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A Comparison between different techniques for optimum design of 
steel frames subjected to blast 

Abstract 
According to the conditions of today's world, design of resistant structures 
against blast loading is an important subject that requires special attention. 
Thus, given the benefits of optimization in engineering, development and 
assessment of optimization methods for optimum design of structures 
against blast is of great importance. In this research, the optimum design of 
steel frame structures against blast loading is investigated. For this 
purpose first an optimization methodology is proposed. In the proposed 
method the structural analysis is performed using nonlinear explicit finite 
element analysis. Based on the proposed method a framework is developed 
and three numerical examples are investigated using different numerical 
optimization techniques. Results of this study show that by using nonlinear 
explicit FE analysis as the structural analysis method and NLPQLP 
optimization technique as the optimization method, the current 
optimization problem can be performed effectively, because the procedure 
is relatively accurate and computationally inexpensive. 
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1. Introduction 

In today’s world, terrorist attacks and wars are phenomena which threaten human security all over the 
world. Meanwhile, structures play an important role in either increasing or decreasing damages or losses. Also as 
it's true for other types of loads, if a structure is to be designed to have an appropriate performance against 
potential events and their subsequent loadings, it will bring psychological comfort for residents and the whole 
society even though they never occur. Thus, it is very important to conduct more studies on the behavior of 
structures against blast and the resistant design of structures against this type of loading, particularly under 
current conditions and events in the world. 

Preliminary researches on blast loading, behavior and resistant design of structures against blast date back 
to the years of World War II (Taylor 1940, 1941a, 1941b). But most studies in this field have been conducted in 
about past 15 years. Some of the most important researches in recent years carried out on steel structures are as 
follows: 

Hadianfard et al. (2012) studied the effect of steel columns cross sectional properties on their behaviors 
when subjected to blast. Using ANSYS software, they analyzed some steel columns with different shapes of cross-
section and different boundary conditions, subjected to blast loading. They concluded that shape and elastic-
plastic properties of sections and also boundary conditions of columns play important roles on the response of 
steel columns subjected to blast. 

Nassr et al. (2012) modeled steel beam and beam-columns against blast load using single and multi-degree 
of freedom models. First, they conducted an experimental study to evaluate responses of some wide flange beams 
subjected to blast. Then, they compared the results of the SDOF and MDOF models with the experimental tests. 
Based on the results, it was shown that both proposed single and multi-degree of freedom models could predict 
the history of responses with a good accuracy. Also, they concluded that the use of a constant strain rate to 
calculate Dynamic Increase Factor (DIF) would lead to a conservative design. 

Using passive unidirectional dampers, Saeed Monir (2013) conducted a research on the resistant steel 
structures against blast. He presented a new uni-directional passive damper which shows different performance 
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against compression and tension. He concluded that using this type of damper in a ductile frame, a resistant 
structure would be obtained which it could absorb most of the blast energy. 

Nassr et al. (2013) evaluated the resistance and stability of steel beam-columns subjected to blast loading. 
They used a one-degree of freedom model for studying the effects of axial load on the strength and stability of 
columns subjected to blast. The model was validated by comparing the results with experimental results and also 
finite element analysis. Comparing the results of the one-degree of freedom model and results from UFC 3-340-02 
code, showed that regardless of axial load to the Euler critical load ratio, the UFC method overestimates the 
column’s capacity for ductility coefficients greater than one. 

Coffield and Adeli (2014) examined the performance of earthquake-resistant bracing systems against blast. 
They studied three systems including Moments Resistant Frame (MRF), a Centrally Braced Frame (CBF) and an 
Eccentrically Bracing Frame (EBF), designed for earthquake. The results showed that the CBF system had a better 
resistance level in the blast scenarios considered in the study. 

Elsanadedy et al. (2014) studied the potential of progressive collapse in steel structures subjected to blast 
attacks. They analyzed a conventional multi-story steel frame against blast to evaluate its vulnerability in 
accidental or terroristic blast scenarios. Based on the results of finite element analysis, they proposed strategies 
for reducing and controlling potential progressive collapse in steel structures. 

Habibi and Khaledy (2015) proposed an analytical method for analyzing beam-columns against lateral blast 
load. Assuming elastic behavior for beam-column, the governing fourth-order partial differential equation was 
formulated, and then an analytical method for solving this differential equation was proposed. By studying a 
numerical example, they concluded that the influence of axial force on lateral displacement of the beam-columns 
is very significant and practically this effect should not be neglected. Also, it was concluded that for different 
values of axial force, the maximum lateral deformation does not occur at a specified time and the time is a 
function of the applied axial force. 

On the other hand, optimum design of structures given numerous advantages such as cost and time savings is 
of great importance in structural engineering. Due to advances in the fields of computers and processors, 
optimization science has undergone a great progress. It is always updated along with new situations and needs of 
the day. Some of the important researches have carried out on the optimization of steel structures in recent years 
are as follows: 

Degertekin (2012) studied the optimum design of geometrically nonlinear steel frames using artificial bee 
colony algorithm (ABC). Structural weight minimization was the objective of the research while strength, 
displacement and size constraints were taken into account. The optimization was performed considering the 
geometrical nonlinearity. Three numerical examples where studied in the research using the ABC algorithm. He 
concluded the ABC algorithm could find better results comparing to the other meta-heuristic algorithms. 

Kaveh et al. (2010) studied the optimum seismic performance based design of steel frames using Ant Colony 
algorithm. To get the response of the structure at various performance levels, the nonlinear pushover analysis 
was performed using a computer. The structural weight was chosen as the objective function, and story drifts 
were selected as the constraints. In two numerical examples, they showed that the used method is superior to the 
traditional Genetic Algorithm. 

Based on the history of nonlinear responses, Gong et al. (2012) presented a method for optimum design of 
steel frames under seismic loads. Minimization of weight, minimization of input earthquake energy and 
maximization of energy absorption, were considered as the three objective functions. Also, story drift and plastic 
hinge rotation in members were considered as design constraints. A three story building was studied as a 
numerical example. They concluded that the proposed method is an efficient method for designing steel frames 
under seismic loadings. 

Habibi and Rostami (2013) developed an optimization method for designing steel frames based on 
Consistent Approximation (CONAP) method. Structural weight was considered as the objective function, and 
design constraints were considered based on AISC and Iranian steel structures design Code. Having studied 
multiple numerical examples, they concluded that the proposed method could easily be used to achieve economic 
and reliable designs. Also, it was shown that the proposed algorithm would converge in a limited number of 
iterations. 

Kaveh and Nasrollahi (2014) conducted a research on optimum performance based on seismic design of 
steel frames using charged system search (CSS) algorithm. The analysis of structure was performed using 
pushover approach assuming semi-rigid connections. Based on the results, they concluded that the proposed 
method would significantly reduce the weight of the structure compared to a traditional design. 

Kaveh et al. (2015) studied the optimum design of steel frames considering construction cost and seismic 
damage. They used Park-Ang damage index for the seismic damage and constraints were considered based on 
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FEMA-350 seismic design specifications. They adapted the non-dominated sorting genetic algorithm (NSGA II) as 
the multi-objective optimization technique. They concluded that the proposed framework is effective for 
achieving convenient pareto front of possible optimal solutions. 

Artar (2016) studied the optimum design of braced steel frames using teaching learning based optimization 
(TLBO). The optimization problems were performed based on AISC-ASD design specifications. Structural weight 
minimization was the design objective. Design constraints were considered as stress, geometrical size, 
displacement and inter-story drifts. By studying two numerical examples they concluded that the TLBO is a robust 
and applicable method for optimum design of multi-element structures. 

Gholizadeh et al. (2017) studied optimum design of steel frames using moth-flame optimization (MFO) and 
enhanced moth-flame optimization (EMFO) algorithms. By solving some benchmark problems using MFO and 
EMFO, and comparing the results with results of the other meta-heuristic methods, they concluded that the 
proposed EMFO method had better optimal results while it needed less computational efforts. 

In the field of optimum design of structures against blast, researches are just limited to few researches on 
non-building and non-framed structures (Taha et al. 2009; Sun 2011, Salimi et al. 2012; Qi et al. 2013; Xia et al. 
2015). Thus, there is a gap on the field to be filled by more researches on this important subject and related topics. 
The main purpose of the present study is to compare the efficiency of the three optimization techniques for 
optimum design of steel moment frames under blast, based on a proposed procedure. 

2. Blast Loading 

To design structures against blast, it is required to be specified the characteristics of blast loading. Blast load 
is a time-history loading which occurs in a very short period. Generally, its time-history diagram is as shown in 
Fig. 1. 

 
Fig.1. General time-history diagram for blast loading (UFC 3-340-02, 2008) 

 

When an explosion occurs on the earth surface or in front of a structure where blast waves can be reflected, this 
reflection amplifies the blast loading, and in this case, the effective blast pressure would be 𝑃𝑟 which is shown 
in Fig.2. 
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Fig. 2. Blast load time-history with reflection of waves (UFC 3-340-02, 2008) 

 

Explosions which occur on the surface of the earth are called Surface bursts (blasts), and explosions which 
occur in the air are called Air bursts (blasts). The most important parameters associated with blast loading, 
include maximum effective pressure (𝑃𝑟 or 𝑃𝑜), impulse (the area under time-pressure diagram), and the 
duration of the positive phase, respectively. As shown in Figs 1 and 2, the time-history diagram of blast loading 
has two phases, a positive phase (pressure) and a negative (suction) one. In conventional explosions, the negative 
phase is usually neglected in calculations due to its small magnitude. Duration of blast loading is generally in the 
range of milliseconds to a few hundredth of a second. It should also be noted that all of the main parameters 
related to the blast loading are functions of type and mass of the explosive, the distance between explosion source 
and the target (structure), and the type of the blast (Surface or Air). Calculation of these parameters can be made 
by some empirical equations or graphs that are presented in references such as UFC 3-340-02 (2008), Blast 
Effects on Buildings (Cormie et al. 2009) and AISC 59-11 (2011). An example of these graphs related to the 
surface blasts is shown in Fig. 3. 
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Fig. 3. A diagram for calculating blast loading parameters in surface blasts (UFC 3-340-02, 2008) 

 

In this graph Z is the scaled distance of blast: 

𝒁 =
𝑹

𝑾𝟏/𝟑
  (1) 

Where R is the distance between blast source and structure, called standoff distance and W is the mass of 
equivalent TNT of explosive. All of the graphs and equations for calculating blast-related parameters are set based 
on TNT. For other types of explosives, the mass must be multiplied by some coefficients in order to be able to use 
the graphs. For some explosive types, these coefficients are shown in Table 1. 
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Table 1 Equivalent TNT mass for some explosives (Cormie et al. 2009) 

Explosive 
Material 

TNT 
equivalent 

factor 

Nitroglycerin 1.481 

C4 1.19 to 1.37 

Semtex 1.256 

RDX 1.185 

TNT 1 

ANFO 0.87 

 
In blast events, the effective pressure decreases as a nonlinear function by moving away from the source of 

the explosion, so that the local effects should be considered in near-range explosions. Based on ASCE 59-11 (2011) 

if the scaled distance Z be greater than 𝟑 𝒇𝒕/𝒍𝒃𝟏/𝟑  (𝟏. 𝟐 𝒎/𝒌𝒈𝟏/𝟑) the explosion is classified as far-range, 
and the loading can be considered as a uniform distributed time-history load acting on the structure. In the 
current study, blast events are assumed to be in the far range. 

The quantity and blast characteristics a given structure is designed for, depends on various factors such as 
the history of terrorist attacks, the importance of the building, ease of access to the building or terroristic target, 
the number of occupants of the building, distance from the structure and ease of access to the threatening 
materials (FEMA 452, 2005). Based on these factors, a simplified method is proposed in FEMA 452 for terroristic 
threats risk assessment. Also, there are some diagrams which can be used to estimate the potential blast capacity 
of some blast threats. One of these diagrams is shown in Fig. 4. For example, based on this diagram, a sedan car 
has a capacity of carrying a mass between 100-500 lbs. (45-226 kg) of TNT. 
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Fig. 4. Explosive environments- blast range to effect (FEMA 452, 2005) 

 

3. Nonlinear dynamic analysis 

In this research, the structural analysis has been performed by finite element analysis using Abaqus software 
(Hibbitt et al., 2010). In the finite element analysis, the nonlinear dynamic analysis is performed by direct 
integration methods. Direct integration methods can be performed by two different procedures: Implicit 
approach and explicit approach. In the “implicit” approach, it is required that in every step the structural stiffness 
matrix be inverted and nonlinear equations be solved. Thus, when the degrees of freedom are high, this method 
will be computationally expensive as it is required to calculate the inverse of the stiffness matrix and solve the 
nonlinear equations. In the “explicit” approach, velocity and displacement are calculated based on the known 
values at the beginning of each time step. Therefore, calculating the inverse of the stiffness matrix is not required. 
In other words, compared to the implicit method, this method requires less computational effort at each time step. 
However, the “implicit” method is numerically stable, while in “explicit” approach, time steps should be 
considered small enough to ensure the stability of the method. Thus, in dynamic problems that occur in a short 
time such as impact and explosion problems, the explicit method is better and requires less computational effort. 
Because of the mentioned computational advantages, the explicit method is used in this research. 

One of the most popular explicit methods is the central difference method. In this method velocity and 
accelerations are written as follows (De Borst et al., 2012): 

�̇�𝑡+∆𝑡 =
𝑢𝑡+∆𝑡−𝑢𝑡−∆𝑡

2∆𝑡
  (2) 
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�̈�𝑡+∆𝑡 =
𝑢𝑡+∆𝑡−2𝑢𝑡+𝑢𝑡−∆𝑡

∆𝑡2   (3) 

Where 𝑢, �̇�, and �̈� are the displacement, velocity, and acceleration vectors, respectively. Also, ∆𝑡 is the time 
step. We can write the equation of motion as follows: 

𝑀�̈�௧ା∆௧ = 𝑓௘௫௧
௧ା∆௧ − 𝑓௜௡௧

௧ା∆௧  (4) 

Where, M is the global mass matrix, and 𝑓𝑒𝑥𝑡  and 𝑓𝑖𝑛𝑡 are the external and internal forces vectors, 

respectively. By substituting Eq(3) in Eq(4) we have: 

1

∆𝑡2 𝑀𝑢𝑡+∆𝑡 = 𝑓
𝑒𝑥𝑡
𝑡+∆𝑡 − 𝑓

𝑖𝑛𝑡
𝑡+∆𝑡 +

1

∆𝑡2 𝑀(2𝑢𝑡 − 𝑢𝑡−∆𝑡)  (5) 

This equation can be solved for displacement in 𝑡 + ∆𝑡: 

𝑢𝑡+∆𝑡 = ∆𝑡2𝑀−1൫ 𝑓
𝑒𝑥𝑡
𝑡+∆𝑡 − 𝑓

𝑖𝑛𝑡
𝑡+∆𝑡൯ + 2𝑢𝑡 − 𝑢𝑡−∆𝑡  (6) 

Then the displacement increment can be calculated as ∆𝑢 = 𝑢௧ା∆௧ − 𝑢௧ , and the strain increment ∆𝜖 will 

be obtained based on the Kinematic relation. Then the stress increment ∆𝜎 can be obtained using the 
constitutive equations. The stress is updated using the following equation: 

𝜎𝑡+∆𝑡 = 𝜎𝑡 + ∆𝜎  (7) 

And the internal forces vector can be derived as follows: 

𝑓
𝑖𝑛𝑡

= ∑ 𝑍𝑒
𝑇𝑛𝑒

𝑒=1 ∫ 𝐵𝑇𝜎𝑑𝑉
𝑉𝑒

  (8) 

Where 𝑛𝑒 is the number of elements, 𝑍𝑒 is the incidence or location matrix which relates the local and global 
coordinates of an element, and B is a matrix that relates the strains within an element with the nodal 
displacements. The above integration can be solved using numerical techniques like Gaussian or Simpson 

numerical integration techniques. Since in Eq(6) the displacement in 𝑡 + ∆𝑡 is calculated based on the 

displacement in t and 𝑡 − ∆𝑡, thus the displacement values in the two previous steps are required. This makes 
an initialization problem for t=0. To overcome this issue, the Eq(6) for t=0 is written as follows: 

𝑢−∆𝑡 = 𝑢0 − ∆𝑡�̇�0 +
1

2
∆𝑡2𝑀−1൫ 𝑓

𝑒𝑥𝑡
0 − 𝑓

𝑖𝑛𝑡
0 ൯  (9) 

Where, 𝑢0 and �̇�0
 are the initial displacement and the initial velocity vectors. 

In the present study, we have modeled the frame structure using B21 Timoshenko beam element (Hibbitt et 
al., 2010). Also, material nonlinearity is considered as bilinear elasto-plastic steel with isotropic hardening. Also, 
geometrical nonlinearity is considered in the analysis. Elements sizes (mesh size) are chosen by 1/10 of 
member's length. Also, strain rate effects are considered in the analysis according to UFC 3-340-02 (2008) as 
shown in Fig.5. To ensure the accuracy of the finite element model, this model has been validated by another 
study. Nassr (2012) experimentally and analytically studied the response of some beam and beam-columns 
against blast. Here, two beams and two beam-columns which had been studied by Nassr are modeled. In the 
modeled samples, each member length is 2413 mm and section profiles are W150X24. The shape and dimensions 
of W150X24 section profile is shown in Fig 6. Yield stress of the steel material is 470 MPa as reported by Nassr. 
Since the yield stress is 470 MPa, and there is no specific curve for steel with Fy=470 MPa in Fig 5, thus, the DIF 
data have been interpolated between the curves for ASTM A36 (Fy=250 MPa) and ASTM A514 (Fy=700 MPa) to 
be used in FE modeling of the experimental tests. The experimental test setup is shown in Fig 7. Also, a schematic 
drawing of the location of the charge and the samples is shown in Fig 8. Summary of the modeled tests in the 
present study is shown in Table 2. Complete details of the experimental tests are described by Nassr (2012). 
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Fig. 5. Strain Rate Effect (SRE) on Dynamic Increase Factor (DIF) (UFC 3-340-02, 2008) 

 

 
Fig. 6. Cross-sectional shape and dimensions of the test samples (all dimensions are in mm) 

 

 
Fig. 7. The experimental test setup (Nassr, 2012) 
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Fig. 8. Schematic drawing of the charge and the samples location (Nassr, 2012) 

 

Table 2. Properties of the experiments selected for FE model validation 

Sample Bending Axial Load standoff 
Charge 
mass 

Name Axis (kN) (m) 
ANFO 
(kg) 

B1 x-x 0 10.3 50 

B2 x-x 0 9 150 

C1 y-y 270 10.3 100 

C2 x-x 270 9 150 

 
In Figs 9 to 12, history of mid-span deflection of modeled samples in the current study and the results 

reported by Nassr are compared. As it is obvious, the used finite element model properly predicted the history of 
mid-span deflection of the members. In Figs 9-12, differences between the maximum mid-span deflection in the 
current study and the experimental study of Nassr (2012) are 1.4%, 2.8%, 0 and 3.1% respectively. Also in these 
Figs, it is evident that the history of responses in the current study and the multi-degree of freedom model used 
by Nassr have a high compatibility with each other. In both studies, beam elements are used. In the current study, 
each member is divided into 10 elements, and the Timoshenko beam elements are used. Nassr had used Bernoulli 
beam elements, and each member was divided into 24 elements. It should be noted that in the process of 
verification it was observed that the sensitivity of responses was high to changes in the maximum blast pressure 
and the blast duration. Therefore, it seems that the very small differences in graphs, is due to the very small 
differences in the blast loading in the experimental test and the numerical model. In the current study, the blast 
load applied to the members by a uniform distributed time-history load, which in the experiments, based on the 
pressures measured by gauges, the pressure distribution had not been completely uniform over the member's 
length. In addition, in real conditions, due to shape and type of obstacles in the field, and the effect of reflection of 
blast waves, the actual diagram of blast loading may not be exactly as the diagrams obtained by the equations and 
curves presented in manuals and design codes, which probably are derived in some specific and simplified 
conditions. It should be emphasized that the horizontal axes of the verification diagrams are in millisecond, and 
therefore differences between the compared graphs are very small. 
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Fig. 9. Mid-span deflection of B1 beam 

 
Fig. 10. Mid-span deflection of B2 beam 

 
Fig. 11. Mid-span deflection of C1 column 
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Fig. 12. Mid-span deflection of C2 column 

4. Optimum Design problem formulation 

In general, optimization is a procedure to find the best solution that it satisfies certain conditions. The 
general form of an optimization problem is as follows: 

𝒎𝒊𝒏 𝑭(𝒙)   (10) 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕𝒆𝒅 𝒕𝒐 

𝒈𝒋(𝒙) = 𝟎 ; 𝒋 = 𝟏 … … 𝒎𝒆 

𝒈𝒋(𝒙) ≥ 𝟎 ; 𝒋 = 𝒎𝒆 … … 𝒎 

Where 𝐹(𝑥) is the objective function, 𝑔𝑗(𝑥) are the constraints, 𝑥 is the design variable vector, 𝑚𝑒 is the 

number of equality constraints, and 𝑚 is the number of all constraints. Based on the nature of the problem, the 
optimization procedure can be performed using an appropriate optimization technique. Three numerical 
optimization techniques are utilized in the current study. These techniques are Nonlinear Programming by 
Quadratic Lagrangian (NLPQLP), Particle Swarm Optimization (PSO), and Multi Island Genetic Algorithm (MIGA). 
NLPQLP is a special implementation of Sequential Quadratic Programming (SQP) algorithm. In each iteration of 
this technique, by a quadratic approximation of Lagrangian function and a linear approximation of constraints, 
the optimization sub-problems are formulated and solved as a quadratic programming problem. 

Considering Eq. (10), the Lagrangian function of the problem will be: 

𝐿(𝑥, 𝑢) ≔ 𝑓(𝑥) − ∑ 𝑢௝𝑔௝(𝑥)௠
௝ୀଵ   (11) 

Where 𝑥 is the design variable vector and, 𝑢 is the Lagrange multiplier vector. Quadratic sub-problem in the 

𝑘 − 𝑡ℎ iteration can be formulated as follow: 

min 0.5𝑑்𝐶௞𝑑 + ∇𝑓(𝑥௞)்𝑑  (12) 

∇𝑔௝(𝑥௞)்𝑑 + 𝑔௝(𝑥௞) = 0 , 𝑗 = 1, … , 𝑚௘ 

∇𝑔௝(𝑥௞)்𝑑 + 𝑔௝(𝑥௞) ≥ 0 , 𝑗 = 1, … , 𝑚 

𝐶𝑘 is an approximation of the Hessian of the Lagrangian function, 𝑥𝑘 is an approximation of the solution, and 

the ∇ sign indicates the gradient operator. The solution of this quadratic programming sub-problem is the 

search direction 𝑑. By considering the corresponding Lagrange multiplier of this sub-problem as 𝑢௞ , and an 
approximation of the multipliers as 𝑣𝑘, the new iteration is obtained by: 
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ቀ௫ೖశభ
௩ೖశభ

ቁ ≔  ቀ௫ೖ
௩ೖ

ቁ + 𝛼௞ ቀ ௗೖ
௨ೖି௩ೖ

ቁ  (13) 

𝛼𝑘 ∈ (0,1] is a suitable step-length parameter. The step-length parameter is used to have a global convergence, 
i.e., when starting from an arbitrary design point, the final solution be a point that satisfies the Karush-Kuhn-
Tucker optimality conditions. 𝛼𝑘 should be taken so that a sufficient decrease in a merit function 𝜙𝑟(𝛼) be 

obtained: 

𝜙௥(𝛼) ≔ 𝜓௥ ൬ቀ௫ೖ
௩ೖ

ቁ + 𝛼൫ ௗ
௨ି௩

൯൰  (14) 

𝜓𝑟 (𝑥, 𝑣) is a suitable penalty function. In NLPQLP, this penalty function is the augmented Lagrangian function: 

𝜓௥ (𝑥, 𝑣) ≔ 𝑓(𝑥) − ∑൫𝑣௝𝑔௝(𝑥) − 0.5𝑟௝𝑔௝(𝑥)ଶ൯ − 0.5 ∑
௩ೕ

మ

௥ೕ
  (15) 

𝑟𝑗 is corresponding penalty parameter that controls the degree of the constraint violation. This parameter must 

carefully be chosen to guarantee a descent direction of the merit function. The objective function is penalized 
when a design point leaves the feasible domain. To avoid calculation of the second derivatives, Hessian of the 
Lagrangian function is started with the identity matrix and is iteratively updated by the BFGS method: 

𝐶௞ାଵ ≔ 𝐶௞ +
௤ೖ௤ೖ

೅

௣ೖ
೅௤ೖ

−
஼ೖ௣ೖ௣ೖ

೅஼ೖ

௣ೖ
೅஼ೖ௣ೖ

  (16) 

Where, 

𝑞௞ ≔ ∇௫𝐿(𝑥௞ାଵ, 𝑢௞) − ∇௫𝐿(𝑥௞, 𝑢௞) 𝑎𝑛𝑑 𝑝௞ ≔ 𝑥௞ାଵ − 𝑥௞   (17) 

The main convergence criteria in NLPQLP are based on numerically satisfying the KKT (Karush-Kuhn-Tucker) 
optimality conditions. When the KKT conditions are satisfied with a desired tolerance, the algorithm will stop. 
More details about this technique are available in NLPQLP User Guide (Schittkowski, 2006). It should be noted 
that in such engineering problems the structural responses (functions) are not explicitly available. Thus, for 
obtaining derivatives required in the optimization algorithm, sensitivity analysis can be performed. This can be 
done easily using finite different procedure, as forward or central difference methods. The derivative of a 

structural response 𝑓 according to the design variable 𝑥 can be approximated using forward difference 
formula as follows: 

ௗ௙

ௗ௫
=

௙(௫ା௛)ି௙(௫)

௛
  (18) 

Also, the central difference formula can be written as follows: 

ௗ௙

ௗ௫
=

௙(௫ା௛)ି௙(௫ି௛)

ଶ௛
  (19) 

If there are 𝑛 number of design variables, to obtain the sensitivity of structural responses with respect to 

all design variables, 𝑛 structural analysis are required using the forward difference formula and 2𝑛 structural 
analysis are required using the central difference formula. Thus, the computational effort in the central difference 
method is higher than the forward difference, but it is more accurate. In the NLPQLP optimizer the main 
configuration parameter is the finite difference step size. The step size should be chosen small enough to reduce 
the error of evaluating gradients. In some structural problems which the structural analysis is poor, choosing very 
small step sizes may lead to unstable optimization process. 

The Particle Swarm Optimization (PSO) algorithm was firstly developed by Kennedy and Eberhart (1995). 
This algorithm is a population based optimization technique, which is inspired by social behavior of bird flocking 
or fish schooling. This algorithm has many similarities with evolutionary algorithms such as Genetic Algorithms 
(GA). But unlike the GA, no evolution operators such as crossover and mutation are used in PSO. In this algorithm, 
the potential solutions, called particles, fly through the problem space by following the current optimum particles. 
The best position found by a particle and its neighbors is used to decide the next position of the particle in the 
next iteration. The condition of a particle is the value for all design variables in the optimization problem and its 
velocity in the design space, and each move produces a new generation. The particle swarm algorithm starts by 
generating a set of random particles that make the initial population as the initial design. Also initial velocities are 
given to the particles. In each iteration of the algorithm, the particle is moved using two best values. The first one 
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is the best position found by the particle (particle-best or 𝑃 ഥ
௕௘௦௧) and the second one is the best value obtained by 

all particles among all the generations so far (global-best or 𝐺 ഥ
௕௘௦௧). 

We assume that 𝑋ത௜
௝
 and 𝑉ത௜

௝
, are the current position and velocity of the particle i during iteration j, 

respectively. The velocity and position of the particle in the next iteration, (j+1), is obtained as follows: 

𝑉ത௜
௝ାଵ

= 𝐼𝑉ത௜
௝

+ 𝑟ଵ𝑃ூ௡௖௥൫𝑃 ഥ
௕௘௦௧ − 𝑋ത௜

௝
൯ + 𝑟ଶ𝐺ூ௡௖௥൫𝐺 ഥ

௕௘௦௧ − 𝑋ത௜
௝
൯  (20) 

𝑋ത௜
௝ାଵ

= 𝑋ത௜
௝

+ 𝑉ത௜
௝ାଵ

  (21) 

𝑟ଵ and 𝑟ଶ are random numbers which are between 0 and 1, I is the particle’s inertia. The Inertia can be set to 
any positive value. But in many researches the value for Inertia is chosen around 1. For example Shi and Eberhart 
(1998) concluded that the Inertia between 0.9 and 1.2 works well. By selecting a larger value for the inertia the 
particle can explore a larger domain of the design space, but this increases the number of iterations needed to 
converge to the optimum design. 𝑃ூ௡௖௥ and 𝐺ூ௡௖௥ are called “Learning Factors” which are the maximum 
increments due to particle-best and the maximum increments due to global-best, respectively. Generally the value 
of 𝑃ூ௡௖௥ and 𝐺ூ௡௖௥ are set to 0.9. More details about the PSO optimization algorithm can be reviewed in 
(Kennedy, 2011). 

Multi Island Genetic Algorithm (MIGA) (Miki et al, 1999) is an improved version of genetic algorithm (GA). 
The main difference of MIGA from the traditional GA is that in (MIGA) each population of individuals is divided 
into several sub-populations called “islands.” All of the traditional GA operations including selection, crossover, 
and mutation are performed on each sub-population. Some individuals are selected from each island and 
migrated to different islands periodically during an operation called “migration”. The migration is controlled by 
two parameters which are “migration interval” and “migration rate”. Migration interval is the number of 
generations between each migration, and migration rate is the percentage of individuals migrated from each 
island. More details about MIGA algorithm can be reviewed in (Miki et al., 1999). 

The purpose of a structural optimization is to find the design variables for a structural system in order to 
maximize or minimize the objective function, and to satisfy the design requirements. Since there is a direct 
correlation between the weight of a structure and the cost of materials and construction, in many structural 
optimization problems the structural weight is considered as the objective function which must be minimized to 
achieve the lowest cost. In the current study the structural weight is considered as the objective function which is 
being minimized during the optimization process. Also in structural problems, depending on the problem, various 
constraints such as stress, frequency, and deformation may be considered. As blast loads usually are such that the 
structural responses may go in inelastic zone, appropriate consideration of nonlinear analysis should be taken 
into account. In an inelastic design it is better not to consider the strength constraints (Gong et al. 2012). Zieman 
et al. (1992) showed that an inelastic design could not be used to full advantage if a design is required to satisfy 
both strength and deformation constraints, as the strength constraints generally prevent the structural member 
from yielding. Accordingly, in the present study, only the deformation constraints are taken into account. 
According to the UFC 3-340-02 (2008) criteria, design constraints are considered as story drifts and relative 
support rotation in beams and columns. Based on these criteria, maximum allowable story drift is 𝐻𝑠/25 which 

𝐻𝑠 is the height of the 𝑠 − 𝑡ℎ story, and the maximum allowable relative support rotation in beams and 
columns for frame members is limited to 2 degrees (0.035 rad). It should be noted that based on the UFC code, the 
relative support rotation in members are measured as the angle between the maximum deflection point and the 
member's chord, as shown in Figs 13 and 14. 

 
Fig. 13. Relative support rotation in beam members (UFC 3-340-02, 2008) 
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Fig. 14. Relative support rotation in frame members (UFC 3-340-02, 2008) 

 

Based on the above considerations the design problem formulation is considered as follows: 

𝑴𝒊𝒏 ∑(𝜸𝑳𝒎𝑨𝒎) (𝒎 = 𝟏, … … … , 𝒏𝒎)  (22) 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 

𝝋𝒎,𝒎𝒂𝒙 ≤  𝝋𝒂𝒍𝒍 

𝜹𝒔,𝒎𝒂𝒙 ≤  𝜹𝒔,𝒂𝒍𝒍 (𝑺 = 𝟏, … … … , 𝒏𝒔) 

Where 𝛾 is the material specific weight that equals to 7850 (𝑘𝑔𝑓/𝑚ଷ), 𝐿𝑚 is the length of the 𝑚 − 𝑡ℎ 

member, 𝐴𝑚 is the cross-sectional area of the 𝑚 − 𝑡ℎ member, 𝑛𝑚 is the number of members, 𝜑𝑚,𝑚𝑎𝑥 is 

the maximum support rotation of 𝑚 − 𝑡ℎ member, 𝜑𝑎𝑙𝑙 is the allowable support rotation of members, 𝛿𝑠,𝑚𝑎𝑥 

is the maximum story drift of 𝑠 − 𝑡ℎ story, 𝛿𝑠,𝑎𝑙𝑙 is the allowable drift for 𝑠 − 𝑡ℎ story, and 𝑛𝑠 is the 

number of stories. It should be noted that the drift of a story is measured as the difference between the lateral 

displacements of that story and its lower story. 

Here, based on the discussed assumptions an optimization methodology is proposed and assessed for 
optimum design of steel frames against blast loading. The flowchart of the proposed method is shown in Fig 15. 
As described in Fig 15, after numerical modeling of the structure, the model is initialized. This includes applying 
gravitational and blast loads on the structure and initializing the design variables. In the present research, the 
cross-sectional areas of members are considered as the design variables. The other geometrical properties of the 
sections such as section depth, width, flange and web thicknesses are computed based on some equations of 
cross-sectional areas. These equations can be easily derived by performing regression analysis on available steel 
profile sections such as American AISC or European DIN 1025 I-shape sections, or other available sections. In the 
next step the structural analysis is performed to derive the structural responses. In the present study, the 
structural analysis is carried out by explicit nonlinear dynamic finite element analysis of the structure, using 
Abaqus FE analysis software. As previously mentioned, using explicit nonlinear dynamic FE analysis in blast 
analysis problems, in addition of its high accuracy, also is relatively computationally inexpensive. After deriving 
the nonlinear responses the optimization problem can be formulated based on UFC-3-340-02 criteria. In the next 
step, by using numerical optimization techniques and based on the design formulation, an optimization step will 
be performed. In the case of using gradient based optimization techniques, the sensitivity analysis is required to 
be able to use the technique. As the structural analysis is performed using nonlinear FE analysis, the structural 
sensitivities can be calculated with a suitable accuracy. More accurate sensitivities result in more accurate and 
stable optimization procedure in the case of gradient based techniques. The design procedure is repeated until 
stopping criteria are satisfied. At the end, cross sectional areas and the weight of the structure at the optimum 
point are reported as the optimum results. According to the proposed methodology a framework is developed and 
some numerical examples are studied. In the next section three numerical examples are presented by assessing 
three numerical optimization techniques of NLPQLP, PSO, and MIGA, using the proposed method and the 
developed framework. 
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Fig. 15. Flowchart of the proposed method 

5. Numerical Examples 

The following assumptions are made throughout the studied examples: 
Three types of loading are considered which are dead, live and blast loads. In all stories dead and live loads 

are assumed to be 6𝑘𝑁/𝑚ଶ and 2𝑘𝑁/𝑚ଶ, respectively. The tributary widths of the studied frames are 
assumed to be 4 m. It is assumed that based on the blast threat analysis, the structures are designed for a surface 

blast of 150 kg TNT equivalent and a standoff distance of 15 m. As the scaled blast distance is 2.82 >
1.2 𝑚/𝑘𝑔ଵ/ଷ, the explosion is classified as far-range blast. Thus, the blast loading profile has been assumed as a 
uniform time-history loading acting on the front side of the structure. Also, as proposed in Handbook for Blast-
Resistant Design of Buildings (Dusenberry, 2010), the load combination is considered as: 

1.0 DL+0.25 LL+1.0 B 

Where DL is the dead load, LL is the live load, and B is the blast load acting on the structure. 
Design constraints are considered based on UFC 3-340-02 (2008) criteria. These constraints are the 

maximum story drift and relative support rotation in beams and columns. Based on the UFC criteria, allowable 
drift is limited to H/25, and the allowable relative support rotation is limited to 2 degrees (0.035 rad). The weight 
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of the structure is considered as the objective function which is minimized during the optimization process. For 

all members Yield stress is 240𝑀𝑝𝑎, and Ultimate stress is 360𝑀𝑝𝑎. Since the assumed yield stress of steel is 
240 MPa, and this value is very close to the yield stress of ASTM A36 (Fy=250 MPa), thus, the DIF data of ASTM 
A36 (the red curve in Fig 5) are used in FE modeling of the numerical examples. Design variables are the cross-
sectional areas of members. Other geometrical properties of frame member sections have been formulated based 

on the European DIN 1025 standard profiles, as 6𝑡ℎ order polynomial functions of the cross-sectional areas. 
IPB (HEB) profiles are used for columns, and IPE profiles are used for beam members. Design variables are 
assumed as continuous variables in the design space. Lower bound limit of the columns cross-sectional areas is 

set to 4300 𝑚𝑚ଶ corresponding to IPB 14 and the upper bound is limited to 19800 𝑚𝑚ଶ corresponding to 

IPB 40. Similarly, the Lower bound of the beams cross-sectional areas is limited to 2010 𝑚𝑚ଶ corresponding to 

IPE 16 and the upper bound is limited to 8450 𝑚𝑚ଶ corresponding to IPE 40. It should be noted that the 
configuration parameters for all of the optimization methods are considered to be in a conventional and standard 
range. All the considered examples are solved by parallel processing using a laptop computer with Intel Core i5 
processor and 4 GB RAM. 

5-1. One-story one-bay portal frame 

In this example, the optimum design of a one-story portal frame is performed. The frame topology is shown 
in Fig 16. Two groups of sections are considered in the design: one group for columns and another one for beam. 
These section groups are shown in Fig. 16 using numbers 1 and 2. The frame is optimized using the developed 
framework by three techniques of NLPQLP, PSO, and MIGA. The initial configuration of the optimization 
techniques are summarized in Tables 3-5. Table 6 shows the initial values of the variables and the objective 
function. Table 7 shows a comparison between the results of the three techniques at the optimum point. Also 
Convergence history is shown in Fig. 17 for 100 design evaluations. It can be seen that the optimum design 
obtained by NLPQLP has a weight 26% lighter than the initial design. Also optimum weight obtained by NLPQLP 
is 3.8% lighter than PSO and 6.12% lighter than MIGA optimum solutions. Total execution time for performing the 
optimization process using NLPQLP technique is 79% lower than the execution time required for PSO and 77% 
lower than the execution time required for MIGA. It is obvious that in this example, NLPQLP technique has a faster 
convergence and needs less computational efforts comparing to MIGA and PSO techniques. 

 
Fig. 16. Frame dimensions, gravitational and blast loading for one story example 

 

Table 3. Initial configuration of the NLPQLP optimizer in the first example 

Technique NLPQLP (SQP) 
Finite Difference method Forward difference 

Relative finite difference step size 0.002 
Minimum finite difference step size 1e-6 
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Table 4. Initial configuration of the PSO optimizer in the first example 

Technique Particle Swarm Optimization (PSO) 
Maximum iterations 20 
Number of particles 5 

Inertia 0.9 
Global increment 0.9 

Particle increment 0.9 
Maximum velocity limit 0.1 

 

Table 5. Initial configuration of the MIGA optimizer in the first example 

Technique MIGA 
Subpopulation size 5 
Number of islands 2 

Number of generations 10 
Crossover rate 1 
Mutation rate 0.01 
Migration rate 0.01 

Migration interval 5 

 

Table 6. Starting point properties for the one-story example 

 
NLPQLP PSO MIGA 

𝐴ଵ (𝑚𝑚ଶ) 19800 random random 

𝐴ଶ (𝑚𝑚ଶ) 8450 random random 

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘𝑁) 11.98 ----- ----- 

 

Table 7. Optimum point properties for the one-story example 

 NLPQLP PSO MIGA 

𝐴ଵ (𝑚𝑚ଶ) 13460 15897 16905 

𝐴ଶ (𝑚𝑚ଶ) 8122 5582 4793 

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘𝑁) 8.89 9.24 9.47 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑅𝑢𝑛𝑠 16 100 100 

𝑡𝑖𝑚𝑒 3’:52” 18’:28” 16’:45” 

 
Fig. 17. convergence history of the one-story example 
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5-2. Three-story two-bay frame 

The second example is a three-story two-bay frame shown in Fig. 18. Design section groups are categorized 
into six groups as shown in Fig. 18 by numbers 1 to 6. The optimization procedure is performed using the 
developed framework by three optimization techniques of NLPQLP, PSO, and MIGA. The initial configuration of 
the optimization techniques are summarized in Tables 8-10. Table 11 shows the initial values of the variables and 
the objective function. Table 12 shows a comparison between the results of the three techniques at the optimum 
point. Convergence history is shown in Fig.19 for 250 design evaluations. It is evident that the optimum design 
obtained by NLPQLP has a weight 14% lighter than the initial design. Also optimum weight obtained by NLPQLP 
is 2.3% lighter than PSO. In this example no feasible design found using MIGA technique through the 250 runs. 
Total execution time for performing the optimization process using NLPQLP technique is 62% lower than the 
execution time required for PSO and 61% lower than the execution time required for MIGA. Like the previous 
example, NLPQLP technique shows faster convergence and better results comparing to the MIGA and PSO 
techniques. 

 
Fig. 18. Frame dimensions, gravitational and blast loading for the three story example 

 

Table 8. Initial configuration of the NLPQLP optimizer in the second example 

Technique NLPQLP (SQP) 
Finite Difference method Forward difference 

Relative finite difference step size 0.003 
Minimum finite difference step size 1e-8 

 

Table 9. Initial configuration of the PSO optimizer in the second example 

Technique Particle Swarm Optimization (PSO) 
Maximum iterations 25 
Number of particles 10 

Inertia 0.9 
Global increment 0.9 

Particle increment 0.9 
Maximum velocity limit 0.1 
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Table 10. Initial configuration of the MIGA optimizer in the second example 

Technique MIGA 
Subpopulation size 5 
Number of islands 5 

Number of generations 10 
Crossover rate 1 
Mutation rate 0.01 
Migration rate 0.01 

Migration interval 5 

 

Table 11. Starting point properties for the three story example 

 
NLPQLP PSO MIGA 

𝐴ଵ(𝑚𝑚ଶ) 19800 Random Random 

𝐴ଶ(𝑚𝑚ଶ) 19800 Random Random 

𝐴ଷ(𝑚𝑚ଶ) 19800 Random Random 

𝐴ସ(𝑚𝑚ଶ) 19800 Random Random 

𝐴ହ(𝑚𝑚ଶ) 8450 Random Random 

𝐴଺(𝑚𝑚ଶ) 8450 Random Random 

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘𝑁) 62.55 ----- ----- 

 

Table 12. Optimum point properties for the three story example 

 
NLPQLP PSO MIGA 

𝐴ଵ(𝑚𝑚ଶ) 19800 19800 --- 

𝐴ଶ(𝑚𝑚ଶ) 13332 16126 --- 

𝐴ଷ(𝑚𝑚ଶ) 19123 19800 --- 

𝐴ସ(𝑚𝑚ଶ) 9822 4300 --- 

𝐴ହ(𝑚𝑚ଶ) 8438 8450 --- 

𝐴଺(𝑚𝑚ଶ) 3802 5211 --- 

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘𝑁) 53.85 55.13 --- 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑢𝑛𝑠 52 250 250 

𝑡𝑖𝑚𝑒 20’:10” 52’:51” 51’:42” 
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Fig 19. convergence history of the second example 

 

5-3. Six-story three-bay frame 

The third example is a six-story three-bay frame shown in Fig 20. Design sections are categorized into nine 
groups as shown in Fig. 20 by numbers 1 to 9. Using the developed framework this frame is optimized by three 
optimization algorithms of NLPQLP, PSO, and MIGA. The initial configuration of the optimization techniques are 
summarized in Tables 13-15. Table 16 shows the initial values of the design variables and the structural weight. 
Table 17 shows a comparison between the results of the three techniques at the optimum point. Convergence 
history is shown in Fig.21 for 500 design evaluations. It is evident that the optimum design obtained by NLPQLP 
has a weight 30% lighter than the initial design. Also optimum weight obtained by NLPQLP is 8.5% lighter than 
PSO. For MIGA method, no feasible design was found through the 500 runs. Also, total execution time for 
performing the optimization process using NLPQLP technique is 67% lower than the execution time required PSO 
and 65% lower than the execution time required for MIGA. Just like the previous examples, the NLPQLP technique 
has a faster convergence and better results comparing to MIGA and PSO techniques. 
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Fig. 20. Frame dimensions, gravitational and blast loading for the five story example 

 

Table 13. Initial configuration of the NLPQLP optimizer in the third example 

Technique NLPQLP (SQP) 
Finite Difference method Forward difference 

Relative finite difference step size 0.01 
Minimum finite difference step size 1e-8 

 

Table 14. Initial configuration of the PSO optimizer in the third example 

Technique Particle Swarm Optimization (PSO) 
Maximum iterations 50 
Number of particles 10 

Inertia 0.9 
Global increment 0.9 

Particle increment 0.9 
Maximum velocity limit 0.1 
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Table 15. Initial configuration of the MIGA optimizer in the third example 

Technique MIGA 
Subpopulation size 10 
Number of islands 5 

Number of generations 10 
Crossover rate 1 
Mutation rate 0.01 
Migration rate 0.01 

Migration interval 5 

 

Table 16. starting point properties in the third example 

 
NLPQLP PSO MIGA 

𝐴ଵ(𝑚𝑚ଶ) 19800 Random Random 

𝐴ଶ(𝑚𝑚ଶ) 19800 Random Random 

𝐴ଷ(𝑚𝑚ଶ) 19800 Random Random 

𝐴ସ(𝑚𝑚ଶ) 19800 Random Random 

𝐴ହ(𝑚𝑚ଶ) 19800 Random Random 

𝐴଺(𝑚𝑚ଶ) 19800 Random Random 

𝐴଻(𝑚𝑚ଶ) 8450 Random Random 

𝐴଼(𝑚𝑚ଶ) 8450 Random Random 

𝐴ଽ(𝑚𝑚ଶ) 8450 Random Random 

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘𝑁) 159.67 ----- ----- 

 

Table 17. optimum point properties for the third example 

 
NLPQLP PSO MIGA 

𝐴ଵ(𝑚𝑚ଶ) 14340 14622 --- 

𝐴ଶ(𝑚𝑚ଶ) 13476 19587 --- 

𝐴ଷ(𝑚𝑚ଶ) 16852 15851 --- 

𝐴ସ(𝑚𝑚ଶ) 13078 16371 --- 

𝐴ହ(𝑚𝑚ଶ) 11209 13191 --- 

𝐴଺(𝑚𝑚ଶ) 5694 4300 --- 

𝐴଻(𝑚𝑚ଶ) 8450 7349 --- 

𝐴଼(𝑚𝑚ଶ) 7852 7001 --- 

𝐴ଽ(𝑚𝑚ଶ) 5612 8450 --- 

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘𝑁) 111.61 122 --- 

Number of Runs 145 500 500 

Total time 50’:16” 2:30’:49” 2:23’:47” 
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Fig 21. convergence history of the third example 

 

6. Conclusions 

In this study, optimum design of steel moment frames under blast loading was studied. For this purpose, first 
an optimization algorithm was proposed. The structural analysis in the proposed method is performed using 
nonlinear explicit dynamic finite element analysis. The nonlinear dynamic finite element analysis results in 
relatively accurate and realistic evaluations of structural responses. Unlike the seismic analysis problems, In the 
case of blast loading, the explicit dynamic analysis is very computationally effective. Based on the proposed 
method a framework was developed and three numerical optimization techniques were investigated through the 
numerical examples. Results of the numerical examples show that the NLPQLP technique was superior to the 
other studied optimization techniques, in the current blast optimum design problem. The NLPQLP technique had 
better results than the two other optimization techniques and found better designs in lower number of runs. Also, 
between the two methods of PSO and MIGA, the PSO method had better results. Also, the computational time of 
the PSO and the MIGA methods were approximately the same. Results of this research show that by using the 
nonlinear explicit FE analysis as the structural analysis method and NLPQLP method as the optimization 
technique, the optimum design of steel frames under blast loading, can be performed very effectively, because the 
procedure is relatively precise and computationally cost effective. Also, since the NLPQLP resulted in better 
optimum points comparing to the PSO and MIGA methods, the NLPQLP method is capable of converging to the 
global optima in the current problem. In the future researches, the effectiveness of other numerical optimization 
techniques can be studied for the problem of optimization of steel frames under blast loading. 

References 

Artar, M. (2016). “Optimum design of braced steel frames via teaching learning based optimization”. STEEL AND 
COMPOSITE STRUCTURES, 22(4), 733-744. 

ASCE 59-11 (2011), “Blast Protection of Buildings”, American Society of Civil Engineers, Reston, VA, USA. 

Coffield, A., Adeli, H. (2014), “An investigation of the effectiveness of the framing systems in steel structures 
subjected to blast loading”, Journal of Civil Engineering and Management, 20(6), 767-777. 



Nima Khaledy et al. 

A Comparison between different techniques for optimum design of steel frames subjected to blast 

Latin American Journal of Solids and Structures, 2018, 15(9), e106 25/26 

Cormie, D., Mays, G., Smith, P. (2009), “Blast Effects on Buildings (Second Edition)”, Thomas Telford Publishing, 
London, UK. 

De Borst, R., Crisfield, M. A., Remmers, J. J., Verhoosel, C. V. (2012) “Nonlinear Finite Element Analysis of Solids 
and Structures (Second Edition)”, John Wiley & Sons. 

Degertekin, S. O. (2012). “Optimum design of geometrically non-linear steel frames using artificial bee colony 
algorithm”. Steel and Composite Structures, 12(6), 505-522. 

Dusenberry, D.O. (2010). “Handbook for Blast-Resistant Design of Buildings”, Jon Wiley & Sons, Hoboken, NJ. 

Elsanadedy, H.M., Almusallam, T.H., Alharbi, Y.R., Al-Salloum, Y.A., Abbas, H. (2014), “Progressive collapse 
potential of a typical steel building due to blast attacks”, Journal of Constructional Steel Research, 101, 143-157. 

FEMA 452 (2005), “A How to Guide to Mitigate Potential Terrorist Attacks Against Buildings”, Federal 
Management Agency, Washington (DC), USA. 

Gholizadeh, S., Davoudi, H., Fattahi, F. (2017) “Design of steel frames by an enhanced moth flame optimization 
algorithm”, Steel and Composite Structures, 24(1), 129-140. 

Gong, Y., Xue, Y., Xu, L., Grierson, D.E. (2012), “Energy-Based design optimization of steel building frameworks 
using nonlinear response history analysis”, Journal of Constructional Steel Research, 68, 43-50. 

Hibbitt, H., Karlsson, B., & Sorensen, P. (2010). “Abaqus analysis user’s manual version 6.10”. Dassault Systèmes 
Simulia Corp.: Providence, RI, USA. 

Habibi, A.R, Rostami, H. (2013), “Optimum design of plane Steel moment frames by using consistent approximation method”, MSc. 
Thesis, University of Kurdistan, Sanandaj, Iran. 

Habibi, A.R., Khaledy, N. (2015), “Development of an Exact Method to Analyze Beam-Columns Subjected to Blast”, Journal of 
passive deffence, 5(4), 21-28. 

Hadianfard, M. A., Farahani, A., Jahromi, A. (2012). “On the effect of steel columns cross sectional properties on the 
behaviours when subjected to blast loading”. Structural Engineering and Mechanics, 44(4), 449-463. 

Kaveh, A., Fahimi-Farzam, M., & Kalateh-Ahani, M. (2015). “Optimum design of steel frame structures considering 
construction cost and seismic damage”. Smart Structures and Systems, 16(1), 1-26. 

Kaveh, A., Farahmand Azar, B., Hadidi, A., Rezazadeh Sorochi, F., Talatahari, S. (2010), “Performance based Seismic 
design of steel frames using ant colony optimization”, Journal of Constructional Steel Reseach, 66, 566-574. 

Kaveh, A., Nasrollahi, A. (2014), “Performance-based seismic design of steel frames utilizing charged system 
search optimization”, Applied Soft Computing, 22, 213-221. 

Kennedy, J. (2011). “Particle swarm optimization”. Encyclopedia of machine learning (pp. 760-766). Springer US. 

Kennedy, J, and R Eberhart. (1995). “Particle Swarm Optimization.” In Proceedings of ICNN’95 - International 
Conference on Neural Networks, 4:1942–48. IEEE. 

Miki, M., Hiroyasu, T., Kaneko, M., & Hatanaka, K. (1999). “A parallel genetic algorithm with distributed 
environment scheme”. Systems, Man, and Cybernetics, 1999. IEEE SMC'99 Conference Proceedings. 1999 IEEE 
International Conference on (Vol. 1, pp. 695-700). IEEE. 



Nima Khaledy et al. 

A Comparison between different techniques for optimum design of steel frames subjected to blast 

Latin American Journal of Solids and Structures, 2018, 15(9), e106 26/26 

Nassr, A.A., Razaqpur, A.Gh., Tait, M.J., Campidelli, M., Foo, S. (2012), “Single and multi-degree of freedom analysis 
of steel beams under blast loading”, Nuclear Engineering and Design, 242, 63-77. 

Nassr, A.A., Razaqpur, A.Gh., Tait, M.J., Campidelli, M., Foo, S. (2013), “Strength and and stability of steel beam 
columns under blast load”, International Journal of Impact Engineering, 55, 34-48. 

Nassr, A.A. (2012), “Experimental and Analytical Study of the Dynamic Response of Steel Beams and Columns to Blast Loading”, PhD 
Thesis, McMaster University, Canada. 

Qi, Ch., Yang, Sh., Yang, L.J., Wei, Zh.Y., Lu, Zh. H. (2013), “Blast resistance and multi-objective optimization of 
aluminum foam-cored sandwich panels, Composite Structures, 105, 44-57. 

Saeed Monir, H. (2013), “Flexible blast resisitant steel structures by using unidirectional passive dampers”, 
Journal of Constructional Steel Research, 90, 98-107. 

Salimi, H., Saranjam, B., Hoseini Fard, A., Ahmadzadeh, M. (2012), “Use of Genetic Algorithms for Optimal Design 
of Sandwich Panels Subjected to Underwater Shock Loading”, Journal of Mechanical Engineering, 58 (3), 156-164. 

Schittkowski, K. (2006). “NLPQLP: A Fortran implementation of a sequential quadratic programming algorithm with distributed and 
non-monotone line search-user’s guide”. 

Shi, Y., Eberhart, R. (1998). “A modified particle swarm optimizer. Evolutionary Computation Proceedings”. IEEE 
World Congress on Computational Intelligence. The 1998 IEEE International Conference, 69-73. 

Sun, W. (2011), “Dynamic Response Analysis and Optimal Design of a RC Slab to Blast Loads”, Advanced Materials 
research, 163-167, 2390-2396. 

Taha, M.R, Colak-Altunc, A.B., Al-Halik, M. (2009), “A multi-objective optimization approach for design of blast-
resistant composite laminates using carbon nanotubes”, Composites: Part B, 40, 522-599. 

Taylor, G.I. (1940), “Notes on the Dynamics of Shock Waves from Bar Explosive Charges”, UK Ministry of Home 
Security, Civil Defense Research Committee Paper. 

Taylor, G.I. (1941a), “The Propagation and Decay of Blast Waves”, UK Home Office, ARP department. 

Taylor, G.I. (1941b), “The Propagation of Blast Waves over the Ground”, UK Ministry of Home Security, Civil 
Defence Research Committee paper. 

UFC 3-340-02 (2008), “Structures to resist the effects of accidental explosions”, US Department of Defense, 
Washington (DC), USA 

Xia, Y., Wu, Ch., Li, Zh. X. (2015), “Optimized Design of Foam Cladding for Protection of Reinforced Concrete 
Members under Blast Loading”, ASCE Journal of Structural Engineering, ASCE J. Struct. Eng, 141(9), 1-7. 

Zieman, R.D., Mc Guire, W., Deierlein, G. (1992), “Inelastic limit states design, part I: planar frame studies”, ASCE 
Journal of Structural Engineering, 118 (9), 2532-2549.  


