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Experimental and numerical investigation on the shock characteristics of 
U-notched ZL205A specimens under dynamic mixed-mode loading 

Abstract 
Shock environment assessment and improvement during stage separation is an 
important issue of concern in aerospace engineering. This paper focuses on 
shock response caused by dynamic fracture of aluminum alloy separation plate, 
which usually undergoes mixed mode loading during separation. Based on Split 
Hopkinson Tensile Bar (SHTB) apparatus, five groups of U-notched ZL205A 
specimens with different loading angles (0°, 30°, 45°, 60°, and 90°) are de-
signed to simulate mixed mode loading for shock characteristics testing. There 
piezoelectric accelerometers are used to measure the acceleration time histories, 
and the maximum shock response spectrum (SRS) is applied for shock data 
analysis. Meanwhile, the ANSYS/LS-DYNA finite element software is imple-
mented for numerical analysis. The actual fracture angles measured from the 
recovered specimens are used to describe the actual fracture modes. The numer-
ical and experimental results are in good agreement, showing that the shock re-
sponse along the specimen’s length and thickness directions increases with the 
fracture angle, while there is a slight distinction in the specimen’s width direc-
tion with different fracture angles. On average, the shock response is more re-
markable in pure tensile fracture mode, which is 2.6 times the pure shear frac-
ture mode. As a result, increasing the study of shear fracture component is 
meaningful for the shock reduction through the structural design of separation 
plate. 

Keywords 
Separation plate, mixed-mode loading, U-notched, shock characteristics, shock 
response spectrum 

1 INTRODUCTION 

ZL205A is a series of Al-Cu-Mn cast aluminum material, which is intensively used in aerospace industry due to its 
high strength, low density, corrosion resistance, and high production efficiency (Li et al. 2011). An important application 
of ZL205A is used as separation plate material in expansion tube separation device. As a typical linear separation device, 
it mainly consists of a separation plate with a prefabricated notch, a flat tube, a mild detonating fuse (MDF), and some 
internal fillers of flat tube (Song et al. 2015; Fritz 2003), as shown in Figure 1. Upon detonating, the energy of the MDF 
will drive the flat tube expand rapidly which further fracture the surrounding separation plate from the prefabricated 
notch to achieve stage separation. Two representative separation structures of the separation device are shown in Figure 
1(a) and (b). In the two structures, fracture mode of the separation plate is different since the position of the notch is 
different. Tensile fracture is prominent when the notch located on the center (Figure 1(a)), while mixed fracture pattern is 
obtained when the notch located on the upper or the lower part (Shown in Figure 1(b) is shear fracture mode). However, 
the fracture will produce significant shock to the separation structure owing to the sudden release of strain energy when 
the separation plate cracks no matter what fracture patterns (Chang and Kern 1986; Evans et al. 1987; Bement 1988). In 
this study, the influence to shock response of different fracture patterns is focused, which is of great significance to re-
search on reducing the shock applied to equipment and astronauts in space rocket area. 
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Figure 1: The expansion tube separation device. (a) Tensile fracture mode (Song et al., 2015). (b) Shear fracture mode (Fritz 

2003). 

 

From the researched literatures, there are extensive studies focus on cracking mechanism and fracture properties 
under different loading mode, theoretically and experimentally. On theoretical aspects, there are a variety of fracture 
criteria proposed to describe the fracture properties of materials including crack initiation and propagation, such as the 
maximum tangential stress (MTS) criterion (Erdogan and Sih 1963; Li et al. 2013; Torabi and Keshavarzian 2016; Ma 
and Xie 2017), the mean stress (MS) criterion (Ayatollahi and Torabi 2010; Ayatollahi and Saboori 2015; Lazzarin et al. 
2014), the strain energy density (SED) criterion (Torabi et al. 2015; Berto et al. 2016; Berto et al. 2015; Meneghetti et al. 
2016; Berto 2016), the maximum effective stress (MES) criterion (Sajjadi et al. 2016), etc. As in experimental aspects, 
static or quasi-static experiments mainly have been carried out, in which the Arcan specimen and its modified configura-
tions are extensively used (Arcan et al. 1978; Fagerholt et al. 2010; Zhang et al. 2011). As presented in Figure 2, differ-
ent loading patterns of modified Arcan specimen are achieved with different loading angles. The recent experiments 
done by Wen et al. (2016) provide a novel method for dynamic mixed-mode fracture loading. In Wen’s study, a series of 
specimens with different loading angles in conjunction with the Arcan specimen (Fagerholt et al. 2010) and the widely 
used dumbbell-shape tensile specimen in SHTB tests are shown in Figure 3. Based on the SHTB test platform and these 
new-style specimens, the strength criterion and dynamic fracture properties of ZL205A material have been studied by 
Wen et al. (2016). 
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Figure 2: The modified Arcan specimen (Fagerholt et al. 2010). 

 
Figure 3: The novel specimens applied for the dynamic mixed-mode loading (Wen et al. 2016). 

 

However, there is little research considering the shock characteristics of material under dynamic mixed-mode load-
ing. Generally, shock event is a stress wave with high amplitude and high frequency, which will induce large loads on 
components in its path where crack initiation and fractures development can occur in brittle materials, local plastic de-
formation, and accelerated fatigue life of avionics components (Piersol et al. 2010; Morais and Vasques 2017). Accord-
ing to the previous reports from National Aeronautics and Space Administration (NASA) (Chang and Kern 1986; Evans 
et al. 1987; Bement 1988), usually, a large number of impact experiments based on the actual separation structures are 
conducted to determine a relatively friendly shock environment in aerospace engineering in order to ensure successful 
implementation of a space mission. Recently, some experimental and numerical studies on the pyroshock prediction of 
the separation process have been performed. Juho Lee et al. (2014; 2015a; 2015b; 2016) studied the shock propagation 
characteristics and the separation mechanical properties of a ridge-cut explosive bolt separation device mainly based on 
the Hydrocodes simulation. Their results provide a relatively comprehensive description about the separation mechanism 
and the shock environment characteristics of this separation device. Mijin Choi et al. (2014) preliminarily stimulated the 
separation process and computed the proper core loading of the expansion tube based on the AUTODYNA dynamic 
analysis code in combination with some separation tests. Nevertheless, their experimental and numerical procedures are 
only based on a specific separation device, which is inefficient and non-universal. The fracture pattern of the separation 
plate in linear separation device is of vital importance for the shock environment during stage separation. Consequently, 
it is necessary to investigate the shock characteristics of the separation plate material under dynamic mixed-mode load-
ing, aiming at the structural design of the separation plate and the shock reduction design of the separation device. 

In the present study, the shock characteristics of ZL205A under mixed-mode loading are researched by means of 
the SHTB apparatus and the finite element method. A new specimen configuration, SHTB test apparatus and piezoelec-
tric accelerometers are used to characterize shock response properties. Numerical modeling based on the ANSYS/LS-
DYNA finite element software is detailed for the assistant analysis in order to verify the experiment results. The results 
including force-elongation relations, fracture angles and crack paths, shock environment characterizations are presented. 
The shock response under different loading angles has also been discussed based on the peak accelerations in time do-
main and spectrum domain. 

2 EXPERIMENTAL SETUP 

2.1 Specimen configuration 

The chemical composition of ZL205A is presented in Table 1. Through a series of traditional SHTB tests, the basic 
mechanical properties of ZL205A were obtained by Wen et al, listed as Table 2. 

 

Table 1: The chemical compositions of ZL205A (Wen et al. 2016). 

Element Cu Mn Cd V Zr Re Al 
wt. % 4.6-5.3 0.3-0.6 0.15-0.25 0.05-0.3 0.05-0.2 4.4-5.0 Balanced 
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Table 2: The basic mechanical properties of ZL205A (Wen et al. 2016). 

Dynamic mechanical properties Value 
Yield stress σy/MPa 323.2 

Tensile strength σb/MPa 430.0 
Fracture strain εf 0.125 

 
Similar with the U-notched mixed-mode tensile specimens proposed by Wen et al. (2016), the test specimen in this 

study is also a combination of the Arcan specimen and the SHTB tensile specimen. Differently, considering that the 
strength properties and the shock characteristics under mixed-mode will be studied rather than the crack initiation nor the 
fracture behavior, there is no prefabricated fatigue crack in the specimens and two symmetrical U-notches are manufac-
tured. As shown in Figure 4, the mixed-mode load is applied to the specimens by different inclination angles (β, which is 
the angle between the U-notches’ midline and the bar’s axes). In particular, when β=0°, pure mode II loading (shear 
loading mode) is obtained; when β=90°, pure mode I loading (tensile loading mode) is obtained. The parameters R, R1, 
R2, β, L, W, and N in Figure 4 represent the notch radius, the inner radius, the outer radius, the inclination angle, the 
specimen length, the specimen width, and the length of reserved part between the two symmetrical U-notches, respec-
tively. Thickness of all the specimens is 2 mm. The certain values of the parameters are shown in Figure 4. In order to 
verify repeatability of the experiments, three tests are performed for each inclination angle and 15 tests are carried out in 
the investigation totally. 

 
Figure 4: Geometry of the specimens. 

 

2.2 Test apparatus 

To realize shock measurement under dynamic mixed-mode loading, a few piezoelectric accelerometers are installed 
in the traditional SHTB device. Figure 5 shows the sketch of the SHTB test platform and accelerometers’ installation 
position. The SHTB device mainly consists of striker bar, incident bar and transmitted bar. Specimen is glued between 
the incident bar and the transmitted bar. The parameters of the bars are summarized in Table 3. There are strain gauges 
mounted on the surface of the incident bar and the transmitted bar to record the strain signal. Given that the transmitted 
signal reflects the material properties in SHTB tests, three piezoelectric accelerometers are bolted on the end of the 
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transmitted bar to measure the acceleration signal in three directions (X, Y, Z, which are along the specimen’s length, 
width and thickness direction, respectively), as shown in Figure 5. In order to maintain consistence of the loading, the 
striker bar is adjusted at the velocity of 6.8 m/s for all the fifteen tests. 

 
Figure 5: The sketch of the SHTB test platform. 

 

Table 3: Summary of the SHTB parameters. 

Parameters Value 
Diameter /mm 20 

Striker bar /mm 1100 
Incident bar /mm 4000 

Transmitted bar /mm 2000 
Young’s modulus /GPa 71 

Density /(kg/m3) 2700 

 

3 FINITE ELEMENT MODELING 

In order to get more detailed information, the corresponding numerical analysis was carried out with the AN-
SYS/LS-DYNA finite element software (Version 971 smp d R7.0.0). The finite element model is shown in Figure 6. The 
incident bar and the transmitted bar are set as Mat Elastic model (LS-DYNA® 2007a, Keyword user’s manual Vol.II). 
For simplification, the stress pulse is directly applied on the striking end of the incident bar. The specimen is set as Mat 
Elastic Plastic Hydro Spall model (LS-DYNA® 2007b, Keyword user’s manual Vol.II) and shares common nodes with 
the incident bar and the transmitted bar in the glued area. The material parameters and models are summarized in Table 4. 
Moreover, the strain failure criterion is implemented for the specimen in the simulations that elements failure when ef-
fective strain of elements exceeds the failure strain for erosion. All mesh grids of the model are hexahedral and the re-
fined meshes are set up in the potential fracture area of the specimen. There are 448 elements for one sensor block and 
28872~68208 elements for specimens with different loading angles. Totally, there are 208148-247484 elements for the 
whole model. 
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Figure 6: The finite element model scheme. 

Table 4: The material parameters and models. 

Parameters of the model Specimen Bar Sensor block 
Model Elastic_Plastic_Hypro_Spall Elastic Elastic 

Mass density ρ /(g/cm3) 2.82 2.70 7.80 
Shear modulus G /GPa 27.7 (none) (none) 

Young’s modulus E /GPa (none) 71 210 
Plastic hardening modulus Eh /MPa 910 (none) (none) 

Poisson’s ratio ν 0.32 0.33 0.28 
Yield stress σy /MPa 323 (none) (none) 

Failure strain εf 0.125 (none) (none) 

 

4 RESULTS AND DISCUSSION 

4.1 Force elongation relations 

In this part, the force-elongation relations are extracted to investigate the strength and ductility properties of speci-
mens. According to the one-dimensional stress wave theory in SHTB tests, the force and elongation of the specimen can 
be expressed as: 

 b b tf E A t   (1) 

      
0

t

b i r te C d           (2) 

where Ab is the cross-sectional area of the output bar; Eb and Cb are Young’s modulus and one-dimensional elastic stress 
wave velocity of the incident/transmitted bar; εi(t) and εr(t) are strain histories of the incident and reflected waves 
recorded by strain gauges on incident bar; and εt(t) is strain history of the transmitted wave recorded by strain gauges on 
transmitted bar. 

The curves in Figure 7 are all of the force-elongation testing results and numerical simulation results. And the quan-
titative data of maximum force f0 and final elongation e0 are listed in Table 5. From Figure 7 and Table 5, it can be drawn 
a conclusion that the force increases with the loading angle when the elongation decreases as the loading angle increases, 
which is in good agreement with Wen’s study (Wen et al. 2016), demonstrating that the mixed loading patterns have a 
prominent influence on the strength and ductility properties of materials. 

In addition, there are some differences between numerical simulation and experiments, that maximum force values 
are basically consistent but the relative error of final elongation e0 between numerical simulation and experiments in-
creases with the increase of loading angle β. The possible reason maybe is that the failure strain εf, a material parameter, 
measured in the experiment (Wen et al. 2016) is the average strain at failure of the effective part of specimen, which is 
usually smaller than the true value. Therefore, when the mesh of the effective part of specimen is small enough, the final 
elongation of the numerical simulation will be smaller than the experimental result because the failure strain εf of the 
elements is assigned to the value measured in the experiment. Especially, when the effective part is under shear loading 
or tension-shear complex loading, this phenomenon is more obvious. 
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Figure 7: Comparisons of Force elongation curves of specimens with different loading angles between experiments and simu-

lations. 

 

Table 5: Comparisons of maximum force f0 and final elongation e0 between experiments’ values and Wen's results. 

Loading 
angle β 

 0° 30° 45° 60° 90° 

Maximum 
force 
f0 /kN 

Average of experiments 1.87 2.03 2.25 2.66 3.35 

Wen et al. (2016) 1.73 1.97 2.23 2.56 3.17 

Simulation 1.99 2.01 2.19 2.71 3.38 

Relative error between exp. and Wen 8.10% 3.00% 0.90% 3.90% 5.70% 

Relative error between exp. and simu. 6.03% 1.00% 2.74% 1.85% 0.89% 

Final elonga-
tion 

e0 /mm 

Average of experiments 1.16 0.58 0.44 0.37 0.31 

Wen et al. (2016) 1.14 0.63 0.5 0.38 0.34 

Simulation 0.77 0.37 0.31 0.27 0.27 

Relative error between exp. and Wen 1.80% 7.90% 12% 2.60% 8.80% 

Relative error between exp. and simu. 33.62% 36.21% 29.55% 27.03% 12.90% 

 

4.2 Fracture angle and crack path 

Figure 8 shows the recovered specimens in experiments and the Von-Misses stress distribution after fracturing in 
simulations. It can be seen that all the specimens were primarily fractured along a straight line. Thus, an image pro-
cessing tool Drawing Board was utilized to measure the actual fracture directions (fracture angle α) of each specimen. 
The measured results are listed in Table 6. Two conclusions can be drawn from the recovered specimens in Figure 8 and 
the measured data in Table 6: the experimental results have good repeatability; the numerical results are in good coinci-
dence with the experimental results. Quantitatively, the relative error of the actual fracture angle in experiments and 
simulations is within 10%. However, due to the complicated stress state at the notch tip, the specimens fractured not 
exactly along the loading angle except for the 0° and 90° specimens, which were under pure shear and pure tensile load-
ing, respectively. 
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Figure 8: Fractured specimens of experiments and simulations. 

Table 6: Comparisons of actual fracture angle α between experiments’ values and simulations’ values. 

Loading 
angle β 

 0° 30° 45° 60° 90° 

Fracture 
angle α 

Average of experiments 0° 18.3° 30.8° 44.9° 90° 
Simulation 0° 19.5° 33.3° 46.3° 90° 

Relative error 0 6.6% 8.1% 3.1% 0 

 
Figure 9 shows the fracture process of 30°, 45°, and 60° specimens in simulations. From the Von-Misses stress dis-

tribution in Figure 9, it is obvious that the stress concentration effect in the reserved part between the two symmetrical 
U-notches is significant. Taking 30° specimen as a typical example, as shown in Figure 9(a), the dashed line is the center 
line of the notches and the continuous line reveals the maximum stress area. It’s obvious that the maximum stress which 
leads to the crack initiation appears at the area nearby the center line. Therefore, the actual fracture angle is smaller than 
the loading angle. As a result, the actual fracture angle is proposed to analyze the influence of different fracture modes in 
the following study. 
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Figure 9: Von-Misses stress distribution (the stress values are in 100GPa) of specimens during fracture process. (a) 30°. (b) 45°. 

(c) 60°. 

4.3 Shock environment characterizations 

In most cases, the acceleration time history and its spectra are implemented to describe the shock environment, 
among which SRS is most widely used (Lee et al. 2016; Lee et al. 2012). SRS is an effective tool in vibration engineer-
ing for characterizing the transient response of the system undergoing a shock excitation. SRS is defined as the data 
points of the peak acceleration response of a series of a single-degree-of-freedom (SDOF) system that possesses different 
natural frequencies (Irvine 2012). Since the peak acceleration is selected in different ways, SRS is classified as the posi-
tive, negative, primary, residual, and maximum SRS. In this paper, the most representative maximum SRS is employed, 
each SDOF system damping ratio is set as a common value of 0.05, and the natural frequency ranges from 50 Hz to 10 
kHz are concerned. Figure 10 presents a typical shock pulse and the corresponding maximum SRS, where G is the local 
acceleration of gravity (10m/s2). The shock pulse in Figure 10(a) tends to be a complex waveform and oscillate in a 
symmetric manner about the zero baseline to some degree. The overall envelope of the curve shows an exponential de-
cay tendency. The corresponding maximum SRS in Figure 10(b) is much more concise and its magnitude reflects the 
system response to the shock excitation. 
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Figure 10: Typical shock pulse and the corresponding maximum SRS (30°-1#). (a) Acceleration data in time domain. (b) The 

corresponding maximum SRS. 

 

Figure 11 and Figure 12 present the maximum SRS of specimens under different loading angles in experiments and 
simulations, respectively. From Figure 11(a) and Figure 12(a), it can be seen that the experimental results in X-direction 
present a good consistency, and the trend of the experimental curves with different loading angles is consistent with the 
simulation results. However, since the propagation process of stress waves in Y-direction and Z-direction is more com-
plicated than the wave propagation in X-direction, a small deviation of the actual fracture direction and the stress wave 
multiple reflections in the radial direction both may lead to deviation amplification. So the shock measurement curves of 
repetitive experiments in Y-direction and the Z-direction are not with good consistency. As a result, the shock character-
istics in Y-direction and Z-direction only are analyzed by numerical simulation with no choice. 

As shown in Figure 11(b) and (c), there is a small distinction between different loading angles in Y-direction except 
for 90°, which is much lower than the others. However, the difference is more distinct for the Z-direction. Similar with 
the experimental results in X-direction, on the basis of numerical simulation results, the shock response in Z-direction is 
more significant with the loading angle increase, which means that the shear fracture pattern can lead to a more friendly 
shock environment, as shown in Figure 11(b) and (c). 
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Figure 11: Maximum SRS in experiments. (a) X-direction. (b) Y-direction. (c) Z-direction. 



Kerong Ren et al.   
Experimental and numerical investigation on the shock characteristics of U-notched ZL205A specimens under dynamic mixed-mode loading 

Latin American Journal of Solids and Structures, 2018, 15(11), e101 12/16 

 
Figure 12: Maximum SRS in simulations. (a) X-direction. (b) Y-direction. (c) Z-direction. 

 

4.4 Further discussion 

Since the peak value is generally the most important and representative value for the shock response evaluation, the 
peak values in time domain and SRS are extracted to quantitatively analyze the shock characteristics under dynamic 
mixed loading. Meanwhile, it should be point out that only the shock peak values in X-direction are investigated because 
the experimental results in Y-direction and Z-direction are lack of good consistence and only the axial stress along the 
bar direction (X-direction) can be measured in the SHTB experiments. 

Table 7 lists all the peak values of shock response in experiments and simulations. The last column I/II means the 
ratio of peak values between pure mode I fracture (tensile fracture, 90°) and pure mode II fracture (shear fracture, 0°). 
On average, the shock response is more remarkable in pure tensile fracture mode, which is 2.6 times the pure shear frac-
ture mode. 
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Table 7: Comparisons of peak values in X-direction between experiments’ values and simulations’ values. 

Loading angle β  0° 30° 45° 60° 90° I/II 

Peak value in time 
domain /G 

Average of experiments 1202 1951 2530 2617 3366 2.8 
Simulation 1590 2246 2558 2939 3820 2.4 

Relative error 32% 15% 1% 12% 14%  

Peak value in SRS /G 
Average of experiments 3166 5158 6186 6556 8244 2.6 

Simulation 4918 6914 7859 9048 11419 2.3 
Relative error 55% 34% 27% 38% 39%  

The average value of I/II (pure mode I/pure mode II) is 2.6, with standard deviation 0.28. 

 
Figure 13 (a) and (b) show the scatter plots of the peak value versus the fracture angle α in experiments, which 

show a parabola trend. The normalized fitting equation can be expressed as: 

 2

max 0A A B      (3) 

where Amax and α are the peak acceleration and the corresponding fracture angle, respectively. A and B are two 
parameters in parabola equation. α0 is the critical angle corresponding to the peak of Amax. 

The fitting equations and the squared correlation coefficients are shown in Figure 13(a) and (b). Among them the 
squared correlation coefficient R2 (0.9633 and 0.9681) is very close to 1, which means that the fitting curves are suitable 
to describe trend of the scatter plots. According to the fitting equations, the peaks of Amax are obtained under the critical 
angle 97.04° in time domain and 95.05° in SRS, which are both closer to 90°. This indicates that pure tensile fracture 
contributes to the main part of the shock response in X-direction. Meanwhile, the trend of the curves illustrates that the 
shock response increases with the fracture angle. As a result, brief conclusions that the fracture mode of specimen is 
closer to shear fracture and the corresponding shock response is weaker in X-direction can be drawn preliminarily. 

 

 
Figure 13: Peak acceleration versus fracture angle. (a) Peak values in time domain. (b) Peak values in maximum SRS. 

 
However, it should be noted that there exists a certain discrepancy between the experimental and numerical results 

from Table 7. The peak values of numerical results are a little higher than the experimental values. Quantitatively, the 
relative errors in time domain are within 15% except for the 0° specimens, while it is more obvious for the peak values in 
SRS, of which the relative errors range from 27% to 55%. The possible reason maybe includes: 1) the attenuation of the 
stress wave along the bar in the actual structure is more obvious; 2) the common nodes setting between the sensor blocks 
and the transmitted bar in simulation model can lead to weaker attenuation than the bolt connection in experiments. 
Whereas the numerical results share the same trend of peak values in X-direction with the experiments, and the shock 
characteristic analysis in Y-direction and Z-direction is based on the numerical results because the distinction of experi-
mental results is not obvious in the two directions. The peak values of simulation results in Y-direction and Z-direction 
are summarized in Table 8. From Table 8, one can see that the peak values in Y-direction and Z-direction are observably 
lower than the data of X-direction. This reveals that the shock responses in Y-direction and Z-direction cannot be con-
sidered because they are much weaker than that in X-direction. 
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Table 8: Peak values of simulation results in three directions. 

Loading angle β  0° 30° 45° 60° 90° 

Peak value in time domain /G 
X-direction 1590 2246 2558 2939 3820 
Y-direction 586 448 511 508 420 
Z-direction 251 388 443 511 650 

Peak value in SRS /G 
X-direction 4918 6914 7859 9048 11419 
Y-direction 2033 1691 1825 1725 1172 
Z-direction 970 1552 1860 2189 2652 

5 CONCLUSIONS 

In the present study, the shock characteristics of ZL205A under mixed-mode loading are preliminarily investigated 
by means of the SHTB apparatus. Five groups of U-notched ZL205A specimens with loading angle 0°, 30°, 45°, 60°, 
and 90° were designed for the mixed-mode loading and tested under the same condition. Furthermore, considering the 
deviation in experiments, numerical modeling based on the ANSYS/LS-DYNA finite element software is utilized for the 
assistant analysis along the specimen’s width and thickness directions. 

The fractured specimens from experiments and simulations show that the actual fracture angles are smaller than the 
designed loading angle because of the complicated stress state at the notch tips except for 0° and 90° specimens. Hence, 
the actual fracture angles are measured to describe the fracture modes and investigate the corresponding shock response. 

The maximum SRS is proposed for the shock data analysis. The experimental and numerical results show that the 
shock response along the specimen’s length direction increases with fracture angle. The numerical results show that there 
is little distinction between 0°, 30°, 45°, and 60° specimens along the specimen’s width direction, while the shock re-
sponse is lower for the 90° specimens. Meanwhile, numerical results in the specimen’s thickness direction show that 
shock response increases with fracture angle. However, the shock response in width direction and thickness direction is 
observably lower than the data of length direction. Moreover, concerning the poor consistency of experimental results in 
the Y-direction and Z-direction in present study, further experiments and numerical simulations for separating and en-
hancing the shock waves in Y-direction and Z-direction can be conducted to carry on more in-depth researches in the 
future. 

Relations between fracture angles and acceleration peaks in length direction are discussed. A parabola equation is 
employed to fit the peak values versus fracture angles. Results show that the acceleration peaks both in time domain and 
SRS fits well with the parabola curve and all the data points show an increasing trend with the fracture angle, which is of 
guiding significance for the structure design of separation plate. Specifically, the separation plate can be designed as 
shear fracture mode to attenuate shock response, which will be carried out in our following studies. 
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