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Analytical solution for nonlinear dynamic behavior of viscoelastic 
nano-plates modeled by consistent couple stress theory 

Abstract 
This paper analyses the non-stationary free vibration and nonlinear 
dynamic behavior of the viscoelastic nano-plates. For this purpose, a size-
dependent theory is developed in the framework of the consistent couple 
stress theory for viscoelastic materials. The previously presented modified 
couple stress theory was based on some consideration making it partially 
doubtful to apply. This paper uses the recent findings for the mentioned 
problem and develops it to analyze the nonlinear dynamic behavior of nano-
plates with nonlinear viscoelasticity. The material is supposed to follow the 
Leaderman integral nonlinear constitutive relation. In order to capture the 
geometrical nonlinearity, the von–Karman strain displacement relation is 
used. The viscous parts of the size-independent and size-dependent stress 
tensors are calculated in the framework of the Leaderman integral and the 
resultant virtual work terms are obtained. The governing equations of 
motion are derived using the Hamilton principle in the form of the nonlinear 
second order integro-partial differential equation with coupled terms. These 
coupled size-dependent viscoelastic equations are solved using the forth-
order Runge-kutta and Harmonic balance method after simplifying by the 
expansion theory. The short-time Fourier transform is performed to 
examine the system free vibration. In addition, frequency- and force-
responses of the nanosystem subjected to distribute harmonic load are 
presented. The obtained results show that the viscoelastic model-based 
vibration is non-stationary unlike the elastic model. Moreover, the damping 
mechanism of the viscoelasticity is amplitude dependent and the 
contribution of the viscoelastic damping terms at higher forcing conditions 
becomes noticeable. 

Keywords 
nonlinear viscoelastic, consistent couple stress, Harmonic balance method, 
nonlinear dynamic, nano-plate 

1 INTRODUCTION 

Micro-nano elements are extensively used in tiny bio-structural and mechanical applications (Pandey et al. 
2009,Feng et al. 2012,Murmu and Adhikari 2012,Xiao et al. 2017). Micro-nanomechanical resonators that can reach 
to very high frequencies up to GHz (Husain et al. 2003,Huang et al. 2005,Baghelani 2016) are very important types 
of these elements highlighted due to their exemplary characteristics. In order to tune the resonators for better 
sensing performance, one should recognize their dynamic characteristics, carefully (Ekinci et al. 2004,Braun et al. 
2005,Tajaddodianfar et al. 2017). Hence, analyzing the dynamic characteristics of these elements is a critical issue 
to improve their performance. The mentioned resonators are often made from micro-nano plate and shell elements. 
The experimental results for instance, in polymers and metals showed that the mechanical behaviors of the micro-
nano structures have considerable amount of size effects (Poole et al. 1996,Lam et al. 2003). It is worth noting that 
in classical continuum theories, CT, the size effects are not considered. Hence, the material length-scale parameter 
is not considered in these theories. In order to compensate this shortage, some non-classical elasticity theories were 
developed (Mindlin and Tiersten 1962, Koiter 1964, Eringen and Edelen 1972, Yang et al. 2002, Lam et al. 2003). 
In this regard, Mindlin and Tiersten (1962) and Koiter (1964), developed a couple stress theory for elastic models 
based on the rotation vector as a curvature tensor. However, this theory suffers from some problems: first, the 
spherical part of the couple-stress tensor is indeterminate and second, the body couple appears in the constitutive 
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relation of the force-stress tensor. Therefore, its original form has not been used widely. In order to compensate 
the mentioned problems, the modified couple stress theory (MCST) was developed by Yang et al. (2002). According 
to the MCST, when the resultant vectors of couples, moments of couples and applied forces become zero, the system 
is in equilibrium. In this theory, true continuum representations of deformation has been used. However, the 
obtained equations were not consistent with proper boundary conditions and the virtual work principle energy 
conjugacy Hadjesfandiari and Dargush (2011). In addition, the resulting couple-stress and stress tensors are 
symmetric and this contrasts with the original form of the couple stress theory, specifically for the couple stress 
tensor. Recently, Hadjesfandiari and Dargush developed a new theory based on the original theory by using true 
continuum kinematical displacement and rotation and found a reasonable solution for the associated problems 
(Hadjesfandiari and Dargush 2011, 2013, Hadjesfandiari et al., 2013). Their new size-dependent theory is called 
the consistent couple stress theory (CCST). In their theory, the couple-stress tensor becomes skew-symmetric while 
the skew-symmetric components of the rotation vector gradient are considered as a consistent curvature tensor. 
The two skew-symmetric tensors are conjugate with each other in calculation of the virtual work Hadjesfandiari 
and Dargush (2011). In the current paper, for the first time, the recent theory that (CCST) is developed for the 
viscoelastic model to study non-stationary free vibration and nonlinear dynamic behavior of a viscoelastic 
nanoplate subjected to harmonic load. 

Recently, some experiments have discovered that the viscoelasticity widely present in materials of NEMS and 
MEMS such as silicon Elwenspoek and Jansen (2004), polysilicon Teh and Lin (1999) and gold films Yan et al. 
(2009). Furthermore, the experimental investigations conducted by Su et al. (2012) revealed that the viscoelastic 
phenomena exist in graphene oxide sheets. The tensile tests on this specimen displayed clear hysteresis loops, 
indicating the viscoelasticity of the graphene oxide. Furthermore, the viscoelastic properties can exhibit at some 
nanostructures (Karlièiæ et al. 2014,Mohammadimehr et al. 2015,Khaniki and Hosseini-Hashemi 2017). Zhang et 
al. (2016) studying the vibration of nanobeams. Wang et al. (2015) and Ebrahimi and Hosseini (2016) examined 
the nonlinear vibration of viscoelastic nanoplates. In addition, Hashemi et al. (2015) investigated the free vibration 
of viscoelastic nano graphene sheets. 

Generally, in a structure made from viscoelastic material, a quota of energy of deformation is recoverable and 
the other quota is irrecoverable. Mainly, in the viscoelastic materials, the stress-strain relations cause the equations 
of motion to become in integro-differential type. As a result, the dynamic behavior of the viscoelastic nanoplates 
are more complicated than their elastic counterparts. 

Viscoelastic models have been used for dynamic/statics analyses of macro-scale plates. For instance, nonlinear 
vibration of viscoelastic thin plates subjected to transverses harmonic force was discussed at the first resonances 
Amabili (2016). Dynamic stability of the viscoelastic plates with longitudinally varying tensions subjected to axial 
acceleration was studied by Tang et al. (2016). In addition, An and Chen (2016) studied the nonlinear dynamic 
behavior of the viscoelastic plates subjected to external force and subsonic flow. They found the critical conditions 
that chaos could take place. Furthermore, Chen and Cheng (2005) discussed the instability problem of an isotropic, 
homogeneous, rectangular plate made from viscoelastic material subjected to a prescribed periodic in-plane load. 
Cveticanin et al. (2012) studied the vibration of the two-mass system with viscoelastic connection. However, the 
large amount of previous studies in the literature on the static/dynamic deformation of the micro-nanostructures 
considered only the elastic models of the systems (Jomehzadeh et al. 2011,Farajpour et al. 2012,Ke et al. 2012). For 
example, Ke et al. (2013) employed the MCST to investigate free vibration of functionally graded (FG) axisymmetric 
Mindlin microplates with von-Karman nonlinearity. Asghari (2012) derived the size-dependent motion equations 
for geometrically nonlinear microplates with arbitrary shapes by means of the MCST. Moreover, Lou and He (2015) 
examined the free vibration and nonlinear bending responses of a FGM Kirchhoff and Mindlin microplate resting 
on an elastic substrate by means of the MCST. 

Recently, in some research studies, the viscoelasticity effects on the static/dynamic behavior of the micro-
nanostructures were studied (Hashemi et al. 2015,Wang et al. 2015,Tang et al. 2016,Khaniki and Hosseini-Hashemi 
2017). For instance, Liu et al. (2017) discussed the vibration of a double-viscoelastic FGM nanoplate, and 
Pouresmaeeli et al. (2013) found a closed-form solution for the vibration of viscoelastic orthotropic nanoplates 
resting on viscoelastic substrate in the framework of the nonlocal plate theory. In their study, the Kelvin–Voigt 
model was used to model the medium. In another research, Jamalpoor et al. (2017) used the Hamilton's principle 
and found an analytical solution for out-of-plane vibration of multi-viscoelastic Kirchhoff microplates with free-
chain and clamped-chain boundary conditions in the framework of the modified strain gradient theory. In addition, 
Farokhi and Ghayesh (2017) studied the effects of the viscoelasticity on dynamic response of a shear deformable 
microbeam in the framework of the MCST. In another study, the size-dependent instability and forced vibration of 
a viscoelastic sinusoidal shear deformation micro-plate with axially moving condition is examined based on the 
MCST Ghorbanpour Arani and Haghparast (2017). In all above investigations, the Kelvin-Vigot model was used 
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enabling modeling the linear viscoelastic materials. However, large amount of the viscoelastic materials are not 
linear and in order to have accurate solutions for the behavior of viscoelastic structures, the nonlinearity of these 
materials should be modeled. A comparative research study Smart and Williams (1972) discovered that when 
prediction and simplicity become important the Leaderman integral model Leaderman (1962) is one of the useful 
representations of the nonlinear viscoelastic properties. Thus, this model is used in this paper. In addition, in all the 
mentioned studies, the governing motion equations were achieved but the solutions of the nonlinear dynamic 
characteristics were not provided. 

According to the descriptions in the previous paragraphs, all of the studies performed analysis on the elastic 
or linear viscoelastic nano-mico structures. This paper, for the first time, studies the non-stationary free vibration 
and nonlinear dynamic behavior of a nanoplate with nonlinear viscoelasticity by means of the CCST. This paper 
used the CCST and developed it to analyze the nonlinear dynamic characteristics of a nanoplate with nonlinear 
viscoelasticity. The material is supposed to follow the Leaderman integral nonlinear relation. Additionally, in many 
applications, such as resonators (Ghayesh et al. 2013a, b), the nanoplate undergoes large-amplitude deformations. 
Therefore, it is necessary to employ a nonlinear strain-displacement relation. Therefore, in this study, the von–
Karman relation is used to capture the geometrical nonlinearity. The viscous parts of the size-independent and size-
dependent stress tensors are derived by means of the Leaderman integral and their virtual work terms are 
obtained. The governing equations of motion are derived using the Hamilton's principle in the form of the nonlinear 
second-order integro-partial differential equation with coupled terms. The nonlinear vibration equations are 
solved previously with Hamiltonian approach, He's variational approach, global error minimization and Jacobi 
collocation method (Askari et al. 2013,Yazdi and Tehrani 2015,Yazdi 2016,Yazdi and Tehrani 2016). In this paper, 
the size-dependent viscoelastically coupled equations are solved with incorporating the expansion theory and 
Harmonic balance method, HBM,. Frequency- and force- responses of the nanosystem subjected to distributive 
harmonic load are obtained and validated with the forth-order Runge-kutta method. The effects of the initial 
excitation values and length-scale amounts as well as the viscoelastic parameter on the system vibration are also 
examined. In the following, the viscoelastic model and elastic model with linear damping resonance frequency are 
compared with each other. Furthermore, the short-time Fourier transform is performed to investigate the system 
free vibration. 

2 Viscoelastically size-dependent coupled nonlinear models 

In the CCST, the equilibrium equations are formulated as Hadjesfandiari and Dargush (2013): 

, 0ji j if     (1) 

, 0ji j ijk jk      (2) 

In the above equations, σji and µji are the force and couple-stress tensors while fi and 𝜀ijk are the body force per 
volume unit and the permutation tensor. The µji equals to zero for the classical continuum mechanics. According to 
Hadjesfandiari and Dargush, in materials with couple stresses, body couples can be converted to a surface traction 
and equivalent body force Hadjesfandiari and Dargush (2013). Particularly, as mentioned before, they showed that 
the couple-stress tensor is skew-symmetric. Therefore, the force-stress tensor can be divided into the skew-
symmetric and symmetric parts: 

( ) [ ]ij ij ij      (3) 

In the above equation, [ ]ij and [ ]ij are the skew-symmetric and symmetric components of the force-stress 

tensor. 
In this paper, the continuum mechanic kinematics is defined based on the infinitesimal deformation. Thus, the 

gradient of displacement vector is divided into skew-symmetric and symmetric components 

,i j ij iju      (4) 

where 

( , ) , , [ , ] , ,

1 1

2 2ij i j i j j i ij i j i j j iu u u u u u               (5) 
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where εij and ωij are symmetric strain and skew-symmetric rotation tensors. The rotation vector is defined as 

1

2i ijk kj     (6) 

Decomposing the rotation vector gradient into two components results in: 

,i j ij ij      (7) 

where the 𝜒ij and 𝜅ij are symmetric and skew-symmetric tensors obtained from applying the strain and rotation 

operators to the rotation vector i . 

( , ) , , [ , ] , ,

1 1

2 2ij i j i j j i ij i j i j j i                     (8) 

According to the couple stress theory, the symmetric tensor 𝜒ij, as curvature tensor, is an important part in 
calculating strain energy. However, this tensor denotes the pure twists along the principal axes. Consequently, this 
symmetric tensor cannot participate as a fundamental element in measuring deformation in continuum mechanics 

Hadjesfandiari and Dargush (2013). However, in the CCST the skew-symmetric tensor ij  is assumed as a 

fundamental curvature tensor. The vectorial form of the curvature tensor is formulated as: 

1

2i ijk kj     (9) 

After defining the kinematic parameters, the force- and couple-stresses can be formulated. For the elastic 
isotropic materials, Hadjesfandiari and Dargush (2013) demonstrated that the couple stress can be defined as: 

8ij ij    (10) 

Furthermore, the skew-symmetric and symmetric components of the force-stress tensor are formulated as 
Hadjesfandiari and Dargush (2013). 

2
[ ] [ , ] , ,( )ij i j i j j iu u         (11) 

( ) 2ij ij kk ij       (12) 

where l is the material length-scale parameter and the 
2l  constant is the difference between the classic theory 

and CCST. Moreover, λ and μ are the time-dependent Lame's constants and ij is Kroncker delta. 

Therefore, according to the CCST, the strain energy for an isotropic material with volume V can be formulated 
as: 

 ( )

1

2 ij ij ij ij

V

U dV       (13) 

As mentioned before, the material of the nanoplate is assumed to have nonlinear viscoelasticity and follows 
from the nonlinear Leaderman's integral relation. According to this relation, Christensen and Freund (1971), for a 
viscoelastic structure the components of the couple-stress and force-stress tensors can be written as 

( ) 2ij ij kk ij           (14) 

2
[ ] , ,( )ij i j j iu u      (15) 

8ij ij      (16) 

where is the convolution operator defined as: 
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0

( )
( ) ( ) (0 ) ( ) ( )

( )

t g t
g t k t g k t k d

t

  


  
  

    (17) 

Based on the definition in Eq. (17), the Eqs. (14-16) can be rewritten as 

0 0

0

2 ( ) ( ) 2 ( ) ( )
t

e v
ij ij ij ij kk ij ij kk ijt t t d                              

  (18) 

0

0

8 ( ) 8 ( ) ( )
t

e v
ij ij ij ij ijt t d                    (19) 

where λ0 and μ0 are the Lame's constants in time zero and ( ) ( ) ( ) / 2(1 )t G t E t    .In addition, E (t) and G(t) are 

relaxation function and modulus of rigidity and ν is the time-independent Poisson ratio. The over dot (·) represents 
the derivative with respect to time. Therefore, due to the Eqs.(18-19) the stress tensor σ and couple stress tensor 
µ can be divided into two components. 

Considering the Cartesian system (x, y, z) where xy-plane is coincident with the geometrical mid-plane of the 
undeformed nanoplate, the displacement field according to the Kirchhoff’s plate theory JE. (1989) can be 
formulated as: 

( , , ) , ( , , ) , ( , , )x y z

w w
u u x y t z v v x y t z w w x y t

x y

 
    

 
  (20) 

The variables u, v and w are the time-dependent displacements of the mid-surface in the x, y and z directions, 
respectively. Considering of the von-Karman non-linearity, the strain components of any point in the nanoplate are 
expressed as 

222 2

2 2

2

1 1

2 2

1
2

2

xx yy

xy

u w w v w w
z z

x x x y y y

u v w w w
z

y x x y x y

 



     
     
     

    
   

     

  
      

 
 
 

  (21) 

where 𝜀ij (i,j= x, y, z) are strain components. 
By substituting Eq. (20) in Eq. (5), the component of the rotation tensors are obtained as 

1

2
x y z

w w v u

y x x y
  

   
    
   

 
 
 

  (22) 

Similarly, from Eqs. (8) and (20), one can write 

2 2 2 2 2 2

2 2 2 2

1 1 1

4 4 2
yz xz xy

v u u v w w

x y y x y x x y
  

     
      

       

     
     
     

  (23) 

Replacing Eq. (21) into Eq. (18), the symmetrical stress components can be written as 
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222 2

0

2 2 2

222 2

2 2 2
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0
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( ) 1 1

(1 ) 2 2

(1 )

t

v

xx
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yy

e
xx

E u w w v w w
z z

x x x y y y

E t u w w v w w
z z d

x x x y y y

E v
z

y

 



  






     
     

      

      
      

      


 

 

      
             

      
             




2 22 2

2 2

2 22 2

2 2 2

0

2

0

1 1

2 2

( ) 1 1

(1 ) 2 2

2

t

v

yy

e

xy

w w u w w
z

y y x x x

E t v w w u w w
z z d

y y y x x x

u v w w w
G z

y x x y x y




  





    
   

    

      
     

      

    
   

     

      
            

      
            

 






2

0

( ) 2
t

v
xy

u v w w w
G t z d

y x x y x y
      

    
     




 
 
 

 

  (24) 

Similarly, after substituting Eq. (23) into Eq. (19), the skew-symmetric couple stress can be written as 

2 2 2 2

2 2

0 2 2

0

2 2 2 2

2 2

0 2 2

0

2 2 2 2

2 2

0 2 2 2

2 2 ( )

2 2 ( )

4 4 ( )

t

t

v v

xx yy

e v
xx xx

e v
zz xx

v u v u
l l t d

x y y x y y

u v u v
l l t d

x y x x y x

w w w w
l l t

y x y x

     

     

    

   
      

     

   
      

     

   
    

   

   
   
   
   
   
   
 
 
 










2

t

o

d
 
 
 



  (25) 

In order to derive the governing motion equations of the viscoelastic nanoplate, the well-known Hamilton's 
principle is used 

 
2

1

0
t

t

K U W dt       (26) 

where, δ is the variational operator, U and W are the kinetic energy, elastic strain energy and non-conservative 
forces such as viscous dissipation or virtual work of external forces, respectively. Therefore, the virtual work of the 
non-conservative forces can be decomposed into the virtual work of external forces δWext and the virtual work of 
viscous dissipative forces δWvis. Hence, we get 

ext visW W W      (27) 

Replacing Eq. (27) into Eq. (26), the generalized Hamilton's principle can be rewritten as 

 
2

1

0
t

ext vis

t

K U W W dt          (28) 

According to the CCST, the first variational of elastic strain energy is obtained from Eq. (29) 

( . . )e e
ij ij ij ijU dv        (29) 

Integration on volume for homogenous rectangular nanoplate can be written as 
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2

2

h

hV A

F dV F dz dA


     (30) 

Substituting Eqs. (30), (21) and (23) into Eq. (29), integrating by parts and after some algebraic processes, the 
Eq. (29) can be written as Eq. (31) 


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  (31) 

where 

( )e exx exy exy eyy

w w w w
P w N N N N

x x y y x y

     
   
     

   
   
   

  (32) 

By integrating stress and couple along the thickness of the nanoplate, the resultants are obtained as 

/2 /2 /2

/2 /2 /2

h h h
e v e

eij ij eij ij eij ij

h h h

N dz R dz M z dz  
  

       (33) 

Similarly, the first variational of virtual work of the viscous dissipative forces can be defined as 

( . . )v v
vis vis ij ij ij ijW U dv          (34) 

Substituting Eqs. (30), (21) and (23) into Eq. (34), and integrating by parts results in the Eq. (35) 
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  (35) 

where 

( )v vxx vxy vxy vyy

w w w w
P w N N N N

x x y y x y
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  (36) 

Similarly, the viscous stress and couple of resultants can be defined as 

/ 2 / 2

/2 / 2

/2

/2

h h

vij vij

h h

h
v v v
ij ij vij ij

h

N dz R m dz M z dz 
  

       (37) 

The first variational of kinetic energy is given as 
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x x y y z zK u u u u u u dV                 (38) 

In the Eq. (38) and throughout this paper, the overhead “·” and“··” denote, respectively, the first and second 
time derivatives. In addition, ρ is the mass density of the nanoplate. Derivation of Eq. (20) with respect to the time 
and replacing in Eq. (27) gives Eq.(39) 

  0 2

1
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  (39) 

Where 

   
2

2

0 1 2

2

1, , , ,

h

h

z z dz I I I


   (40) 

From the general expression of the external forces work in the CCST Hadjesfandiari and Dargush (2013), the 
first variational of virtual work performed by the applied forces on the viscoelastic nanoplate in the time interval 
[0, T] can be calculated as Ma et al. (2011) 

1 2 3

1 2 3
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


  (41) 

where Γ is the the middle surface boundary of the nanoplate Reddy and Kim (2012). In addition, (fx ,fy, fz) and the 
(cx, cy, cz) are, respectively, the body forces and the body couples, and (qx, qy, qz), (tx, ty, tz) and (sx, sy, sz) are, 
respectively, the tractions applied on Γ, the surface couple and Cauchy traction applied on A. In this paper, it is 
assumed that the nanoplate is only subjected to transverse force. 

Replacing the expressions for δU, δWvis, δK and δWext from the Eqs. (31), (35), (39) and (41) into Eq. (3) and 
integrating by parts, the size-dependent viscoelastically coupled governing equations of the motion based on the 
CCST can be obtained as Eq. (42) 
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  (42) 

where 
ij e i j v i jN N N  , 

i j e i j v i jM M M  , 
ij e ij v i jR R R  and ( ) e vP w P P  . 

The Equation (42) is the system of nonlinear integral-differential partial equations for a viscoelastic nanoplate 
based on the CCST. Proposed model includes an added length-scale parameter. As expected, the added material 
constant affects both of the current and the past history conditions, simultaneously. Additionally, with ignoring the 
past history term, the Eq. (42) is abridged into the size-depended CCST for elastic nanoplate, and with ignoring the 
size effect, namely l=0, it is abridged into the macro scale viscoelastic plate model. These facts clearly reveal the 
accuracy of our calculations during the derivation of governing equations. 
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The motion equations can be presented in the displacement terms (u,v,w) as 
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  (43-c) 

Where 
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  (44) 

For homogenous rectangular nanoplate, I1 becomes zero. 
The large amount of experimental results (Lee et al. 2005,Yan et al. 2009) proposed standard anelastic solid 

model for viscoelastic material. In this paper, this model is used to define the elastic modulus relaxation function. 
Therefore, it is defined as 

( ) tE t C De     (45) 

where γ is the relaxation coefficient. In addition, the E(t) value at t=0 indicates the initial elastic modulus E0. 
Introducing the following non-dimensional quantities 
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Eq. (45) can then be expressed in dimensionless form as 

( ) tn t C D e     (47) 

In order to non-dimensionalize the governing equation, the following dimensionless parameters are 
introduced 
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where c is the damping coefficient. 
The solutions of the simply supported immovable rectangular nanoplates can be assumed as Niyogi (1973) 
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where α=mπ and β=nπ. The simply supported immovable boundary conditions of the rectangular nonlinear 
nanoplate are satisfied with this consideration in Eq. (49). In addition, the u and v consideration satisfy the Eq. (43-
a) and Eq.(43-b), simultaneously. As mentioned above, in this paper, it is assumed that the nanoplate is subjected 
only to the harmonic distributed force, f cosΩt per unit of the surface, in the z direction. The non-dimensional 
transverse harmonic load amplitude 𝑓 is expanded into the double-Fourier sine series as 

1 1
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  (50) 

where 
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  (51) 

Inserting Eq. (49) into Eq. (43-c), the residue can be obtained after some algebraic processes: (with 
dropping the asterisk notation for brevity) 
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Using Bubnov–Galerkin approach and setting the integral to zero, the expression of Ë is obtained as Eq. (54) 
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  (54) 

The above equation can be solved with the fourth-order Runge-Kutta method after some algebraic processes 
Fu and Zhang (2009). Furthermore, in this paper, the HBM method is applied to solve the above equation Mickens 
(2010). Considering the periodic solution of the first-order approximation as the following form and substituting 
in Eq.(54), one gets Eq.(56) 
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By ignoring higher frequency, 3Ω, and applying the steady-state condition the following polynomial equation 
is obtained 
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Solving the Eq.(58) gives the amplitude of the nanosystem response subjected to harmonic force. The real and 
positive roots of Eq.(58) are acceptable. 

3 Free vibration 

Nonlinear system frequencies highly depend on the vibration amplitude. The presence of the past history 
terms in Eq. (54) obtained from viscoelastic model changes the vibration amplitude over time. Therefore, the 
system nonlinearity effect changes over time and causes to change the system vibration frequency with time. In 
order to evaluate the initial excitation value and the viscoelastic relaxation time effects on the system natural 
frequencies, the short-time Fourier transform (STFT) is performed on the nanosystem model. The nanosystem 
under consideration is assumed to be made of epoxy with the following mechanical and geometric properties: 

0
2 , 0 .1, 0 .0 1 , 0 .0 2l h a h b     ,

3
1 .4 4 , 1 2 2 0 / , 0 .3 8E G P a K g m     0.7, 0.3C D   

 
Figure 1. STFT spectrum at l0 =0.1 and 𝛾=1: (a–d) Dimensionless frequency respect dimensionless time for V0=75, 50, 

10 and 1, respectively. 
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Fig. 1 displays the STFT spectrum for the nanosystem with lo=0.1 and 𝛾=1 at four different initial excitation 
values equaling to 75, 50, 10 and 1 (1/s), respectively. The variation of natural frequency of the transverse motion 
over time spectrum is shown in this figure. Fig.1 (a-c) shows that for the initial excitation values equaling to 75, 50 
and 10, the natural frequency decreases as the time increases. Therefore, the viscoelastic nanosystem vibration is 
non-stationary at these conditions. Moreover, the presence of the nonlinear terms in the vibration equation causes 
to higher natural frequencies at bigger initial values. However, the Fig (1-d) shows that at initial value equaling 1 
(1/s), the viscoelastic model frequency does not change vs. time. This occurs because the nanosystem nonlinearity 
is weaker at smaller vibration amplitude. 

In order to understand the vibration response of the viscoelastic nanoplate, the deflection-time responses of 
the central point are presented in Fig.2 for two different initial conditions. The dashed and solid lines denote the 
deflection responses predicted by the Runge- Kutta method for length-scale ratios 0.1 and 0.25, respectively. It can 
be seen that the vibration frequency displayed by the dashed line is smaller than the solid line. 

 
Figure 2. Vibration response of the center deflection vs. time for the viscoelastic nanoplate at diferente length-scale 

ratios; (a) X0=1, V0=0 and (b) X0=0, V0=1 

4 Dynamic response analysis 

The nonlinear dynamic response of the nanosystem is studied in this section with illustrating the frequency- 
and force-responses obtained based on HBM method. Furthermore the outcomes are validated by the Runge-Kutta 
method and previous results. 

Fig. 3 demonstrates the frequency responses of the viscoelastic nanoplate for the out-of-plane and in-plane 
motions. The dimensionless relaxation coefficient 𝛾 is set to 5 and amplitude of the dimensionless distributed 
transverse force f  is set to 30. The horizontal axis values, i.e., distributed load frequencies, are normalized with 
natural frequencies of ù1,1 = 16, obtained via an eigenvalue analysis. The solid and dashed lines are predicted by 
the HBM method and the dotted symbols are obtained by Runge-kutta method. 

 
Figure 3. Frequency-response curves of viscoelastic nanosystem. a the out-of-plane motion maximum amplitude at 

midplane ; b, c the in-plane motions maximum amplitude at x=y = 3/4; l0=0.1, f=30 and 𝛾=5 

 

This figure shows that all of the motions have hardening type nonlinearities. Moreover, two saddle node 
bifurcations are seen in the figure corresponding to Ω =1.50 ù1,1 and Ω =1.19 ù11,1. The first one corresponds to 
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instability beginning and the second one corresponds to stability recapturing. The transverse and longitudinal 
responses of the nanosystem at x=y=0.5 and x=y=3/4, respectively for Ω = 1.50 ù1,1 are plotted in Fig. 4. It is 
observed that the nanosystem has a periodic motion. The results show that the in-plane motions, the frequency is 
much larger than the out-of-plane motion. Moreover, the transverse motion amplitude equals to 0.1 that can be 
found at lower branch around the first saddle node bifurcations in Fig. (3-a). 

 
Figure 4. Dynamic response of the viscoelastic nanosystem at Ω =1.5 ù1,1; a and b,c time history of the out-of-plane and 

in-plane motions, respectively 

 

The frequency response of the viscoelastic and elastic models are compared with each other at different 
applied force amplitudes in Fig.5. The out-of-plane motion response at x=y=0.5 and in-plane motion response at 
x=y=3/4 are depicted in this figure. The dimensionless relaxation coefficient is set to 𝛾 =5 for viscoelastic model 
and in elastic model ã is set to zero in Eq.(54) and linear damping with damping “c” is added to the model. The value 
of the dimensionless damping coefficient is tuned in order to have similar prediction at smaller forcing amplitude 
c =0.93. The results show that these models predict different response amplitudes at smaller frequency ratios and 
especially at resonance frequency. As seen in the figure, the maximum amplitude of the elastic model with linear 
damping is bigger than the viscoelastic model counterpart. More especially, the maximum amplitudes at f =30 for 
out-of-plane motion are 1.5 and 1.63 for the viscoelastic and elastic models, respectively. This figure shows the 
importance of using the viscoelastic model at higher applied forces with respect to the elastic model with linear 
damping. 

Fig. 6 demonstrates the viscoelasticity effect on the resonance frequency of the viscoelastic nanoplate. In order 
to depict this figure, the resonance frequency, excitation frequency of the maximum amplitude, corresponds to the 
frequency response curve of each applied force amplitude that is obtained for elastic model with c=0.93 and 
viscoelastic models with 𝛾 =5. Then, these resonance frequencies are plotted versus forcing amplitudes at Fig.6. It 
can be seen that, at the forcing amplitude equaling to 1, both models predict the same results but with increasing 
the applied force amplitude, the difference between the two models becomes more obvious. More especially, at the 
same forcing frequency, the viscoelastic model predicts smaller resonance frequency than the elastic model with 
linear damping. For instance, at f=100, the viscoelastic model resonance occurs at Ω = 2.7 ù1,1 while the elastic one 
predicts at Ω = 4.4 ù1,1 i.e. with 63% difference. It can be concluded that damping mechanism of the viscoelasticity 
is amplitude-dependent. In addition, the viscoelasticity reduces the hardening behavior of the nanosystem. 
Therefore, it is expected that viscoelastic model predicts more reliable dynamic behavior than the elastic model 
with linear damping. 

The effect of the dimensionless relaxation coefficient (𝛾) on the resonance frequency and maximum amplitude 
of the out-of-plane oscillation, at x=y = 0.5, of the nanosystem is highlighted in Fig. 7(a–b). The forcing amplitude 
is selected f=30. In Fig. 7 the frequency response is depicted for various dimensionless relaxation coefficients (from 
0 to 5); then, the resonance frequency and its corresponding amplitude are plotted in Fig.7. It can be seen that, as 
the dimensionless relaxation coefficient is increased, the resonance frequency and its corresponding amplitude are 
decreased to smaller values due to the dissipation of the nanosystem energy. Hence, the nanosystem hardening 
behavior reduces with increasing the relaxation coefficient. 
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Figure 5. Frequency response of the viscoelastic, 𝛾=5, and elastic with c=0.93, damping nanoplate for different applied 

force amplitudes: a the out-of-plane motion maximum amplitude at midplane ; b, c the in-plane motions maximum 
amplitude at x=y = 3/4, l0=0.1(solid line elastic model with linear damping and dashed line viscoelastic model) 
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Figure 6. Applied Force amplitude versus the resonance frequency for elastic model with linear damping, c=0.93,and 

viscoelastic model of the nanosystem 

 
Figure 7. Dimensionless relaxation coefficient effect on resonance frequency and maximum amplitude of the oscillation 

(at f=30 and l0=0.1) 

 

The frequency response of the viscoelastic nanoplate predicted by means of the CCST and the classical 
continuum theory are demonstrated in Fig. 8 for the case of f=30, lo=0.25 and 𝛾 =5.This figure highlights more the 
importance of employing the CCST in comparison with the classical continuum mechanics theory. As seen in the 
figure, both theories predict the hardening type nonlinear behavior. The peak-amplitude values of the out-of-plane 
and in-plane motions are larger for the case of the classical continuum theory. Furthermore, it can be seen that the 
resonance frequency are Ω=23.90 and Ω=24.24 for the case of the classical continuum and CCS theories, 
respectively. The natural frequency predicted for this nanosystem via CCST theory is larger than classical 
continuum mechanics one and this is the reason why the resonant region shifts to the larger excitation frequencies. 
Furthermore, dynamic response of the viscoelastic nanosystem at Ω= 24.24 for the transverse and longitudinal 
motions are depicted in the framework of the CCST and classical continuum theories in Fig.9. It can be seen that 
both theories predict periodic motions. 
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Figure 8. Frequency response of the viscoelastic nanoplate, predicted by means of the classical continuum theory and 
CCST. a the out-of-plane motion maximum amplitude at midplane; b, c the in-plane motions maximum amplitude at x 

=y= 3/4, respectively; f = 30, 𝛾= 5 and l0=0.25 

 

The force-response of the viscoelastic nanoplate obtained by means of the classical continuum and CCS 
theories are depicted in Fig.10. The dimensionless relaxation coefficient, excitation frequency and length-scale 
parameter are set to 5, 18 and 0.25, respectively. The solid and dashed lines are predicted by the HBM and the 
dotted symbols are obtained by the Runge-Kutta method. This figure reveals that the CCST and classical continuum 
theory predict different response paths. Particularly, response amplitude of the CCST increases slowly with the 
applied force amplitude and no jumps or bifurcations are seen in its response. In addition, the overall amplitude 
predicted with this theory is much smaller than the classical continuum theory one at bigger applied force. However 
for the classical continuum theory, as force amplitude is increased, the amplitude of the response increases and 
then jumps to a higher value. Decreasing the applied force amplitude, because of the nonlinearity that exists in the 
nanosystem, causes the response amplitude to decrease and then second jump happens to the smaller amplitude 
response. These characteristics are for all the out-of-plane and in-plane motions of the viscoelastic nanoplate. 

 
Figure 9. Dynamic response of the viscoelastic nanoplate at Ω= 24.24; a–c time history of the out-of-plane and in-plane 

motions. (Solid and dashed lines correspond to classical continuum theory and CCST results, respectively) 
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Figure 10. Force response of the viscoelastic nanoplate, 𝛾= 5, predicted by means of classical continuum theory and 

CCST at Ω=18. a the out-of-plane motion maximum amplitude at midplane; b, c the in-plane motions maximum 
amplitude at x =y= 3/4, respectively (dotted symbols predicted by Rung-Kutta method) 

 
Figure 11. Force response of viscoelastic nanoplate at different frequency ratio; a the out-of-plane motion maximum 

amplitude at midplane ; b, c the in-plane motions maximum amplitude at x=y = 3/4; l0=0.1, and 𝛾=5 

 

The force response of the mentioned, out-of-plane and in-plane, motions at different normalized frequency 
and 𝛾 =5 are plotted in Fig. 11. It can be seen that as the applied force amplitude increases, the response amplitude 
also increases gradually for the Ω/ ù1,1≤1 while no bifurcations and jumps are seen in the response path. However, 
at the normalized frequencies equaling to 1.1 and 1.05, more than unity, by increasing the applied force amplitude, 
the response amplitude becomes larger and then shifts to a larger value. This phenomenon, saddle node bifurcation, 
relates to jumping between stable branches. In addition, as the force amplitude is increased, the response 
amplitudes for all of these motions increase while the magnitude and the increasing rate of the responses are 
different. 

The accuracy of the HBM performed in the present work are also validated by plotting the transverse motion 
frequency response for an elastic macroplate with linear damping, simplified model with l0=0, and comparing it 
with the given frequency response in Amabili (2004) in Fig.12. As the figure shows, there is a good agreement 
between results. Therefore, the validity of the current simulation and the accuracy of the numerical calculations are 
partially proved. 
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Figure 12. The marcoplate transverse motion frequency response: dotted symbol and solid line obtained by present 

model and Amabili (2004), respectively. 

5 Conclusion 

This paper analyzed the non-stationary free vibration and nonlinear dynamic behavior of the viscoelastic 
microplates. For this purpose, a size-dependent model was developed for viscoelastic material based on the CCST. 
As described, the first version of the couple stress theory suffers from some problems. Hence, its first version was 
not used widely. In addition, its modification called MCST used some doubtful assumptions. This paper used the 
recent theory, CCST, which solved the associated problems. The material was supposed to follow the Leaderman 
integral nonlinear relation. Additionally, in order to capture the geometrical nonlinearity, the von–Karman strain-
displacement relation was used. The viscous parts of the size-independent and size-dependent stress tensors are 
derived by means of the Leaderman integral and their virtual work terms are obtained. The governing equations of 
motion were derived using the Hamilton's principle in the form of the nonlinear second-order integro-partial 
differential equations with coupled terms. These size-dependent viscoelastically coupled equations are solved with 
incorporating the expansion theory and HBM. The short-time Fourier transform were performed to investigate the 
system free vibration. The effects of the initial excitation values and length scales as well as the viscoelastic 
parameter on the system vibration are also examined. In addition, frequency and force response curves of the 
nanosystem subjected to distributive harmonic load were obtained based on the HBM and forth-order Runge-Kutta 
method. 

The STFT analysis showed that the vibration of the nanosystem with viscoelastic model is non-stationary at 
higher initial excitation values unlike the elastic model. However, the system frequencies do not change with time 
at smaller initial values. Moreover, the presence of the nonlinear terms in vibration equation causes higher natural 
frequencies at larger initial values. 

The nonlinear analysis showed that out-of-plane and in-plane motions displayed hardening type 
nonlinearities. Moreover, two saddle node bifurcations are seen in the frequency response of this nanosystem. In 
addition, the resonance frequency and its corresponding amplitude for all of these motions are increased with 
increasing the amplitude of the applied force. These reveal that the nanosystem displayed stronger hardening type 
nonlinearities at larger forcing amplitudes. In addition, it was shown that damping mechanism of the viscoelasticity 
is amplitude-dependent. Moreover, the viscoelasticity reduces the hardening behavior of the nanosystem. More 
specifically, the difference between the elastic model with linear damping and viscoelastic model was more obvious 
at larger amplitude of the applied force. The obtained results showed that, as the dimensionless relaxation 
coefficient is increased, the resonance frequency and its corresponding amplitude decreased to smaller values due 
to the dissipation of the nanosystem energy. Hence, the nonlinearities of the nanosystem become weaker. It was 
observed that, the CCST predicted the resonant frequency at bigger excitation frequencies than the classical 
continuum theory. Furthermore, the CCST predicted no saddle node bifurcation where the classical continuum 
theory predicts two nodes. Furthermore, the overall amplitudes predicted by this theory for out-of-plane and in-
plane motions were much larger than the classical continuum ones at higher applied forces. 
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6 Nomenclature 

a,b nanoplate length 
and width 

E relaxation function c damping coefficient 

f Body force G modulus of rigidity h nanoplate thickness 
K kinetic energy t time U elastic strain energy 

A,V nanoplate Area and 
Volume 

W non-conseravtive 
forces virtual work 

X0, V0 Initial displacement 
and velocity 
conditions 

Greek symbols 
ó Force stress tensors 𝜀 permutation tensor 𝜅 curvature tensor 
µ Couple-stress 

tensors 
ω Rotation tensor l length-scale 

parameter 
µ Lame constants 𝜒 curvature tensor λ Lame constants 
õ Poisson ratio 𝛾 relaxation coefficient l0 length-scale ratio 
𝜌 Density Ω External load 

frequency 
  

Subscript 
e Elastic v Plastic vis Viscous forces 

ext External forces     
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