 

Where  ൣ𝑀෡൧, ൣ𝐶መ൧, ൣ𝐾෡൧ are respectively the instantaneous mass, damping, and stiffness matrices of the entire system’s 

in global coordinate plane. Furthermore,{�̈�(𝑡)}, {�̇�(𝑡)} 𝑎𝑛𝑑 {𝑧(𝑡)} are, respectively, the acceleration, velocity, and 
displacement vectors of the barrel nodal points on the global coordinate axis. Besides ൛𝐹෠(𝑡)ൟ  is the overall external 

force vector of the system at time t.  

2.4 The mass and stiffness matrices of the barrel and projectile system under unbalanced projectile 

The elemental mass and stiffness matrices Ke and Me of the each beam elements of the barrel can be obtained 
using the classical FEM that are widely explained in literature., ie. (Cifuentes, 1989). When there is an accelerating 
projectile the mass and stiffness matrices of the projectile, [m] and [k] are summed with the mass and stiffness 
matrices M and K by taking into account the inertial and centripetal effects. In this case the instantaneous overall 
stiffness and mass matrices, which are nxn in size, are: 

ˆ  ( , =1- )
ˆ   ( , =1- )
ij ij

ij ij

M M i j n
K K i j n




 (16) 

Except for the kth element; 

, ,s

, ,k

ˆ       ( , 1,.....,12)
ˆ    ( , 1,.....,12)
si sj si j ij

si sj ki j ij

K K k i j
M M m i j

  
  

 (17) 

In this context, n represents the total degree of freedom consisting of finite elements after imposing the bound-
ary conditions in Eq.(15). 

2.5 The damping matrix of the barrel under the effect of the projectile 

The damping matrix is determined using Rayleigh’s damping theory, in which the damping matrix C is propor-
tional to the mass and stiffness matrices. Based on this theory, the following damping matrix is obtained. 

C aM bK   (18a) 

2 2

       -   
1 12   

j i
i j i

jj i j i

a
b

  
   

 
                                   

 (18b) 

The a and b values within Eq. (27a) are obtained by solving the Eq. (27b), (Clough R.W; Penzien J., 2003) 
(2003); where æi and æj are the damping ratios of the structural system for two natural frequencies of ùi and ùj. 
The total instantaneous damping matrix of the damped system under the effect of the accelerating projectile is 
given by: 

ˆ  ( , 1 - )ij ijC C i j n 
 (19a) 

Except for the kth element, where 

,s ,
ˆ   ( , 1 7)si j si sj ijC C c i j   

 (19b) 

2.6 The global force vector of the system under the effect of the accelerating projectile 

The instantaneous overall force vector is also time depended. The coefficients of overall force vector are equal 
to zero except the nodal forces of the sth barrel element. Thus, the instantaneous overall force vector of entire 
system becomes as below: 
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  1 2 3 4 5 6 7 8 9 10 11 12
ˆ( ) 0 ...                      ...0F t f f f f f f f f f f f f      (20a) 

With 

  ( 1, 7)i p c if m a N i 
 (20b) 

 2m sin   ( 2, 8,6,12)i i pf N g r i        (20c) 

 2m cos  ( 3, 9, 5,11)i i pf N r i  
 (20d) 

    2 2 2 2m sin cos  ( 4,10)i i pf N r i      (20e) 

Detailed information on the algorithm used in order to obtain the movement equation of the system given in 
Eq. (15) and Newmark â algorithm used in high-accuracy solution of this movement equation in time area are given 
in previous studies (Esen and Koç, 2015a, 2015b). Simulation procedure belong to study used in this study given 
by Figure 5. 

3 NUMERICAL EXAMPLES 

 In this section of the study, two different weapon barrels are used in order to test the theoretical model 
explained in the second section. The first barrel is 35 mm AAB whose barrel profile is shown in Figure 6. In our 
study, the reason for which this weapon is especially preferred in numerical analysis is that the width of the barrel 
is very small compared to the length as a result of which it can be well represented by Euler-Bernoulli beam theory 
explained in section 2. The inside section of this weapon normally lacks grooves but in order to see the effect of 
unbalanced projectile on z axis it is accepted as grooved. 

 In firearms groove is a structure designed in order to add rotation movement to the projectile according to 
the barrel axis as a result of forward movement of the bullet processed helically. This movement adds angular mo-
mentum to the projectile and balances it gyroscopically. As a result of a full tour of the projectile by turning in the 
helically grooved barrel, the axial feed (xspin) progresses for 254 mm. A shorter distance means that projectile will 
leave the barrel at a higher angular velocity; a longer distance means that it will leave the barrel with lower angular 
velocity. Accordingly, it is found out that the projectile turns èspin=2ðL/xspin until it leaves the barrel. In this case, 
the mean angular acceleration of the projectile inside the barrel is determined with ác=2èspin/𝑡௘௫௧

ଶ . Figure 7 shows 
groove structure of a gun barrel. 

 The second weapon is a 120 mm grooved tank barrel whose features are given in Table 1. The pressure 
graph forming inside the barrel at firing shows non-linear action according to time. In this case, the movement 
acceleration of the projectile inside the barrel will show time dependent and non-linear features. In this study, the 
movement of projectile inside the barrel has been accepted with mean acceleration in order to avoid the complica-
tions caused by variable acceleration. The length of the barrel is given as L, the exit velocity of the projectile from 
the barrel is expressed as vext and the mean acceleration of the projectile inside the barrel is given as 𝑎௖ = 𝑣௘௫௧

ଶ (2𝐿)⁄ . 

In this case, the time of exit of the projectile from the barrel is calculated by 𝑡௘௫௧ = ඥ2𝐿 𝑎௖⁄    or   𝑡௘௫௧ =

ඥ(4𝐿ଶ) (𝑎௖𝑣௘௫௧
ଶ )⁄  . In this case, considering the information given in Table 1, the acceleration values belonging to 35 

mm anti-aircraft bullet and 120 mm tank bullet are determined as (ac)35=2.13x105 m/s2,(𝛼௖)ଷହ = 5.27𝑥10଺  rad/s2, 
(ac)120=2.55x105 m/s2, (ác)120=6.31x106 rad/s2 respectively and the time of exit of projectiles from barrel are de-
termined as (text)35=0.0055,   (text)120=0.0069 s, respectively. So, angular velocity of the unbalanced projectiles are 
𝜔ଷହ = 29066 𝑟𝑎𝑑/𝑠, 𝜔ଵଶ଴ = 43290 𝑟𝑎𝑑/𝑠,  respectively for 35 mm AAB and 120 mm GTB at time text. 
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 Figure 5: Flow chart of simulation procedure used in this study. 

 
Figure 6: The barrel profiles given by in this study for 35 mm AAB and 120 mm GTB respectively. 
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Table 1. Some properties of the 35 mm AAB and 120 mm GTB gun systems. 

Property  35 mm AAB 120 mm GTB 

Calibre     35 mm 120 mm 

Exit velocity 1175 m/s 1750 m/s 

Weight  150 kg 1250 kg 

Length 
Twist Length 

Twist Number 

3.24 m 
254 mm 

13 

6 m 
254 mm 

24 
Projectile weight 0.6 kg 20 kg 

 

 
 Figure 7: Groove structure of a barrel. 

 

 Figure 8a gives the time dependent change of dent amount of barrel tip at y-axis for 35 mm AAB and 120 
mm GTB weapons in comparison to the fully balanced and unbalanced projectile. As seen in the figure, maximum 
displacement at barrel tip at fully balanced projectile for 35 m AAB is 3.31x10-7 m where the projectile is at 87% 
barrel distance. The maximum barrel-tip displacement in unbalanced projectile occurred at 8.85x10-7 m when the 
projectile was at 48% barrel distance. It is clearly seen that at the weapon barrel-tip under unbalanced projectile 
effect in static terms there is 167% increase compared to fully balanced projectile model. This increase in barrel-
tip can be explained as follows: when the barrel is under the effect of fully balanced projectile, four forces influence 
at y-axis. The first one of these factors is shown in Eq. (1b) as negative-direction weight force (𝑚௣𝑔) of projectile 

which vertically affects the barrel axis. The others are inertia, centripedal and Coriolis forces, which occur due to 
the action of projectile through barrel beam curvature. These two forces affect the barrel both in identical and op-
posite directions during the movement of projectile inside the barrel. This is totally related to the movement fre-
quency of the projectile and the natural frequency of the barrel.  If the projectile moving inside the barrel is unbal-
anced, weapon barrel becomes exposed to a fifth force in addition to the four forces mentioned above. This force is 
expressed as centrifugal force and is given in Eq. (1b) ( 𝑚௣𝜔ଶ𝑟). Centrifugal force has two components. One of these 

components is in the direction of y-axis (𝑚௣𝜔ଶ rsin(𝛼) ) whereas the other is in the direction of z-axis 

( 𝑚௣𝜔ଶ𝑟 cos(𝛼)). The direction of y component of centrifugal force can be both in downwards and upwards direc-

tion, which is similar to the inertia, force. Therefore, the force in y direction, which affects the barrel elements under 
the effect of unbalanced projectile, is a combination of these five forces and the combined force value increased 
according to the fully balanced projectile model.  

 Figure 8a gives the change in time in barrel tip dent under the effect of fully balanced and unbalanced pro-
jectiles for 120 mm GTB for the same time period. Here, maximum measurement amount at barrel tip in fully bal-
anced projectile is 2.47x10-7 m when projectile is at 74% barrel distance. Under the effect of unbalanced projectile, 
maximum barrel-tip dent occurs at 6.405x10-7 m when projectile is at 23% barrel distance. Figure 8b shows the 
time dependent change of barrel-tip acceleration for two different weapons systems under balanced and unbal-
anced projectile. Due to the z component of centrifugal force, weapon barrel begins to vibrate in the direction of z-
axis and projectile moves along the curvature of the barrel. Figure 9 shows the time dependent change in displace-
ment that occurs in the direction of z-axis of the barrel tip under the effect of unbalanced projectile.  

 In Figure 10a and 10b, the relative graphics of acceleration and displacement of the barrel-tips of 35 mm 
AAB and 120 mm GTB weapon systems under the effect of unbalanced projectile at y and z-axes are shown. If the 
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projectile moving inside the barrel were a fully balanced one, the only vibration at the barrel tip would be in y 
direction. Unbalanced projectile forces the barrel to vibrate along both y and z-axes. In this case, the barrel tip 
rotates around both y and z-axes. Figure 11a and 11b respectively show the relative graphics of acceleration and 
angular displacement of the barrel-tips around y and z-axes under the effect of unbalanced projectile.  

 
 Figure 8: The barrel tip value on vertical y direction for gravitational center of the projectile from rotation axis r=0.01 

mm using 35 mm AAB and 120 mm GTB. a-) displacement (m) b-) accelerations (m/s2). 

 

 
 Figure 9: The barrel tip deflection on vertical z direction for gravitational center of the projectile from rotation axis 

r=0.01 mm. 

 

 
 Figure 10: The relative graphics of barrel tip values in both axes (y,z) effect on unbalanced projectile for 35 mm AAB 

and 120 mm GTB and considering gravitational center of the projectile from rotation axis r=0.01 mm a-) displacement 
(m), b-) acceleration (m/s2). 
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 Figure 11: The relative graphics of barrel tip according to rotation around z and y axes, effect on unbalanced projectile 

for 35 mm AAB and 120 mm GTB considering gravitational center of the projectile from rotation axis r=0.01 mm a-) 
rotation (rad), b-) angular acceleration (rad/s2). 

 

When the expressions given in Eqs. (9b-c) explained in second section are examined, it can be seen that the 
knot forces applied by statically unbalanced projectile in a certain t time on the relevant barrel element is depend-
ent on the shift of center of gravity of projectile from rotating center, r. Figure 12 shows the effect of r parameter 
on the amount of dent of barrel-tips along y axis for 35 mm AAB and 120 mm GTB weapons. In these analyses, 
barrel-tip dent has been shown for four different axis shift distance (r=0.01, 0.02, 0.03, 0.04 mm). As can be seen 
in the figures, the amplitude of vibrations increase with the amount of axis shift for both weapon systems but no 
change has occurred in the frequency. Similarly, Figure 13 shows the effect of shift from rotating axis of the projec-
tile center of gravity on the displacement and acceleration, which occur on the barrel-tip z-axis. A similar result has 
been obtained here. Figures 14a and b show the barrel-tip rotating level around x-axis for different r distances for 
35 mm AAB and 120 mm GTB, respectively.  

Figures 15a-b shows the relative graphics of dent at y and z-axes, which occur at the barrel-tip at different axis, 
shift distances for two different weapons systems, namely 35 mm AAB and 120 mm GTB. Figures 16a and b shows 
the same analysis for barrel-tip accelerations. In both analyses, it is clearly seen that as the axis shift amount r 
grows, so does barrel-tip deviations in both axes.  
 

 
 Figure 12: The effect of gravitational center of the unbalanced projectile from rotation axis r upon barrel tip deflection 

on y direction for a-) 35 mm AAB, b-) 120 mm GTB. 
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 Figure 13: The effect of gravitational center of the unbalanced projectile from rotation axis r upon barrel tip deflection 

on z direction for a-) 35 mm AAB, b-) 120 mm GTB. 

 
 Figure 14: The effect of gravitational center of the unbalanced projectile from rotation axis r upon barrel tip rotation 

around x axis for a-) 35 mm AAB, b-) 120 mm GTB. 

 

 
 Figure 15: The relative graphics of barrel tip displacements in both axes (y,z) effect on unbalanced projectile consider-
ing different gravitational center of the projectile from rotation axis (r=0.01, 0.02, 0.03, 0.04 mm), a-) 35 mm AAB, b-) 

120 mm GTB. 
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 Figure 16: The relative graphics of barrel tip accelerations in both axes (y,z) effect on unbalanced projectile considering 
different gravitational center of the projectile from rotation axis (r=0.01, 0.02, 0.03, 0.04 mm), a-) 35 mm AAB, b-) 120 

mm GTB. 

 

Figures 17a and 17b give the time dependent change of forces that affect in the direction of y and z-axes re-
spectively at the knot points of instant finite element by unbalanced projectile during the time dependent move-
ment of projectile inside the barrel of two different weapons systems, namely 35 mm AAB and 120 mm GTB. As can 
be seen in the figures, it is seen that the forces which affect the barrel by the projectile in both directions increases 
as the projectile approaches the barrel-tip. This is due to the fact that the increase in linear and angular velocity of 
the projectile towards the barrel-tip increases inertia, centripedal, Coriolis and centrifugal forces. The barrel is un-
der the effect of these five forces applied by the projectile: the first one of them is the gravity caused by the weight 
of the projectile, inertia which is applied by the projectile which vibrates in the direction of y axis and moves along 
the barrel curvature, Coriolis and centripedal forces and the y component of centrifugal force which is applied by 
unbalanced projectile. The forces which are applied by the projectile along the z-axis of the barrel are the three 
forces created due to the bending in that direction and the z component of the centrifugal force created by unbal-
anced projectile.  
 

 
 Figure 17: The nodal forces of the barrel element on which the unbalanced projectile moving for gravitational center of 

the projectile from rotation axis r=0.01 mm, a-) y direction, b-) z direction. 

 

4 CONCLUSIONS 

Manufacturing tolerances, damages in grain rolling processes, and non-homogeneous distribution of material 
can lead to static and dynamic unbalances in projectiles. This unbalance leads to the creation of vibrations which 
negatively affect the shooting accuracy of the barrel especially by the projectile which progresses inside the barrel 
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by conducting both rotation and translation motion. Dynamic analysis of weapon systems under the effect of un-
balanced projectile plays an essential role in terms of accurate determination of the shooting accuracy of these 
weapon systems. However, literature shows that 2-D FEM models developed considering axial and transverse vi-
brations of the barrel are not adequate in the identification of barrel tip deviations caused by unbalanced projec-
tiles. In this study, the effect of statically unbalanced projectile on the transverse vibrations of the barrel are ana-
lyzed for two different weapon systems (35 mm AAB and 120 mm GTB) using a new 3-D 12 DOF FEM and Newmark 
â algorithm with high accuracy in time zone  

Statically unbalanced projectile has excessive effect on the barrel tip vibrations in both axis. For example, if the 
inertia axis of the weight center of projectile is 1% of a millimeter deviated from the geometric axis, the barrel 
suffers from 167% more displacement of barrel tip at y axis for 35 mm AAB weapon and 159,3% more displacement 
for 120 mm GTB. In addition, unbalanced projectile also affected the position of barrel projectile where maximum 
barrel tip displacement occurred. For example, maximum barrel tip displacement in fully balanced projectile model 
occurred at 87% barrel distance for 35 mm AAB weapon whereas this value became 48% for unbalanced projectile. 
The same analysis revealed 74% and 23% values respectively when applied to 120 mm GTB. It is observed that 
unbalanced projectile excessively increased both barrel tip displacements and barrel tip accelerations. The effect 
on barrel tip vibrations of r parameter, one of the basic physical parameters of unbalanced projectile, which is the 
mismatch ratio from geometric central axis of the central inertia axis belonging to the weight center of projectile, 
has been examined in detail. As a result, it is observed that an increase in the axis mismatch ratio increases both 
barrel tip displacements and accelerations in both weapon systems excessively.  

Fading of these vibrations which negatively affects the barrel strike accuracy created by unbalanced projectile 
at horizontal and vertical axis of the barrel is a challenge which is very difficult to overcome. An examination of the 
studies in the literature (Esen and Koç, 2015b; Kathe, 1997;  Littlefield et al., 2002a; Vitek, 2009) on the fading of 
vibrations generated at barrel tip shows that studies on vibrations at barrel tip are only on the reduction of vibra-
tions at vertical axis considering the fully-balanced projectile model. As for unbalanced projectile, fading of barrel-
tip vibrations become more difficult and complicated when they occur at both axes as the vibration absorbed 
mounted at the barrel-tip to ensure fading of vibrations is calibrated to a specific frequency at which it can fade the 
vibrations at vertical axis. However, this vibration absorber adjusted to specific frequency in order to fade vertical 
vibrations is different from the frequency value of horizontal vibrations occurring at barrel-tip; therefore, it is not 
effective in fading vibrations which occur in this direction. For this reason, in order to reduce the vibrations at 
barrel-tip, the method in this study proposes an additional algorithm on the design of a suitable absorber and fading 
the vibrations in both axes with the most optimum absorber without having to perform time-consuming, expensive 
and difficult experiments. 
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Appendix A 
The mass, damping and stiffness matrices of the equation of motion given by Eq. (13) are following: 
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