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Abstract 
The R-functions theory and Ritz approach are applied for analysis of free vibrations of laminated functionally 
graded shallow shells with different types of curvatures and complex planforms. Shallow shells are considered 
as sandwich shells of different types: a) face sheets of the shallow shells are made of a functionally graded 
material (FGM) and their cores are made of an isotropic material; b) face sheets of the shallow shells are 
isotropic, but the core is made of FGM. It is assumed that FGM layers are made of a mixture of metal and 
ceramics and effective material properties of layers are varied accordingly to Voigt’s rule. Formulation of the 
problem is carried out using the first-order (Timoshenko’s type) refined theory of shallow shells. Different 
types of boundary conditions, including clamped, simply supported, free edge and their combinations, are 
studied. The proposed method and the created computer code have been examined on test problems for 
shallow shells with rectangular planforms. In order to demonstrate the possibility of the developed approach, 
novel results for laminated FGM shallow shells with cut of the complex form are presented. Effects of different 
material distributions, mechanical properties of the constituent materials, lamination scheme, boundary 
conditions and geometrical parameters on natural frequencies are shown and analyzed. 

Keywords: 
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1. Introduction 

The laminated functionally graded shallow shells play an important role in numerous engineering 
applications. According to the pioneering works of Koizumi [1] and Yamanouchi et al. [2], the functionally graded 
materials (FGMs) can be considered as a new class of composite materials used extensively for manufacturing of 
shell structural elements. The main advantages of these materials in comparison with conventional composite 
materials are the smoothness and continuous change of material properties along the thickness of an object. This 
allows to remove the appearance of stress concentration that is found in laminated composites. In addition, the 
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graduation of material properties along the shell thickness allows for fabrication of the laminated composite 
shells with tailored properties of the shells. 

In recent years, an extensive research aimed at static/dynamic analysis of these shells, including interaction 
of the mechanical, thermal, and electric fields, has been observed in the field of analysis of FGM shells. Since it 
is impossible to review all papers focused on free vibrations of FGM shells and plates, we analyze papers that are 
closely related to our investigations. 

Liew et al. [3] have provided solutions to the thermal stress behavior of a functionally graded circular hollow 
cylinder,r where the temperature distribution has been assumed in the radial direction. Pelletier and Vel [ 4] have 
proposed an exact solution to the problem of steady-state thermoelastic response of FGM orthotropic cylindrical 
shells. 

Arciniega and Reddy [5] have carried out large deformation analysis of FGM shells. The tensor -based finite 
element formulation and the first-order shear deformation theory (seven parameters) have been employed to 
derive the FG shell finite element. The validity of the presented approach has been illustrated by a few numerical 
examples. 

Zhao and Liew [6] have studied a nonlinear response of FG ceramic-metal shell panels under mechanical and 
thermal fields. The geometric nonlinearity has been introduced in the von Kármán form and the material 
properties have been assumed to vary through the shell thickness. The full load-displacement path has been 
traced by employment of the arc-length method combined with the modified Newton-Rophson technique. Effects 
of the volume fraction exponent boundary conditions and material properties versus nonlinear shell response 
have been illustrated. 

Iqbal et al. [7] have considered dynamic characteristics of FG cylindrical shells based on the wave 
propagation approach. Tornabene [8] and Tornabene et al. [9] have carried out an analysis of vibrations of FG 
conical, cylindrical, and annular shell structures. Yang et al. [10] have studied vibrations of curved shell using B-
spline wavelet combined with the finite elements method. 

Neves et al. [11] have considered free vibration problems of FG shells by employing the radial basis functions 
collocation. The used approach has been validated by numerical results dealing with the cylindrical and spherical 
shells with clamped/simply supported edges. Ebrahimi and Najafizadeh [12] have studied free vibrations of a 2D 
functionally graded cylindrical shell. Governing PDEs and boundary conditions have been discretized usi ng the 
generalized differential/integral quadrative method. The Voigt and Mori -Tanaka models have been used to 
describe the material properties, and the obtained results have been validated with the data available in the 
literature. Free vibration analysis of the FGM truncated conical shells, circular cylindrical shells, and annular 
plates has been investigated by Ersoy et al. [13]. Authors have applied the method of discrete singular 
convolution and the method differential quadrature to solve problems in f rame of higher-order shear 
deformation theory. Many researchers have been studying free vibrations of composite shell structures 
reinforced by carbon nanotubes (CNTs). One of the last papers devoted to this topic is the paper by Zgnarl et.al 
[14]. Authors of this paper have considered linear free vibration of the shells made of functionally graded carbon 
nanotube composites. The proposed refined model based on a discrete double directors shell element has been 
used. 

The geometrically nonlinear analysis of functionally graded shells has been carried out by Daszkiewicz et al. 
[15] by employing the 6-parameter shell theory. The 2D Cosserat constitutive model yielded constitutive relation 
for the considered shells, and in particular, the influence of power -law exponent and micropolar material 
constants on the functionally graded shell properties have been investigated.  

Mars et al. [16] have employed the geometrically nonlinear study of functionally graded shells by using 
Abaqus software. Static responses of several structural problems have been compared with reference solutions 
to validate the obtained results. 

In general, various shell theories were developed for mathematical simulation of the shells made of 
functionally graded materials. Particularly, the classical theory (CST), the first-order refined theory (FSDT), and 
the higher-order shear deformation theory (HSDT) are the most commonly used for shallow shells. As it has been 
already mentioned, analyses of vibrations of the laminated and FGM shallow shells has been carried out by many 
investigator (see also [17-23]). Extensive literature reviews concerning the mentioned issues have been reported 
in references [24-29]. Recently, nonlinear free and forced vibrations of the FG shells have been extensively 
studied in addition to the linear vibrations [30-39]. Joint application of the FGM and pure metallic and ceramic is 
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widely used for design of many elements of the modern constructions. However, the number of publications 
devoted to the study of multilayered FGM shallow shells is relatively small [40-43]. 

Especially, this applies to shells with a cutout, a complicated shape of the plan, and various kinds of boundary 
conditions. To study FGM shells with free cutouts, many researchers use the Ritz method. However, th ere are 
practically no papers in which multilayer FGM shells with fixed cutouts have been investigated, despite the fact 
that such objects occur quite often in practice. From our point of view, this is due to the fact that it is difficult to 
construct a system of coordinate functions satisfying the main boundary conditions without applying the R -
functions theory. In addition, problems of graded shallow shells with complex shapes, different cutouts, holes, 
etc., and various boundary conditions have been rarely studied in the available literature. 

The main aim of this paper is to present efficient and enough universal approach, which has been developed 
for laminated FG shallow shells and is based on the joint application of the R -functions theory and variational 
Ritz method. Formulation of the problem is carried out using the first -order refined shallow shells theory (FSDT). 

So far, this approach has been used for multilayer shells and plates or structural members made only from 
FGM [44-47]. In this paper, this method is extended to multilayer shells, provided that some of the layers are 
made of FGM. Namely, this approach is applied to three-layer shallow shells like sandwich ones. Two types of 
lamination schemes are considered. Type 1-2 corresponds to sandwich shallow shells with FGM face sheets and 
an isotropic core. Type 2-2 describes sandwich shallow shells with isotropic face sheets (pure ceramics or metal), 
and a core made of FGM. It is assumed that FGM layers are made of a mixture of metal and ceramics and  that 
effective material properties of layers are varied according to Voigt’s rule. Analytical expressions for the 
mechanical characteristics of the shell are presented for different locations of isotropic and FGM layers obtained 
after integration over the total thickness of the shell. 

The proposed method is validated by investigation of test problems for shallow shells with rectangular 
planforms and different boundary conditions. The current method is applied to novel vibration problems for 
double curved shallow shells with a complex form of the cutout. 

It should be noticed that joint application of the R-functions theory and variational Ritz method yields 
relatively fast and reliable results even in the case of complex shapes of the graded shallow shells, which, on 
contrary to the widely used finite element method, allows one to control vibrations of the studied shells. One of 
the main advantages of the proposed approach is the presentation of the solution in an analytic form, which is 
an important factor in studying of nonlinear vibrations of the shells under consideration.  

2. Mathematical formulation 

Consider a three-layer functionally graded shallow shell with a uniform thickness h. It is assumed that the FGM 
layers are made of a mixture of ceramics and metals. A double curved shallow shell can have an arbitrary planform. The 
effective material properties of layers vary continuously and smoothly in thickness direction and may be estimated by 
the following Voigt’s law: 

                                
, ,

r r r r r r r r r r r r r r r

u l c l u l c l u l c lE E E V E V V                 (1) 

where      
, ,

r r r

u u uE    and      
, ,

r r r

l l lE    are Young’s modulus, Poisson’s ratio and mass density of the upper and lower 

surfaces of the r -layer, respectively;  r

cV  is the volume fraction of ceramic. As an example, the value  r

cV  is reported 

for the scheme lamination of types 1-2 and 2-2 in Table 1. 
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Table 1. Value of volume fraction  r

cV  for two types of laminated FGM shallow shells 

  

Type 1-2 Type 2-2 

 

 

 
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3

1 1

1

1

2

1 2
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/ 2
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c

c

p

c

z h
V z h h

h h

V z h h

z h
V z h h

h h

  
    

   


 


      
  

 

 

 

2

1

1

2 2

1 2

3

2

0, [ / 2, ],

, [ , ],
/ 2

1, [ , / 2]

c

p

c

c

V z h h

z h
V z h h

h h

V z h h

   

  

   
 

  
  

Shallow shells of type 1-2 correspond to sandwich shallow shells with FGM face sheets and isotropic (metal) core 
(Table 1). The shells of the type 2-2 correspond to sandwich shallow shells with FGM core and ceramics on the top face 
sheet and metal on the bottom face sheet (Table 1). 

It should be emphasized that the values 
1 2 3, ,p p p  are the power law FGM exponents of the corresponding layer. 

The thickness of the layers may be varied. The ratio of thickness of layers from bottom to top is denoted by the 
combination of three numbers. For example, “1-2-1” denotes that ratio of thickness of the layers is defined as

     1 2 3
: : 1: 2 :1,h h h   where:    1 2

1 2 1/ 2, ,h h h h h h      3

2/ 2h h h   (see Table 1). 

Owing to the first-order shear deformation theory for the shallow shell (FSDT), the displacements components 

1 2 3, ,u u u  at a point ( , , )x y z  are expressed as functions of the middle surface displacements ,u v  and w  in the ,Ox Oy  

and Oz  directions and the independent rotations ,x y   of the transverse normal to the middle surface about the Oy  

and Ox  axes, respectively [3-6], i.e. we have 

1 2 3, ,x yu u z u v z u w       (2) 

The paper is organized in the following way. The mathematical formulation of the considered problem is given in 
Section 2. The method of solution is presented in Section 3, whereas Section 4 contains the numerical results. The last 
Section 5 concludes the carried out research. 

Strain components  11 22 12; ;
T

    ,  11 22 12; ;
T

     at an arbitrary point of the shallow shell are as follows: 

11 22 12, / , / , , ,x x y y y xu w R v w R u v         (3) 

13 23, , ,x x y yw w       , 11 22 12, , , , ,x x y y x y y x           

In-plane force resultant vector  11 22 12, ,
T

N N N N , bending and twisting moments resultant vector 

 11 22 12, ,
T

M M M M  and transverse shear force resultant  ,
T

x yQ Q Q  are calculated by integration along Oz -axes. 

They are defined by the following relation 



Vibration analysis of laminated functionally graded shallow shells with clamped cutout of the complex 
form by the Ritz method and the R-functions theory 

Lidiya Kurpa et al. 

Latin American Journal of Solids and Structures, 2019, 16(1 Thematic Section), e95 5/16 

11 12 11 1211 11

21 22 21 2222 22

66 6612 12

11 11 12 11 12 11

22 21 22 21 22 22

12 66 66 12

0 0

0 0

0 0 0 0
.

0 0

0 0

0 0 0 0

A A B BN

A A B BN

A BN

M B B D D

M B B D D

M B D













    
    
    
    

     
    
    
    
        

 (4) 

The elements , ,ij ij ijA B D  of the matrix (4) have the following explicit forms 

 
13

1

r

r

z

r

ij ij

r z

A Q dz




  , 
 

13

1

r

r

z

r

ij ij

r z

B Q zdz




   
 

13
2

1

r

r

z

r

ij ij

r z

D Q z dz




   (5) 

The values    , 1,2,6
r

ijQ i j   are defined by the following expressions 

   
 

  
11 22 2

1

r
r r

r

E
Q Q


 


, 

 
   

  
12 2

,

1

r r
r

r

E
Q







 

 
 

  
66 ,

2 1

r
r

r

E
Q





 

and the transverse shear force resultants
xQ , yQ  have the following form 

2 2

33 13 33 23,x s y sQ K A Q K A   , (6) 

where 2

sK  denotes the shear correction factor. In this paper, we take 2

sK = 5 / 6 . 

Further we will consider materials with Poisson’s ratio independent of temperature and the same for both ceramics 
and metal, i.e. 

m c  . This assumption allows to compute the coefficients , ,ij ij ijA B D . Analytical expressions of these 

coefficients for shells of Types 1-2 and 2-2 are presented below provided that the following notation is employed: 

1 2

1 1
1 , 2 , 1 , 2 , .

2 2 2 1 2 2
cm c m

h h
as h as h bs bs E E E

as as

 
        
 

 (7) 

Type 1-2: 

11 2

1 3

1 1 2
,

1 11
cm m

as as
A E E h

p p

  
          

 (8) 

1 2

11 2

1 1 3 3

1 2
1 2 ,

1 2 1 21

cmE h has as
as as

p p p p

   
               

B  (9) 

2 22 2
31 2

11 1 22

1 1 1 3 3 3

1 2 1 1 2 2
1 2 2

1 2 3 3 2 1 121

m

cm

Eh has as as as
D E as h as h h h

p p p p p p

    
                       

 (10) 

Type 2-2: 
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 2 1

11 22

2

1
,

1 21
cm c m

h h h
A E h E E

p

  
         

 (11) 

2
21

11 2 22

2 2

1 1
,

2 1 2 41

cmE has h
h h

p p

    
             

B  (12) 

 2 32
31 2

11 12

2 2 2

1 2 1 1
1 .

1 2 3 3 241

m c

cm

E Eh has as
D E as h h

p p p

    
               

 (13) 

Notice that values 
12 66 12 66 12 66, ,. , , ,A A B B D D  for all types of the lamination schemes are defined in the following way: 

12 11 22 11 66 11

1
, , ,

2
R R R R R R





    (14) 

where symbol R is common for letters A,B, and D. 

3. Method of solution 

In order to solve the free vibration problem, let us present a vector of unknown functions as 

     

     

( ( , , ), , , , , , , , , , ( , , ))

( , , ( , ), , , , , ( , ))sin ,

x y

x y

U u x y t v x y t w x y t x y t x y t

U u x y v x y w x y x y x y t

 

  




 (15) 

where   is the vibration frequency. Applying the Ostrogradskiy-Hamilton principle, we get the variational equation in 
the form 

0I  , (16) 

where 

 2( , , , , ) , , , ,x y x yI U u v w T u v w     
. 

Strain U  and kinetic energy T  are defined by the following relations: 

 11 11 22 22 12 12 11 11 22 22 12 12 13 23

1
,

2
x yU N N N M M M Q Q dxdy       



         (17) 

     2 2 2 2 2

0 1 2

1
2 ,

2
x y x yT I u v w I u v I dxdy   



        (18) 

where 0 1 2, ,I I I  are defined as follows 
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     
13

2

0 1 2

1

, , 1, ,
r

r

z

r

r z

I I I z z dz




   

and stands ρ(r) for mass density of r-th layer. 

Below, analytical expressions for these integrals are presented provided that m c 
. 

Type 1-2: 

0 2

1 3

1 2 1
,

1 1 1
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
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 
, (22) 

2
21

1 2 2

2 2

1 1

2 1 2 4
cm

has h
I h h

p p


    
             

, (23) 

 2 32
31 2

2 1

2 2 2

2 1 1
1

1 2 3 3 24

m c

cm

h has as
I as h h

p p p

 


   
           

. (24) 

Minimization of the functional (16) will be performed using Ritz’s method. On the other hand, the necessary 
sequence of coordinate functions will be constructed by the R-functions theory [42]. 

4. Numerical results 

In order to verify the accuracy of the results obtained by the proposed approach, abbreviated to RFM (R-functions 
method) [44-47], we consider the solution of several test problems. Solving presented problems is carried out by created 
software in framework of the computer system POLE-Rl [ 48] 

4.1. Validation of the presented results 

Task 1. Natural frequencies of the laminated FGM square shallow shells of Type 1-2 and 2-2 with various boundary 
conditions and geometrical parameters: / 0.1; / 1; 0.2xh a b a a R    are analyzed. The power-law exponent for each 

FGM layer is taken to be 
1 2 3 .p p p p   The material constituents M1 and M2 are assumed to be aluminum and alumina 

[18,19,21,43]. The material properties of the FG mixture used in the present study are shown in Table 2. 
The boundary conditions are defined as follows: 

CCCC – the shell is clamped on sides , ;
2 2

a b
x y     

SSSS – the shell is simply supported on sides , ;
2 2

a b
x y     
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SFSF – the shell is free on sides 
2

a
x    and simply-supported on sides ;

2

b
y    

SCSC – the shell is simply supported on sides 
2

a
x    and clamped on sides .

2

b
y    

Table 2. Material properties of the used FGMs shallow shells 

Material Properties 

E(GPa) 
 

  3/kg m
 

Aluminum (Al) 70 0.3 2707 

Alumina (Al2O3) 380 0.3 3800 

Table 3. Comparison of fundamental frequency parameter 
 1 2

1 0 0/ /L a h E    of cylindrical and spherical shallow shells with 

square planform and various boundary conditions (Type 1-2). 

scheme p Methods Cylindrical shell 

k1=0.2, k2=0 

Spherical shell 

k1=k2=0.2 

SFSF SSSS CCCC SCSC SFSF SSSS CCCC SCSC 

1-0-1 0.6 [Jin G.et al 
(2015)] 

0.8843 1.8023 3.0433 2.4855 0.8924 1.8643 3.1027 2.5465 

RFM 0.8856 1.8070 3.0691 2.5032 0.8937 1.8689 3.1278 2.5636 

5 [Jin G.et al 
(2015)] 

0.7185 1.4566 2.4252 1.9894 0.7237 1.4982 2.4657 2.0308 

RFM 0.7198 1.4613 2.4493 2.0061 0.7250 1.5028 2.4894 2.0471 

20 [Jin G.et al 
(2015)] 

0.5681 1.1566 1.947 1.5919 0.5730 1.1948 1.9840 1.6296 

RFM 0.5689 1.1598 1.9644 1.6036 0.5739 1.1979 2.0007 1.6409 

1-1-1 0.6 [Jin G.et al 
(2015)] 

0.8656 1.7561 2.9305 2.4023 0.8722 1.8071 2.9807 2.4535 

RFM 0.8672 1.7617 2.9590 2.4220 0.8737 1.8131 3.0085 2.4726 

5 [Jin G.et al 
(2015)] 

0.6635 1.3462 2.2461 1.8414 0.6685 1.3857 2.2845 1.8806 

RFM 0.6647 1.3505 1.2680 1.8565 0.6697 1.3899 2.3059 1.8953 

20 [Jin G.et al 
(2015)] 

0.5369 1.0948 1.8506 1.5109 0.5419 1.1331 1.8871 1.5485 

RFM 0.5376 1.0976 1.8660 1.5215 0.5426 1.1358 1.9022 1.5587 

1-2-1 

 

0.6 [Jin G.et al 
(2015)] 

0.8326 1.6862 2/8005 2.2990, 0.8384 1.7330 2.8462 2.3455 

RFM 0.8342 1.6919 2.8291 2.3189 0.8400 1.7385 2.8742 2.3649 

5 [Jin G.et al 
(2015)] 

0.6274 1.2742 2.1318 1.7462 0.6323 1.3129 2.1693 1.7845 

RFM 0.6285 1.2781 2.1519 1.7601 0.6334 1.3167 2.3189 1.7980 

20 [Jin G.et al 
(2015)] 

0.5195 1.0605 1.7969 1.4659 0.5246 1.0989 1.8335 1.5036 

RFM 0.5202 1.0631 1.8115 1.4759 0.5253 1.1014 1.8476 1.5132 

Comparison of the results obtained by developed computer code which realizes proposed approach is carried out 
for double-curved shallow shells and is presented in Tables 3,4,5. Fundamental frequency parameters 

 1 2 2

1 0 0 0 0/ / ( 1 / , 1 )L a h E kg m E GPa       of laminated FGM spherical and cylindrical panels of Type 1-2 and 

different thickness scheme are shown in Table 3. 

The values of the fundamental linear frequency parameters  1 2

1 0 0/ /L a h E    of laminated FGM cylindrical and 

spherical shells of Types 2-2 for thickness scheme 1-2-1 are reported in Table 4. 
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Table 4. Comparison of fundamental frequency parameter 
 1 2

1 0 0/ /L a h E    of cylindrical and spherical shallow shells with 

square planform and various boundary conditions (thickness scheme 1-2-1). 

Type 

of the 

shell 

p Methods Cylindrical shell 

k1=0.2, k2=0 

Spherical shell 

k1=k2=0.2 

SFSF SSSS CCCC SCSC SFSF SSSS CCCC SCSC 

2-2 0.6 [Jin G.et al 
(2015)] 

0.6459 1.3372 2.3283 1.8784 0.6571 1.4134 2.3989 1.9254 

RFM 0.6464 1.3389 2.3402 1.8864 0.6576 1.4150 2.4103 1.9599 

5 [Jin G.et al 
(2015)] 

0.6042 1.2457 2.1569 1.7440 0.6133 1.3074 2.2147 1.8042 

RFM 0.6047 1.2476 2.1693 1.7523 0.6139 1.3091 2.2266 1.8121 

20 [Jin G.et al 
(2015)] 

0.6072 1.2483 2.1511 1.7426 0.6154 1.3043 2.2039 1.7974 

RFM 0.6078 1.2505 2.1646 1.7517 0.6160 1.3061 2.2169 1.8061 

Comparison of the obtained results for hyperbolic paraboloidal shallow shells of Type 1-2 and 2-2 (

1 20.2; 0.2k k   ) with different ratio of thickness of each layer and for different boundary conditions are shown in 

Table 5. 
These results were obtained using 28 admissible functions to approximate each of the functions , , ,x yu v  , and 36 

admissible functions to approximate deflection w. 
Due to the doubly-symmetric nature of the shell, at numerical implementation of the developed software, the 

integration is performed only above one-quarter domain. It can be observed that presented results are in excellent 
agreement with those reported in reference [43]. 

Comprehensive comparison of the obtained results with available ones presented in Tables 3-5, shows the accuracy 
and reliability of the proposed approach and developed software. 

Table 5. Comparison of fundamental frequency parameter 
 1 2

1 0 0/ /L a h E    of hyperbolic paraboloidal shallow shells with 

square planform and various boundary conditions (
1 20.2; 0.2k k   ). 

Sc
h

e
m

e
 

p 

M
e

th
o

d
s Type of the shell 1-2 

 

Sc
h

e
m

e
 

Type of the shell 2-2 

 

SFSF SSSS CCCC SCSC SFSF SSSS CCCC SCSC 

1
-0

-1
 

0.6 [Jin G.et al 
(2015)] 

0.8997 1,7761 3.0634 2.5193 

0
-1

-1
 

0.8059 1.5873 2.8180 2.3047 

RFM 0.9010 1.7809 3.0890 2.5366 0.8067 1.5901 2.8349 2.3160 

5 [Jin G.et al 
(2015)] 

0.7281 1.4384 2.4389 2.0125 0.6516 1.2781 2.3107 1.8839 

RFM 0.7299 1.4431 2.4629 2.0290 0.6521 1.2796 2.3215 1.8910 

20 [Jin G.et al 
(2015)] 

05775 1.1404 1.9597 1.6128 0.6283 1.2320 2.2298 1.8176 

RFM 0.5784 1.1436 1.9767 1.6243 0.6287 1.2335 2.2401 1.8243 

1
-2

-1
 

0.6 [Jin G.et al 
(2015)] 

0.8440 1.6656 2.8159 2.3250 

1
-2

-1
 

0.6660 1.3082 2.3543 1.9207 

RFM 0.8455 1.6713 2.8443 2.3446 0.6665 1.3100 2.3660 1.9284 

5 [Jin G.et al 
(2015)] 

0.6369 1.2575 2.1445 1.7675 0.6206 1.2225 2.1791 1.7797 

RFM 0.6379 1.2614 2.1645 1.7812 0.6211 1.2245 2.1914 1.7878 

20 [Jin G.et al 
(2015)] 

0.5291 1.0445 1.8093 1.4867 0.6220 1.2273 2.1716 1.7755 

RFM 0.5298 1.0471 1.8237 1.4964 0.6226 1.2295 2.1850 1.7844 

4.2. Free vibrations of the functionally graded shells with clamped cutout of the complex form 

As practice shows, special attention should be paid to the study of plates and shells with holes and cutouts. Cutouts 
are often required in the shell elements due to practical necessity, for instance in order to facilitate structure, provide 



Vibration analysis of laminated functionally graded shallow shells with clamped cutout of the complex 
form by the Ritz method and the R-functions theory 

Lidiya Kurpa et al. 

Latin American Journal of Solids and Structures, 2019, 16(1 Thematic Section), e95 10/16 

access and compound with other parts, for venting, and other reasons. Cutouts can be both free and fixed on their 
border. Their form can also be arbitrary (not only circle). There are practically no works about vibrations of the laminated 
shallow shells with clamped or simply supported cutouts. However, such boundary conditions can be found quite often 
in practice. To contribute to new results and illustrate the versatility and efficiency of the proposed method and 
developed computer code, let us consider the shallow shell with a shape of the plan presented in the Fig. 1. 

Suppose that the shell is clamped at the internal border of the region. On the outer boundary of the region, the 
shell can be either clamped or simply supported or have the mixed boundary conditions like boundary conditions in Task 
1 (CCCC, SSSS, SFSF and SCSC). 

. 

Figure 1. Shape of the plan of the laminated FGM shallow shell 

The following geometric parameters are fixed: 

1 2/ 1, / 2 0.2, / 2 (0,0.2, 0.2),x yb a k R a k R a       / 2 0.125, / 2 0.25, / 2 0.1r a R a h a   . 

The solution structure for shells with complete clamped on inside and outside borders is assumed as follows: 

1 2 3 4 5, , , , ,x yw u v                 (25) 

For another type of the boundary conditions, we propose to take solution structure satisfying kinematic boundary 
conditions in the following form 

       
1 2 3 4 5, , , , , ,yxw u v

x yw u v


                 (26) 

where: , 1,...,5,i i   are indefinite components of the structure [42-45] presented as an expansion in a series of some 

complete system (power polynomials, trigonometric polynomials, splines etc.); 0   is the equation of the whole border 

of the shell planform. The functions          
, , , , yxu v w 

      are constructed by the R-functions theory in such a way 

that they vanish on those parts of the boundary where the functions , , , ,x yu v w    are zero. 
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In order figure out the solution structure (13) and (14), we should construct the equation of the whole border and 

functions          
, , , , yxu v w 

     . Using the R-operations [42], we build the equation on the border in the following 

form: 

0 ,inside outside     (27) 

where 

           1 0 2 0 1 0 2 0 3 0 4 0 3 0 4 0 5 0 6inside f f f f f f f f f f
 

           
 

 

7 0 8outside f f    

The functions , 1,...,8if i   are defined as follows 

   1 2 3 4

1 1
0, 0, 3 0, 3 0

3 3
f y x f y x f y x f y x

   
               
   

 

       2 2 2 2 2 2 2 2 2 2

5 1 6 2 7 80, 0, 0, 0f r x y f r x y f a x f b y               

Below we write down expressions for functions          
, , , , yxu v w 

      for different boundary conditions on the 

outside part of the region border provided that a cut of the shell is clamped. We have, respectively: 
CCCC: 

         
;yxu v w 

           (28) 

SSSS: 

         yxu v w 
          ; (29) 

SFSF: 

         
0 8, ;yxw u v

inside insidef


             (30) 

SCSC: 

         
0 7, yxw u v

inside f


             . (31) 

Indefinite components , 1,...,5i i   in solution structures (25)-(26) are approximated by a system of power 

polynomials taking into account the double-symmetric nature of the problem. 
Consequently, sequences of polynomials are chosen in the following way: 

1 : 2 2 4 2 2 4 6 4 2 2 4 61, , , , , , , , , ,x y x x y y x x y x y y  

2 4,  : 3 2 5 3 2 4 7 5 2 3 4 6, , , , , , , , , ,x x xy x x y xy x x y x y xy   

3 5,  : 2 3 4 2 3 5 6 4 3 2 5 7, , , , , , , , , ,y x y y x y x y y x y x y x y y  
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Integration is performed over one-quarter domain. In Table 6, the fundamental frequency parameters 
 1 2

1 / /L c ca E h    for cylindrical, spherical and hyperbolic paraboloidal shells of Type 2-2 and two thickness schemes 

(2-1-2) and (2-2-1) are presented. 
Notice that for the considered shells with general thickness h/2a=0.1, the fundamental frequencies parameters are 

close for cylindrical, spherical and hyperbolic paraboloidal shells. If a shell is clamped on the whole border (CCCC), then 
the spherical shell has the largest frequency and cylindrical panel has the smallest one. However, if a shell is simply 
supported on its outside boundary and its cut is clamped, then this regularity is broken for a given ratio of layers 
thickness. The hyperbolic paraboloidal shell has the greatest frequency, and the frequencies of the spherical panels are 
smaller than corresponding ones of the cylindrical panels. This example shows the effect of boundary conditions for 
different schemes of thickness. It means that every case requires individual analysis. 

Table 6. Fundamental frequency parameters 
 1 2

1 / /L c ca E h    for shells of Type 2-2 with clamped cutout and simply 

supported or clamped outside contour of the domain (Fig. 1) 

Scheme p k1=0.2, k2=0 k1=0.2, k2= 0.2 k1=0.2, k2= -0.2 

  SSSS CCCC SSSS CCCC SSSS CCCC 

2-1-2 0.1 24.104 31.497 24.104 31.539 24.127 31.528 

0.5 23.662 30.905 23.659 30.945 23.688 30.936 

1 23.362 30.499 23.357 30.537 23.390 30.531 

5 22.846 29.770 22.836 29.805 22.877 29.802 

10 22.760 29.636 22.749 29.670 22.792 29.668 

20 22.718 29.567 22.706 29.635 22.750 29.599 

2-2-1 0.1 24.027 31.373 24.026 31.415 24.051 31.404 

0.5 23.375 30.433 23.369 30.470 23.403 30.464 

1 22.946 29.785 22.934 29.818 22.975 29.816 

5 22.242 28.571 22.222 28.598 22.273 28.600 

10 22.099 28.286 22.078 28.313 22.129 28.314 

20 22.007 28.106 21.985 28.132 22.036 28.133 

Effects yielded by the gradient index 
1 2 3p p p p    on the fundamental frequency parameter 

 1 2

1 / /L c ca E h    for cylindrical, spherical and hyperbolic paraboloidal shells of Type 1-2 and 2-2 with different 

boundary conditions are shown in Figures 2,3,4. Different thickness schemes are taken for the considered shallow shells. 
The obtained results for the cylindrical shells with thickness scheme (1-2-1) are presented in Fig. 2. 

 

Figure 2. Variation of the fundamental frequency parameter 
 1 2

1 / /L c ca E h    of cylindrical shells with increasing gradient 

index p (thickness scheme 1-2-1). 
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Figure 3. Variation of the fundamental frequency parameter 
 1 2

1 / /L c ca E h    of the spherical shells with increasing gradient 

index p (thickness scheme 2-1-2) 

 

Figure 4. Variation of the fundamental frequency parameter 
 1 2

1 / /L c ca E h    of Type 1-2 and 2-2 with thickness scheme (1-

1-1) of hyperbolic paraboloidal shells with increasing gradient index p. 

The effects of material types and power law exponents on the frequency parameter of spherical shells with (2-1-2) 
thickness scheme are presented in Fig 3. Similar results for hyperbolic paraboloid shells with (1-1-1) thickness scheme 
are shown in Fig. 4. 

As follows from Figures 2-4, the value of fundamental frequency parameters essentially depends on the material 
type, thickness schemes, and boundary conditions. Obviously, the fundamental frequencies parameters for all 
considered cases decrease with increasing power-law exponent. For the shells of type 1-2, the decrease is more essential 
than for the shells of Type 2-2. 
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5. Concluding remarks 

This paper proposes a method of investigation of free vibrations of laminated functionally graded shallow shells 
with complex shape of the planform. The method is based on the theory of R-functions and Ritz variational method. 
Comparison of the obtained results for shallow shells of the doubly-curved and square planform confirms the validation 
of developed software. New solution structures are proposed for shallow shells with clamped cutout of the complex 
form. In addition, novel results are obtained for cylindrical, spherical and hyperbolic paraboloidal shallow shells of FGM 
sandwich type with cutout of the complex shape. Effects of power law exponents, thickness schemes, and different 
boundary conditions are studied for shells with clamped cutout of the complex shape. 
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