
Original article 

 

 Latin American Journal of Solids and Structures, 2018, 15(10), e124 

Single variable new first-order shear deformation theory for isotropic 
plates 

Abstract 
This paper presents a single variable new first-order shear deformation 
plate theory with only one fourth-order partial governing differential equa-
tion. It may be noted that, first-order shear deformation plate theory of 
Mindlin has three coupled partial governing differential equations involv-
ing three unknown functions. Even a recently developed new first-order 
shear deformation plate theory has two uncoupled partial governing dif-
ferential equations involving two unknown functions for static problems. 
The displacement functions of the proposed theory give rise to constant 
transverse shear strains through thickness of the plate and, as is the case of 
Mindlin plate theory, the proposed theory also requires a shear correction 
factor. The governing differential equation, expressions for moments and 
shear forces of the proposed theory have a striking resemblance to the cor-
responding expressions of classical plate theory. The proposed theory is 
the only first-order shear deformation plate theory with two different 
types of physically meaningful clamped boundary conditions. To obtain so-
lutions for the flexure of the plate, efforts required using the proposed the-
ory are comparable to those involved in the case of classical plate theory. 
The effectiveness of the proposed theory is demonstrated through illustra-
tive examples and by comparing results obtained with other plate theories. 

Keywords 
Single variable plate theory, shear deformation plate theory.  

1 INTRODUCTION 

The simplest plate theory is classical plate theory (CPT) which was developed in the late 19th century. It has 
been widely used as a first level check for analysis of structures that can be approximated as plates. However, CPT 
does not take into account the effects of transverse shear deformations present through the plate thickness. These 
effects of shear in plate deformations are significant especially in case of thick plates. Hence, CPT can provide rea-
sonably accurate results only for thin plates. Use of CPT provides underestimated deflections and overestimated 
frequencies and buckling loads for thick plates (Ghugal and Shimpi (2002)). 

To address these drawbacks of CPT, Reissner (1945) and Mindlin (1951) introduced first-order shear de-
formation plate theories. Displacement based Mindlin plate theory assumes constant transverse shear strains 
through the plate thickness and requires a shear correction factor. Even though the use of Mindlin plate theory 
provides satisfactory results for analysis of thick plates, it involves three coupled partial governing differential 
equations involing three unknown functions. It also requires specification of three boundary conditions per edge 
as opposed to CPT which requires specification of only two boundary conditions per edge. 

Recently, Shimpi et al. (2007) developed new first-order shear deformation plate theories (NFSDT). NFSDT 
involves two partial governing differential equations involving two unknown functions. These two equations are 
inertially and elastically uncoupled in case of static problems. Whereas, these two equations are only inertially 
coupled and elastically uncoupled in case of dynamics problems. As is the case of Mindlin plate theory, NFSDT 
also requires specification of three boundary conditions per edge. 

The objective of this paper is to present a single variable new first-order shear deformation theory for iso-
tropic plates with only one partial governing differential equation. In this regards, Senjanović et al. (2013) have 
also derived fourth-order partial governing differential equation for moderately thick plate vibrations. It must be 
noted that the proposed theory is based on NFSDT by Shimpi et al. (2007) and refined plate theory (RPT) by 
Shimpi (2002). It is evident from equations (9), (10) and (20) of Senjanović et al. (2013) that they have also used 
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the key concepts of NFSDT. They have developed the plate theory for thick plate vibrations only. The proposed 
theory is a displacement based theory for the plate flexture. Unlike any other first-order shear deformation plate 
theory, the proposed theory describes two different types of physically meaningful clamped boundary conditions 
which are analogous to those discussed by Timoshenko and Goodier (1951) in the context of two-dimensional 
theory of elasticity approach for beam analysis. As opposed to Mindlin plate theory, the proposed theory requires 
specification of only two boundary conditions per edge. 

2 NOTATIONS USED 

The notations used in this paper for displacements (u , v , w ); direct strains ( x , y , z ); shear strains ( xy , 

yz , zx ); direct stresses ( x , y , z ) and shear stresses ( xy , yz , zx ) of the plate are the same as the one used 
by Timoshenko and Goodier (1951) on page no. xvii and xviii. 

3 PLATE UNDER CONSIDERATION 

The following are the features of the plate under consideration: 
1. The plate considered is as shown in Figure 1 and it has uniform thickness h . 
2. The plate is made of linearly elastic, homogeneous, isotropic material. Modulus of elasticity E , modulus of rigidity G  and Poisson’s 

ratio   of the plate material are related by / [2(1 )]G E  . 

3. Area  ,  x yΩ  is the mid-surface of the undeformed plate which is enclosed by a boundary curve  ,  x y ; as shown in Figure 1. 

4. The right handed Cartesian co-ordinate system 0 x y z    would be utilized throughout this paper. 
a. The xy   plane of this co-ordinate system is assumed to coincide with mid-surface of the undeformed plate. 
b. The origin “ 0 ” of this co-ordinate system can be selected at a convenient location on the mid-surface of the undeformed plate. 

5. The plate is loaded on its surface / 2z h   by a transverse load of intensity  ,  q x y . The loading is considered as positive when it 

acts in the positive direction of z   axis. 
6. Local directions n , s  and 'z  at a typical point ‘P ’ on the edge are as shown in Figure 1. n  and s  are normal and tangent respectively 

to a boundary curve at that point. Direction 'z  is parallel to the z   axis of co-ordinate system. Physically meaningful boundary 
conditions can be prescribed at the boundary of the plate in terms of such local co-ordinate systems. 

 
Figure 1: Geometry of the plate. 

4 ASSUMPTIONS MADE IN THE PRESENT THEORY 

Assumptions of the present theory are built on those of Shimpi et al. (2007). 
1. Displacements involved are small in comparison to the plate thickness. Hence, strains produced in the plate are infinitesimal. 

2. In general, in-plane normal stresses x  and y  developed in the plate are very high as compared to transverse normal stress z . Hence, 

transverse normal stress z  can be neglected. 
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3. Transverse normal perpendicular to the mid-surface of the plate before deformation, remains straight but may or may not remain normal to 
the mid-surface of the plate after deformation. 

4. Following points should be noted regarding displacement functions of the present theory: 
a. The transverse displacement w  along the z   direction consists of two components: 

i. Bending component bw  

ii. Shear component sw  

These two components are functions of x  and y  co-ordinates only. 
b. In-plane displacement u  along the x   direction and in-plane displacement v  along the y   direction are analogous to those of 

CPT. 

c. In-plane displacements u  and v  in conjunction with bending component bw  (of transverse displacement w ) do not contribute 

towards transverse shear strains. Shear component sw  (of transverse displacement w ) alone contributes towards transverse 
shear strains. These transverse shear strains remain constant across the plate thickness. 

5. As is the case with Mindlin plate theory (Mindlin (1951)), the present theory assumes transverse shear strains yz  and zx  to remain 

constant through the plate thickness. It is well known fact that, in reality, these transverse shear strains vary, more or less, in 
parabolic manner through the plate thickness. Hence, a shear correction factor associated with Mindlin plate theory (Mindlin 
(1951)) will be utilized in the present theory. 

5 EXPRESSIONS FOR DISPLACEMENTS OF THE PRESENT THEORY 

As a result of assumption 1, strain-displacement relations of linear theory of elasticity will hold good. 

; ;x y z
u v w

x y z

  
  

  
    

; ;xy yz zx
v u w v u w

x y y z z x
  

     
     

       (1) 

As a result of assumption 2, constitutive relations between stresses and strains can be used to relate direct 
stresses x  and y  to linear strains x  and y  as follows: 

 
21

  x x y
E

 


 


 
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 
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

 
 (3) 

As a result of assumption 3 and assumption 4, expressions for in-plane displacements u  and v  of the present 
theory can be written as follows: 

( ) ,  , bw
u x y z z

x


 

  (4) 

( ) ,  , bw
v x y z z

y


 

  (5) 

The transverse displacement w  has a bending component bw  and a shear component sw . Hence, 

( , ) ( , ) ( , ) =   +  b sx y x y w xw yw   (6) 

With some efforts, shear component sw  can be expressed in terms of bending component bw  (as shown in 
Appendix A) as: 

2 22

2 26 (1 )
b b
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w wh
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k x y
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Here, ‘k ’ is a shear correction factor which is analogous to shear correction factor proposed by Mindlin 
(1951). 

Hence, transverse displacement w  can be expressed in terms of bending component bw  as follows: 

2 22

2 26 (1 )
b b

b

w wh
w w

k x y

              (8) 

It can be observed from expressions (4), (5) and (8) that expressions for in-plane displacements u  and v , 
and transverse displacement w  contain only one unknown variable, i.e. bw . 

Now, using displacement functions of the present theory in strain-displacement relations given by equation 
(1), expressions for strains can be written as follows: 
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From expressions (12) and (13), it can be observed that, as is the case with Mindlin plate theory (Mindlin 
(1951)), transverse shear strains yz  and zx  remain constant through the plate thickness in the present theory. 

Hence, transverse shear stresses yz  and zx  also remain constant through the plate thickness. 

It is well known fact that, in reality, transverse shear stresses yz  and zx  vary, more or less, in parabolic 
manner through the plate thickness. In general, these transverse shear stresses are zero on surfaces ( / 2z h  ) 
of the plate. Hence, a shear correction factor associated with Mindlin plate theory (Mindlin (1951)) will be uti-
lized in the present theory. 

6 MODIFIED CONSTITUTIVE RELATIONS OF THE PRESENT THEORY 

The constitutive relations of theory of elasticity in respect of shear strains and shear stresses are xy xyG  , 

yz yzG   and zx zxG   . However as a result of assumption 3 and assumption 5, the relations between trans-

verse shear strains and transverse shear stresses get modified by incorporating a shear correction factor ‘k ’ as: 

yz yzkG   and zx zxkG   . Hence, constitutive relations between stresses and strains can be written as fol-

lows: 
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7 EXPRESSIONS FOR STRESSES 

Now, using equations (9) through (13) in constitutive relations given by equations (14) through (18), ex-
pressions for stresses can be written as follows: 
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8 EXPRESSIONS FOR MOMENTS AND SHEAR FORCES 

Moments xM , yM  and xyM ; shear forces xQ  and yQ  can now be defined as follows: 
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Now, using equations (19) through (23) in equation (24), expressions for bending moments xM  and yM ; 

twisting moment xyM ; shear forces xQ  and yQ  can be written as follows: 
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Here, D  represents the rigidity of the plate which is given by 

 
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
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It can be observed that expressions for moments given by equations (25), (26), (27) and shear forces given 
by equations (28), (29) have striking resemblance to those of CPT. 

9 OBTAINING GOVERNING DIFFERENTIAL EQUATION FOR THE FLEXURAL ANALYSIS OF THE PLATE 

The equilibrium equations as per three-dimensional linear theory of elasticity can be written as follows: 
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Here in equations (31) through (33), body forces (such as self weight due to gravity) are not mentioned sep-
arately as they can be merged with externally applied loads without causing much loss of accuracy. It is important 
to note that, theory of elasticity equations can be satisfied only in case of few problems. Whereas, gross equilibri-
um equations can be satisfied comparatively easily. Gross equilibrium equations can be obtained using theory of 
elasticity equilibrium equations (31) through (33) as obtained by Shimpi (2002). 
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0    yx
QQ

q
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   (36) 

Equations (34), (35) and (36) are gross equilibrium equations. Expressions for moments given by equations 
(25), (26), (27) and shear forces given by equations (28), (29) satisfy gross equilibrium equations (34) and (35). 

It must be noted that, shear forces xQ  and yQ  as given by expressions (28) and (29) respectively are ob-

tained using expression for sw  as given by equation (7); displacement functions (4), (5) and (6); strain-

displacement relation (1); stress-strain relation (17) and (18); expressions for xQ  and yQ  as given in equation 

(24). Expressions for xQ  and yQ  which are identical to expressions (28) and (29) can also be obtained using ex-

pressions for moments xM , yM  and xyM  as given by equations (25), (26) and (27) respectively in gross equilib-
rium equations (34) and (35) (as shown in Appendix A). 

Now, using expressions for shear forces xQ  and yQ  as given by expressions (28) and (29) in gross equilibri-
um equation (36), governing differential equation for the flexural analysis of the plate can be obtained as follows: 

4 4 4

4 2 2 4
2b b bw w w q

Dx x y y

  
  

   
 (37) 

Here, it can be observed that, governing differential equation (37) of the present theory has striking resem-
blance to the governing differential equation of CPT. The only difference is that, in equation (37), bw  is appearing, 
whereas in case of CPT, in its place transverse displacement w  appears. 

Using governing differential equation (37) and appropriate boundary conditions, bw  can be obtained. Trans-
verse displacement w  can be obtained using equation (8). 

The appropriate physically meaningful boundary conditions would now be discussed. 

 
Figure 2: Plate co-ordinate system. 

 

10 BOUNDARY CONDITIONS 

In the present theory; xM , yM , xyM , xQ  and yQ  as given by expressions (25), (26), (27), (28) and (29) re-
spectively, have striking resemblence to the corresponding expressions of CPT. Only difference is that in the pre-
sent theory, bw  is appearing in these expressions, whereas in case of CPT, in its place transverse displacement w  
appears. Boundary conditions in the present theory can be prescribed as guided by the experience of CPT and 
theory of elasticity. 
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In this section, few commonly used physically meaningful boundary conditions would be discussed for the 

rectangular plate (Figure 2) at the edge 
2

b
y  , for the sake of illustration. To prescribe the boundary conditions 

at other edges, i.e. 
2

b
y   , 0x   and x a , one could follow the similar logic as that of the edge 

2

b
y  . In case of 

the plate with arbitrary shape, boundary conditions can be specified in similar manner by considering local direc-
tions n , s  and 'z  at a typical point ‘P ’ on the edge as shown in Figure 1. 

1. Plate edge 
2

b
y   is simply-supported 

At simply-supported edge 
2

b
y  , transverse displacement w  is zero and bending moment yM  is zero. 
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Expressions (38) and (39) lead to following boundary conditions at simply-supported edge 
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2. Plate edge 
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At free edge 
2

b
y  ; using same reasoning as that in the case of CPT  for free edge as discussed by Timoshen-

ko and Woinowsky-Krieger (1959) on page no. 83 through 85, boundary conditions can be specified as follows: 
2 2

/2 2 2
/2

   0 b b
y y b

y b

w w
M D

y x





                (42) 

3 3

3 2
/2 /2

(2 ) 0     xy b b
y

y b y b

M w w
Q D

x y x y


 

                       (43) 

3. Plate edge 
2

b
y   is clamped: 

At clamped edge 
2

b
y  ; it is feasible to represent two types of boundary conditions. In this paper, these two 

types of clamped boundary conditions are denoted as “clamped edge: type 1” and “clamped edge: type 2”. These 
boundary conditions are analogous to those discussed by Timoshenko and Goodier (1951) on page no. 35 
through 39 in the context of two-dimensional theory of elasticity approach for beam analysis. 

a. Plate edge 
2

b
y   is clamped with “clamped edge: type 1” 
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For “clamped edge: type 1” boundary conditions on the edge 
2

b
y  , w  is taken as zero and slope v

z

  
  

 is tak-

en as zero at the clamped edge 
2

b
y  . This slope, can be expressed in terms of bw  by using equation (5). Hence, 

following conditions are to be used: 
2 22

/2 2 2
/2

(
 0

6 1 )
   b b

by b
y b

w wh
w w

k x y


                     (44) 

/2

0 b

y b

w

y 

     
 (45) 

b. Plate edge 
2

b
y   is clamped with “clamped edge: type 2” 

For “clamped edge: type 2” boundary conditions on the edge 
2

b
y  , the displacement boundary condition 

remains the same as that of earlier case, but now slope w

y

  
  

 is taken as zero at the clamped edge 
2

b
y  , Hence, 

following conditions are to be used: 
2 22

/2 2 2
/2

0
6

   
(1 )

b b
by b

y b

w wh
w w

k x y


                     (46) 

2 22

2 2
/2 /2

0 
6 (1 )

    b b b

y b y b

w w ww h

y y k y x y 

                               (47) 

It can be seen from the boundary condition given by equation (45) that at the clamped edge 
2

b
y  , slope of 

only bending component bw  (of transverse displacement w ) along y   axis is equal to zero. Hence in case of 
“clamped edge: type 1” boundary condition, effects of shear deformation on transverse displacement are signifi-
cant. 

Whereas, it can be seen from the boundary condition given by equation (47) that at the clamped edge 
2

b
y  , 

slope of transverse displacement w  along y   axis is equal to zero. Hence in case of “clamped edge: type 2” 
boundary condition, effects of shear deformation on transverse displacement are less significant as compared to 
those of “clamped edge: type 1” boundary condition. 

It is pointed out by Groh and Weaver (2015) that inconsistencies with regards to the shear force arise in the 
formulation of flexural behaviour of plates with clamped boundary conditions using a certian class of axiomatic 
shear deformation theories. Discussion provided by Groh and Weaver (2015) points out that shear forces errone-
ously vanish at a clamped edge when the constitutive relations and boundary conditions of the particular theory 
are utilized. Hence, the shear forces obtained by using the equilibrium considerations of the forces would not 
match with those obtained using constitutive relations and boundary conditions of the particular theory. Hence, 
this would result in the inconsistency of the shear forces. 

However, it is worth mentioning that such a discrepancy of vanishing shear forces, when the constitutive re-
lations and boundary conditions of the theory are utilized, will not take place in the present theory. In the present 
theory, clamped edge boundary conditions specified are analogous to those discussed by Timoshenko and Goodi-
er (1951) in the context of two-dimensional theory of elasticity approach for beam analysis. It would be feasible 
to obtain appropriate shear forces at the clamped edge of the plate by using the boundary conditions prescribed 
either by equations (44) and (45) or by equations (46) and (47), as the case may be. 
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11 COMMENTS ON THE PRESENT THEORY 

The following are the noteworthy features of the present theory: 
1. The proposed theory is a displacement based theory. As is case of Mindlin plate theory (Mindlin (1951)), the present theory assumes 

constant transverse shear strains across the plate thickness and it requires a shear correction factor to be specified. The governing 
differential equation of the present theory is obtained by utilizing gross equilibrium equations of the plate. These gross equilibrium 
equations are in terms of moments, shear forces and the applied loading. Based on physical understanding, the boundary conditions 
have been specified. 

2. In the present theory, shear strains are obtained using assumed displacement functions along with strain-displacement relations. These 
shear strains are then used to obtain shear stresses using modified stress-strain relations. These shear stresses are finally used to 
obtain shear forces. Whereas, in case of CPT, shear forces are obtained using gross equilibrium equations. 

3. Unlike Mindlin plate theory (Mindlin (1951)) which contains three coupled partial governing differential equations and three unknown 
functions, the present theory has only one fourth-order partial governing differential equation (equation (37)). The present theory 
involves only one unknown function ( bw ). 

4. For the plate flexure problems, the expressions for moments, shear forces and the governing differential equation of the present theory 

have striking resemblance to those of CPT. The only difference is that, in the present theory, bw  appears in these expressions, 
whereas in case of CPT, in its place transverse displacement w  appears. 

5. Unlike any other first-order shear deformation theory, the present theory provides two different types of physically meaningful clamped 
boundary conditions. These clamped boundary conditions of the present theory are analogous to those discussed by Timoshenko 
and Goodier (1951) in the context of two-dimensional theory of elasticity approach for beam analysis. 

6. Following points should be noted with regards to the present theory, the work presented by Shimpi et al. (2017) and the conceptual 
differences between them: 

a. The difference between the present theory and the work presented by Shimpi et al. (2017) in their eqs. (46) - (48) is on similar lines 
as the difference between NFSDT by Shimpi et al. (2007) and RPT by Shimpi (2002). In other words, the present theory 
belongs to the category of first-order shear deformation plate theories. Whereas the work presented by Shimpi et al. (2017) 
belongs to the category of higher-order shear deformation plate theories. 

b. It should be noted that in case of both Shimpi et al. (2017) in their eq. (48) and the present theory, transverse displacement w  

consists of a bending component bw  and a shear component sw . But on similar lines of RPT, the assumed in-plane 
displacement field of Shimpi et al. (2017) in their eqs. (46) - (47) has linear as well as cubic variations in terms of the plate 
thickness coordinate. Whereas on the similar lines of NFSDT, the assumed in-plane displacement field of the present theory 
has only linear variation in terms of the plate thickness coordinate. 

12 ILLUSTRATIVE EXAMPLE 

In this section, illustrative examples for the flexure of an isotropic rectangular plates will be presented to 
demonstrate the effectiveness of the present theory. 

Strategy for solutions 
All the illustrative examples involve rectangular plates as shown in Figure 2. The plate is simply-supported 

on the edges 0x   and x a . For individual problems, the boundary conditions at the edges 
2

b
y   and 

2

b
y    

would be specified. The plate is acted upon by uniformly distributed load of intensity oq  per unit area over the 

entire surface 
2

b
z    of the plate and the load oq  acts in the positive z   direction. 

For such a plate, it is possible to obtain expression for bw  using Lévy method of analysis as discussed by Ti-

moshenko and Woinowsky-Krieger (1959) on page no. 113 through 115. This expression for bw  satisfies simply-
supported boundary conditions on the edges 0x   and x a  as well as the governing differential equation (37). 
Expression for bw  is as follows: 

5 5
4

1,3,5,..

4
cosh sinh

sin

sinh cosh

m m

o
b

m

m m

m y m y m y
A B

a a amq a m x
w

D a
m y m y m y

C D
a a a

  

 

  





                                                                                   

 

 (48) 

Now, by using equations (48) and (8), expression for transverse displacement w  can be written as follows: 
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5 5

4

1,3,5,..

4
cosh sinh

sinh cosh

m m

m m

o

m

m y m y m y
A B

a a am

m y m y m y
C D

a a a
q a

w
D

h

a

  



  





                                    

                           



 
 



 
 
 



 
 
 

   

   





 


5 52 2 2

sin

2
cosh

3 (1 )
sinh

m

m

m x

a
m y

B
amm

k
m y

D
a










                                                                                    (49) 

Now, arbitrary constants mA , mB , mC  and mD  are obtained by substituting expressions (48) and (49) into 

appropriate boundary conditions of remaining two edges i.e. 
2

b
y   and 

2

b
y    and by solving obtained set of 

linear algebraic equations. 

1. Example 1: Plate with edges 
2

b
y  , 

2

b
y   , 0x   and x a are all simply-supported (SSSS). 

2. Example 2: Plate with edges 
2

b
y  , 

2

b
y    are clamped and edges 0x  , x a  are simply-supported (SCSC). 

3. Example 3: Plate with edges 
2

b
y  , 

2

b
y    are free and edges 0x  , x a  are simply-supported (SFSF). 

4. Example 4: Plate with edge 
2

b
y   is clamped, edge 

2

b
y    is simply-supported and edges 0x  , x a  are simply-supported 

(SCSS). 

5. Example 5: Plate with edge 
2

b
y   is clamped, edge 

2

b
y    is free and edges 0x  , x a  are simply-supported (SCSF). 

6. Example 6: Plate with edge 
2

b
y   is simply-supported, edge 

2

b
y    is free and edges 0x  , x a  are simply-supported (SSSF). 

As pointed out by Lee et al. (2002), in the open literature, the only analytical Mindlin plate results on Lévy 
plates have been reported by Cooke and Levinson (1983). Most of the results present in the literature for the 
plate flexure problems pertain to SSSS, SCSC and SFSF plates. Hence for examples 4, 5 and 6, authors have com-
pared the results for SCSS, SCSF and SSSF plates obtained using the present theory with corresponding results 
given by Zenkour (2003), Thai and Choi (2013) and Thai et al. (2013). Zenkour (2003) has used mixed plate the-
ory, Thai and Choi (2013) have used refined plate theory and Thai et al. (2013) have used simple refined shear 
deformation theory for the plate flexure analysis. 

In example 1; 1, 3, 5, ...., 49m   is taken, whereas for examples 2, 3, 4, 5 and 6; 1, 3, 5, 7m   is taken for 
series expansion of bw  and w . 

13 NUMERICAL RESULTS AND DISCUSSIONS 

Using expressions (48) and (49) for bw  and w  respectively, numerical results will now be presented for flex-
ural analysis of SSSS, SCSC, SFSF, SCSS, SCSF and SSSF plates. Numerical results in terms of non-dimensional 

transverse displacement (w ), non-dimensional bending moment ( xM ) and non-dimensional shear force ( xQ ) 
obtained using the present theory and corresponding results available in the literature are tabulated in Tables 1 
through 6. 

Convergence analysis in terms of effect of number of terms in series expansion of bending component bw  of 
transverse displacement w  on various non-dimensional parameters of the plate with SSSS boundary conditions 
(Example 1) for various values of plate thickness ratio is included in Appendix B. 
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Poisson’s ratio ( ) for the plate material is assumed to be 0.3. The value of shear correction factor (k ) is 
taken as 5/6. 

The non-dimensional parameters used in the tabulation are defined as follows: 

4
o

wD
w

q a
 : Non-dimensional transverse displacement (in the context of SSSS, SCSC, SFSF, SCSS, SCSF and SSSF 

plates carrying uniformly distributed loads). 

2
x

x
o

M
M

q a
 : Non-dimensional bending moment (in the context of SSSS plates carrying uniformly distributed 

loads). 

x
x

o

Q
Q

q a
 : Non-dimensional shear force (in the context of SSSS plates carrying uniformly distributed loads). 

 
 
 
 
 

Table 1: Comparison of various non-dimensional parameters of the plate with SSSS boundary conditions (Example 1) 

and carrying a uniformly distributed load of intensity 
oq  and Poisson’s ratio (   = 0.3). 

           Theory                                          Non-dimensional displacement 
4

o

wD
w

q a

      
  

                                                                 at x = a/2, y = 0, b/a = 1.0  

                                                           h/a = 0.01    h/a = 0.05   h/a = 0.10         h/a = 0.20  
CPT 0.00406 0.00406 0.00406 0.00406 

Levinson (Reddy et al. (2001)) - - 0.00427 0.00490 
Mindlin (Lee et al. (2002)) 0.00406 0.00411 0.00427 0.00490 

Reissner (Salerno and Gold-
berg (1960)) 

Present 

0.00406 
 

0.00407 

0.00411 
 

0.00412 

0.00424 
 

0.00427 

0.00478 
 

0.00490 

                    Theory                                     Non-dimensional bending moment 
2
x

x
o

M
M

q a

      
 

                                                          at x = a/2, y = 0, b/a = 1.0  

                                                                 h/a = 0.01   h/a = 0.05    h/a = 0.10         h/a = 0.20  
CPT 0.0479 0.0479 0.0479 0.0479 

Mindlin (Lee et al. (2002)) 0.0479 0.0479 0.0479 0.0479 
Reissner (Salerno and Gold-

berg (1960)) 
0.0479 0.0479 0.0481 - 

Present 0.0479 0.0479 0.0479 0.0479 

                Theory                                               Non-dimensional shear force x
x

o

Q
Q

q a

     
 

                                                                 at x = 0, y = 0, b/a = 1.0  

                                                                 h/a = 0.01    h/a = 0.05    h/a = 0.10        h/a = 0.20  
CPT 0.338 0.338 0.338 0.338 

Mindlin (Lee et al. (2002)) 0.333 0.333 0.333 0.333 
Refined HSDT (Kant (1982)) 0.337 0.337 0.337 0.337 

Present 0.334 0.334 0.334 0.334 
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Table 2: Comparison of non-dimensional displacements of the plate with SCSC boundary conditions (Example 2) and 

carrying a uniformly distributed load of intensity 
oq  and Poisson’s ratio (   = 0.3). 

       Theory                                     Non-dimensional displacement 
4

o

wD
w

q a

      
 

                                                               at x = a/2, y = 0, b/a = 1.0  

                                                       h/a = 0.01   h/a = 0.05    h/a = 0.10        h/a = 0.20  
CPT 0.00192 0.00192 0.00192 0.00192 

Levinson (Reddy et al.(2001)) - - 0.00227 0.00322 
Mindlin (Lee et al. (2002)) 0.00192 0.00199 0.00221 0.00302 

Reissner (Salerno and Gold-
berg (1960)) 

Present clamp type 1 
Present clamp type 2 

0.00192 
 

0.00192 
0.00192 

0.00199 
 

0.00199 
0.00193 

0.00220 
 

0.00222 
0.00196 

0.00298 
 

0.00308 
0.00210 

           Theory                                     Non-dimensional displacement 
4

o

wD
w

q a

      
 

                                                               at x = a/2, y = 0, b/a = 2.0  

                                                           h/a = 0.01   h/a = 0.05    h/a = 0.10        h/a = 0.20  
CPT 0.00845 0.00845 0.00845 0.00845 

Levinson (Reddy et al.(2001)) - - 0.00889 0.01013 
Mindlin (Lee et al. (2002)) 0.00845 0.00855 0.00885 0.01000 

Reissner (Salerno and Gold-
berg (1960)) 

Present clamp type 1 
Present clamp type 2 

0.00845 
 

0.00845 
0.00845 

0.00854 
 

0.00855 
0.00850 

0.00882 
 

0.00886 
0.00867 

0.00985 
 

0.01005 
0.00936 

 

Table 3: Comparison of non-dimensional displacements of the plate with SFSF boundary conditions (Example 3) and 

carrying a uniformly distributed load of intensity 
oq  and Poisson’s ratio (   = 0.3). 

         Theory                                       Non-dimensional displacement 
4

o

wD
w

q a

      
 

                                                               at x = a/2, y = 0, b/a = 1.0  

                                                       h/a = 0.01    h/a = 0.05   h/a = 0.10        h/a = 0.20  
CPT 0.01309 0.01309 0.01309 0.01309 

Levinson (Reddy et al.(2001)) 0.01310 0.01319 0.01346 0.01454 
Mindlin (Lee et al. (2002)) 0.01310 0.01319 0.01346 0.01454 

Reissner (Salerno and Gold-
berg (1960)) 

Present 

- 
 

0.01310 

- 
 

0.01318 

0.01341 
 

0.01342 

0.01433 
 

0.01441 

         Theory                                       Non-dimensional displacement 
4

o

wD
w

q a

      
 

                                                            at x = a/2, y = b/2, b/a = 1.0  

                                                          h/a = 0.01    h/a = 0.05   h/a = 0.10       h/a = 0.20  
CPT 0.01501 0.01501 0.01501 0.01501 

Levinson (Reddy et al.(2001)) 0.01504 0.01522 0.01560 0.01690 
Mindlin (Lee et al. (2002)) 0.01504 0.01522 0.01560 0.01690 

Reissner (Salerno and Gold-
berg (1960)) 

Present 

- 
 

0.01501 

- 
 

0.01508 

0.01557 
 

0.01530 

0.01678 
 

0.01616 
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Table 4: Comparison of non-dimensional displacements of the plate with SCSS boundary conditions (Example 4) and 

carrying a uniformly distributed load of intensity 
oq  and Poisson’s ratio (   = 0.3). 

         Theory                                       Non-dimensional displacement 
4

o

wD
w

q a

      
 

                                                          at x = a/2, y = 0, b/a = 2.0  

                                                     h/a = 0.001 h/a = 0.04   h/a = 0.10        h/a = 0.20  
CPT 0.00927 0.00927 0.00927 0.00927 

MPT(Zenkour (2003)) 0.00927 0.00933 0.00964 0.01070 
RPT(Thai and Choi (2013)) 0.00927 0.00932 0.00960 0.01057 
SRSDT (Thai et al. (2013)) 

Present clamp type 1 
Present clamp type 2 

0.00927 
0.00927 
0.00927 

0.00932 
0.00933 
0.00931 

0.00960 
0.00964 
0.00955 

0.01057 
0.01073 
0.01037 

MPT: Mixed plate theory, RPT: Refined plate theory, SRSDT: Simple refined shear deformation theory. 

 

Table 5: Comparison of non-dimensional displacements of the plate with SCSF boundary conditions (Example 5) and 

carrying a uniformly distributed load of intensity 
oq  and Poisson’s ratio (   = 0.3). 

         Theory                                       Non-dimensional displacement 
4

o

wD
w

q a

      
 

                                                          at x = a/2, y = 0, b/a = 2.0  

                                                     h/a = 0.001 h/a = 0.04   h/a = 0.10        h/a = 0.20  
CPT 0.01061 0.01061 0.01061 0.01061 

MPT(Zenkour (2003)) 0.01061 0.01066 0.01098 0.01209 
RPT(Thai and Choi (2013)) 0.01061 0.01066 0.01095 0.01197 
SRSDT (Thai et al. (2013)) 

Present clamp type 1 
Present clamp type 2 

0.01061 
0.01061 
0.01061 

0.01066 
0.01067 
0.01065 

0.01095 
0.01099 
0.01089 

0.01197 
0.01212 
0.01176 

MPT: Mixed plate theory, RPT: Refined plate theory, SRSDT: Simple refined shear deformation theory. 

 

Table 6: Comparison of non-dimensional displacements of the plate with SSSF boundary conditions (Example 6) and 

carrying a uniformly distributed load of intensity 
oq  and Poisson’s ratio (   = 0.3). 

         Theory                                       Non-dimensional displacement 
4

o

wD
w

q a

      
 

                                                          at x = a/2, y = 0, b/a = 2.0  

                                                     h/a = 0.001 h/a = 0.04   h/a = 0.10       h/a = 0.20  
CPT 0.01149 0.01149 0.01149 0.01149 

MPT(Zenkour (2003)) 0.01150 0.01155 0.01183 0.01284 
RPT(Thai and Choi (2013)) 
SRSDT (Thai et al. (2013)) 

Present 

0.01150 
0.01150 
0.01150 

0.01155 
0.01155 
0.01155 

0.01184 
0.01184 
0.01183 

0.01286 
0.01286 
0.01285 

MPT: Mixed plate theory, RPT: Refined plate theory, SRSDT: Simple refined shear deformation theory. 
 
Non-dimensional transverse displacements for CPT reported in Tables 1 through 6 have been calculated by 

the present authors. 
Following points must be noted regarding clamped boundary conditions: 

1. At the clamped edges for the plate with SCSC boundary conditions, Reddy et al. (2001) assume transverse deflection of the mid-surface of 
the plate and rotations of normals to the mid-surface of the plate about y  and x   axes to be zero. However, it has been pointed 
out by Groh and Weaver (2015) that, irrespective to the choice of shape function, restraining such rotations perpendicular to 
clamped edges leads to a static inconsistency at the clamped edge. 
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2. At the clamped edges for the plate with SCSC boundary conditions, Lee et al. (2002) assume transverse deflection of the mid-surface of 
the plate and rotations of normals to the mid-surface of the plate about y  and x   axes to be zero. Lee et al. (2002) specify only 
one type of clamped boundary condition. 

Similarly, at the clamped edges for plates with SCSS and SCSF boundary conditions, Zenkour (2003) assumes transverse deflection of 
the mid-surface of the plate and rotation angles of a line normal to the mid-surface of the plate before deformation about y  
and x   axes to be zero. Zenkour (2003) specifies only one type of clamped boundary condition. 

Senjanović et al. (2013) have used key concepts of Shimpi et al. (2007) by reducing number of unknown functions to one for the 
vibrations of thick plates. Although the work reported by Senjanović et al. (2013) is similar to the present theory, it also 
specifies only one type of clamped boundary condition. 

3. At the clamped edges for plates with SCSS and SCSF boundary conditions, Thai and Choi (2013) and Thai at al. (2013) assume bending 
component of transverse displacement, shear component of transverse displacement and their slopes to be zero. This is incorrect 
way of specifying boundary conditions as it amounts to shear forces to be zero at the clamped edge. 

As discussed earlier, to the best of authors’ knowledge, the present theory is the only first-order shear de-
formation theory that provides two different types of physically meaningful clamped boundary conditions. Both 
of these clamped boundary conditions are analogous to those discussed by Timoshenko and Goodier (1951) in 
the context of two-dimensional theory of elasticity approach for beam analysis. The results obtained for plates 
with clamped edges using clamped edge: type 1 boundary condition of the present theory almost match with cor-
responding results available in the literature. 

14 COMMENTS ON THE PLATE FLEXURE RESULTS 

Following observations are in connection with the present theory and the numerical results presented in Ta-
bles 1 through 6: 
1. It must be noted that, the present theory and Mindlin plate theory are first-order shear deformation plate theories. Even though the present 

plate theory can predict the non-dimensional transverse displacement (w ) to the same accuracy level as that of Mindlin plate 
theory (refer to Tables 1 through 6); it can be noted that, the present theory involves only one partial governing differential 
equation and one unknown function. On the other hand, Mindlin plate theory involves three coupled partial governing differential 
equations and three unknown functions. 

2. One can also note that, the efforts involved in obtaining solutions using the present theory are only marginally higher as compared to those 
involved in the case of CPT. 

3. With regards to the numerical results presented in Tables 1 through 6, the following can be noted: 
a. For the case of square SSSS plate carrying a uniformly distributed load (Example 1), the results for non-dimensional transverse 

displacement (w ), non-dimensional bending moment ( xM ) and non-dimensional shear force ( xQ ) are presented in Table 1. 

• The non-dimensional transverse displacement (w ) predicted by the present theory almost matches with corresponding results obtained 
using Mindlin plate theory (Lee et al. (2002)) and Levinson plate theory (Reddy et al. (2001)). Even for a square plate with 
h/a = 0.20 , w  obtained using the present theory is identical to the corresponding value obtained using Mindlin plate theory 

(Lee et al. (2002)) and Levinson plate theory (Reddy et al. (2001)). Whereas, CPT underestimates w  by 17.14 %  with respect to 
the present theory. 

• The non-dimensional bending moment ( xM ) predicted by the present theory matches exactly with corresponding results obtained using 

Mindlin plate theory (Lee et al. (2002)). Even for a square plate with h/a = 0.20 , xM  obtained using the present theory is 
identical to the corresponding value obtained using Mindlin plate theory (Lee et al. (2002)). 

• The non-dimensional shear force ( xQ ) predicted by the present theory almost matches with corresponding results obtained using Mindlin 

plate theory (Lee et al. (2002)). Even for a square plate with h/a = 0.20 , the percentage difference involved in predicting xQ  by 

the present theory and by Mindlin plate theory (Lee et al. (2002)) is 0.30 %  with respect to the present theory. Whereas, CPT 

overestimates xQ  by 1.20 %  with respect to the present theory. 

b. For the case of rectangular SCSC plate ( b/a = 1.0  and b/a = 2.0 ) carrying a uniformly distributed load (Example 2), the results for 

non-dimensional transverse displacement (w ) are presented in Table 2. 
• The non-dimensional transverse displacement (w ) predicted by the present theory matches exactly with corresponding results obtained 

using Mindlin plate theory (Lee et al. (2002)) for thin plates ( h/a = 0.01  and h/a = 0.05 ). Whereas, w  predicted by the 
present theory using clamped edge: type 1 boundary condition almost matches with corresponding results obtained using Mindlin 
plate theory (Lee et al. (2002)) for thick plates ( h/a = 0.10  and h/a = 0.20 ). Even for a square plate with h/a = 0.20 , the 

percentage difference involved in predicting w  by the present theory using clamped edge: type 1 boundary condition and by 
Mindlin plate theory (Lee et al. (2002)) is 1.95 %  with respect to the present theory. Whereas, CPT underestimates w  by 
37.66 %  with respect to the present theory. 

c. For the case of square SFSF plate carrying a uniformly distributed load (Example 3), the results for non-dimensional transverse 
displacement (w ) are presented in Table 3. 
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• The non-dimensional transverse displacement (w ) at the center of the plate predicted by the present theory matches exactly with 
corresponding results obtained using Mindlin plate theory (Lee et al. (2002)) for thin plates ( h/a = 0.01 ). Whereas, w  predicted 
by the present theory almost matches with corresponding results obtained using Mindlin plate theory (Lee et al. (2002)) for thick 
plates ( h/a = 0.10  and h/a = 0.20 ). Even for a square plate with h/a = 0.20 , the percentage difference involved in 

predicting w  by the present theory and by Mindlin plate theory (Lee et al. (2002)) is 0.90 %  with respect to the present theory. 
Whereas, CPT underestimates w  by 9.16 %  with respect to the present theory. 

d. For the case of rectangular SCSS plate ( b/a = 2.0 ) carrying a uniformly distributed load (Example 4), the results for non-dimensional 

transverse displacement (w ) are presented in Table 4. 
• The non-dimensional transverse displacement (w ) predicted by the present theory matches exactly with corresponding results obtained 

using mixed plate theory (Zenkour (2003)) for thin plates ( h/a = 0.001  and h/a = 0.04 ). Whereas, w  predicted by the 
present theory using clamped edge: type 1 boundary condition almost matches with corresponding results obtained using mixed 
plate theory (Zenkour (2003)) for thick plates ( h/a = 0.10  and h/a = 0.20 ). Even for a rectangular plate with h/a = 0.20 , 

the percentage difference involved in predicting w  by the present theory using clamped edge: type 1 boundary condition and by 
mixed plate theory (Zenkour (2003)) is 0.28 %  with respect to the present theory. Whereas, CPT underestimates w  by 13.61 %  
with respect to the present theory. 

e. For the case of rectangular SCSF plate ( b/a = 2.0 ) carrying a uniformly distributed load (Example 5), the results for non-dimensional 

transverse displacement (w ) are presented in Table 5. 
• The non-dimensional transverse displacement (w ) predicted by the present theory matches exactly with corresponding results obtained 

using mixed plate theory (Zenkour (2003)) for thin plates ( h/a = 0.001 ). Whereas, w  predicted by the present theory using 
clamped edge: type 1 boundary condition almost matches with corresponding results obtained using mixed plate theory (Zenkour 
(2003)) for thick plates ( h/a = 0.10  and h/a = 0.20 ). Even for a rectangular plate with h/a = 0.20 , the percentage 

difference involved in predicting w  by the present theory using clamped edge: type 1 boundary condition and by mixed plate 
theory (Zenkour (2003)) is 0.25 %  with respect to the present theory. Whereas, CPT  underestimates w  by 12.46 %  with 
respect to the present theory. 

f. For the case of rectangular SSSF plate ( b/a = 2.0 ) carrying a uniformly distributed load (Example 6), the results for non-dimensional 

transverse displacement (w ) are presented in Table 6. 
• The non-dimensional transverse displacement (w ) predicted by the present theory matches exactly with corresponding results obtained 

using mixed plate theory (Zenkour (2003)) for thin plates ( h/a = 0.001  and h/a = 0.04 ). Whereas, w  predicted by the 
present theory almost matches with corresponding results obtained using mixed plate theory (Zenkour (2003)) for thick plates (
h/a = 0.10  and h/a = 0.20 ). Even for a rectangular plate with h/a = 0.20 , the percentage difference involved in predicting 

w  by the present theory and by mixed plate theory (Zenkour (2003)) is 0.08 %  with respect to the present theory. Whereas, CPT  
underestimates w  by 10.58 %  with respect to the present theory. 

4. It should be noted that non-dimensional transverse displacement (w ) at the center of the plate ( / 2x a , 0y  ) predicted by the 
present theory (Table 3) for the case of square SFSF plate (Example 3) has good agreement with the corresponding results available 
in the literature (for square SFSF plate with h/a = 0.20 , maximum percentage difference of 0.90 %  is observed in predicting 

w  by the present theory and by Mindlin plate theory (Lee et al. (2002)) with respect to the present theory). However, percentage 
difference of 4.58 %  in predicting w  by the present theory and by Mindlin plate theory (Lee et al. (2002)) with respect to the 
present theory is observed for square SFSF plate with h/a = 0.20  at location / 2x a , / 2y b . With regards to this case, 
following points should be noted: 

a. It can be observed that for the plate with SFSF boundary conditions, including more number of terms in series expansion of bending 
component ( bw ) of transverse displacement (w ) (beyond 7m  ) while solving using the present theory have no significant 

influence on w  as shown below in Figure 3. 
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Figure 3: Effect of number of terms in series expansion of bending component bw  of transverse displacement w  on 

non-dimensional transverse displacement w  for the plate with SFSF boundary conditions (Example 3). 

 

Hence, percentage difference of 4.58 %  for square SFSF plate with h/a = 0.20  at location / 2x a ,
/ 2y b  in predicting w  by the present theory and by Mindlin plate theory (Lee et al. (2002)) with respect to 

the present theory is not due to lack of terms in series expansion of bw . 
b. Even for the simple case of plate clamped edge boundary conditions, it is interesting to note as quoted by Groh and Weaver (2015), that 

“Essential boundary condition of vanishing Kirchoff rotation perpendicular to an edge ( , 0xw   or , 0yw  ) is 
physically inaccurate, as the rotation at a clamped edge may in fact be non-zero due to the presence of transverse 
shear rotation.” 

As mentioed earlier, this leads to inconsistencies with regards to the shear force arising in the formulation of 
flexural behaviour of plates with clamped edge boundary conditions using a certian class of axiomatic shear de-
formation theories. 

To the best of knowledge of authors, similar to the case of plate clamped edge boundary conditions, even 
plate free edge boundary conditions reported in the literature overall lack clarity in general. 
c. Lee et al. (2002), Zenkour (2003), Thai and Choi (2013), Thai et al. (2013), Reddy et al. (2001), Salerno and Goldberg (1960) and Kant 

(1982) in which the work on flexural analysis of the plate with SFSF boundary conditions is reported, do not mention an exact 
solution for flexural analysis of the plate with SFSF boundary conditions obtained using three dimensional elasticity approach and 
authors are also unaware of such an exact solution for the plate with SFSF boundary conditions. Lack of such an exact solution 
restricts the comparison of the results obtained using the present theory with the corresponding results obtained using other shear 
deformation plate theories reported in the literature. 

d. CPT requires specification of two bounary conditions per plate edge. It should be noted that for the case of plate free edge, one of the 
boundary conditions of CPT (Kirchoff shear force) is formulated using the combination of twisting moment along with shear force 
at that free edge (Timoshenko and Woinowsky-Krieger (1959), page no 83 through 88). Similar is the case with the present theory 
and it can be the possible reason behind percentage difference of 4.58 %  for square SFSF plate with h/a = 0.20  at location 

/ 2x a , / 2y b  in predicting w . Hence, the result for above-mentioned case may not be as accurate as that obtained using 
other shear deformation plate theories reported in the literature. 

However, it should also be noted that, as far as the plate with b/a = 1.0, h/a = 0.20  is concerned, it is possi-
ble to debate on whether it qualifies as a plate or a stubby object. Percentage difference of 4.58 %  for above-
mentioned case needs to be construed by taking this point into account. The results for above-mentioned case are 
included in Table 3 due to availability of corresponding results in the literature. On the other hand, percentage 
difference in predicting w  for square SFSF plate with h/a = 0.10  at location / 2x a , / 2y b  is only 1.96 % . 

Hence from above discussion, it can be conceded that the results for the plate with SFSF boundary conditions 
obtained using the present theory are farely good. And the results for remaining plate examples (plate with SSSS, 
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SCSC, SCSS, SCSF and SSSF boundary conditions) obtained using the present theory have very good agreement 
with the corresponding results available in the literature. 

15 CONCLUDING REMARKS 

In this paper, single variable new first-order shear deformation theory for flexure of an isotropic plate is pre-
sented. Important features of the present theory can be stated as follows: 
1. The present theory is a displacement based first-order shear deformation plate theory and has single fourth-order partial governing 

differential equation involving only one unknown function. Whereas Mindlin plate theory, which is also a first-order shear 
deformation plate theory, involves three coupled partial governing differential equations and three unknown functions. 

2. The displacement functions of the present theory give rise to constant transverse shear strains through the plate thickness. As is case of 
Mindlin plate theory, the present theory also requires specification of a shear correction factor. 

3. In the present theory, transverse shear stresses are obtained using modified constitutive relations. 
4. By utilizing gross equilibrium equations, the governing differential equation of the present theory is obtained. The boundary conditions 

have been obtained based on physical understanding. 
5. To the best of authors’ knowledge, the present theory is the only first-order shear deformation plate theory with two different types of 

physically meaningful clamped boundary conditions. Both clamped boundary conditions of the present theory are analogous to 
those discussed by Timoshenko and Goodier (1951) in the context of two-dimensional theory of elasticity approach for beam 
analysis. It is to be noted that the results obtained for plates with clamped edges using clamped edge: type 1 boundary condition of 
the present theory almost match with corresponding results available in the literature. In addition, the present theory specifies one 
more type of clamp boundary condition i.e. clamped edge: type 2, which has not been reported by any other first-order shear 
deformation plate theory available in the literature. 

6. The expressions of the present theory have a striking resemblance to the corresponding expressions of classical plate theory in many 
aspects (e.g. governing differential equation, expressions for moments and shear forces). The only difference is that, bending 
component bw  (of transverse displacement w ) appears in case of the present theory, whereas in case of classical plate theory, in 
its place transverse displacement w  appears. Also, the expressions for shear forces obtained using the present theory are identical 
to those obtained using gross equilibrium equations. 

7. Effectiveness of the present theory is demonstrated through illustrative examples for the plate flexure. The numerical results obtained are 
compared with corresponding results of other shear deformation plate theories available in the literature. 

8. It is observed that, the efforts involved in obtaining solutions using the present theory are only marginally higher as compared to those 
involved in the case of classical plate theory. 

In conclusion, the present plate theory is a simple and accurate first-order shear deformation plate theory for 
the flexure of isotropic plates. 
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APPENDIX A: RELATIONSHIP BETWEEN BENDING COMPONENT AND SHEAR COMPONENT 
OF TRANSVERSE DISPLACEMENT 
Using displacement functions of the present theory as given by expressions (4), (5) and (6) in strain-displacement relations given by equation 

(1), expressions for transverse shear strains yz  and zx  can be written as follows: 

  s
yz

w

y





  (A.1) 

  zx
sw

x





  (A.2) 

Now, using expressions (A.1) and (A.2) in constitutive relations given by equations (17) and (18), expres-
sions for transverse shear stresses yz  and zx  can be written as follows: 
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Now, using expressions (A.3) and (A.4) in equation (24), expressions for shear forces xQ  and yQ  can be 
written as follows: 
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 (A.6) 

Now, using expressions for moments xM , yM  and xyM  as given by equations (25), (26) and (27) in gross 

equilibrium equations (34) and (35), expressions for shear forces xQ  and yQ  can also be written as follows: 

2 2

2 2
 b b

x

w w
Q D

x x y

              (A.7) 
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y

w w
Q D

y x y

              (A.8) 

Now, using expressions (A.5) and (A.6) in expressions (A.7) and (A.8) respectively, we can write as follows: 
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                 (A.10) 

Now, using expressions (A.9) and (A.10), we can express shear component sw  as follows: 
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2 2

2 2

2 (1 )
b b

s

D w w
w

E k h x y

              (A.11) 

Now, using expression (A.11) and expression (30), shear component sw  can be expressed as follows: 
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Rameshchandra P. Shimpi et al. 
Single variable new first-order shear deformation theory for isotropic plates 

Latin American Journal of Solids and Structures, 2018, 15(10), e124 22/25 

APPENDIX B: CONVERGENCE ANALYSIS FOR CASE OF THE PLATE WITH SSSS BOUNDARY 
CONDITIONS (EXAMPLE 1). 

Effect of number of terms in series expansion of bending component bw  of transverse displacement w  on 

non-dimensional transverse displacement w , non-dimensional bending moment xM  and non-dimensional shear 

force xQ  of the plate with SSSS boundary conditions (Example 1) for various values of plate thickness ratio is de-
picted with the help of graphs as shown below in Figures B.4 through B.9. 

 
Figure B.4: Effect of number of terms used in series expansion of bending component bw  of transverse displacement w   

on non-dimensional transverse displacement 
4

o

wD
w

q a

      
 for the plate with SSSS boundary conditions (Example 1) and 

having b/a = 1.0  and h/a = 0.01 . 
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Figure B.5: Effect of number of terms used in series expansion of bending component bw  of transverse displacement w   

on non-dimensional transverse displacement 
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q a

      
 for the plate with SSSS boundary conditions (Example 1) and 

having b/a = 1.0  and h/a = 0.05 . 

 
Figure B.6: Effect of number of terms used in series expansion of bending component bw  of transverse displacement w   

on non-dimensional transverse displacement 
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q a

      
 for the plate with SSSS boundary conditions (Example 1) and 

having b/a = 1.0  and h/a = 0.10 . 
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Figure B.7: Effect of number of terms used in series expansion of bending component bw  of transverse displacement w   

on non-dimensional transverse displacement 
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      
 for the plate with SSSS boundary conditions (Example 1) and 

having b/a = 1.0  and h/a = 0.20 . 

 
Figure B.8: Effect of number of terms used in series expansion of bending component bw  of transverse displacement w   

on non-dimensional bending moment 
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      
 for the plate with SSSS boundary conditions (Example 1) and hav-

ing b/a = 1.0 . 
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Figure B.9: Effect of number of terms used in series expansion of bending component bw  of transverse displacement w   

on non-dimensional shear force x
x

o

Q
Q

q a

     
 for the plate with SSSS boundary conditions (Example 1) and having 

b/a = 1.0 . 

 

From Figures B.4 through B.9, following observations can be made for the plate with SSSS boundary condi-
tions: 
1. It is evident from Figures B.4 through B.7 that including more number of terms in series expansion of bending component bw  of 

transverse displacement w  (beyond 7m  ) while solving using the proposed theory have no significant influence on non-
dimensional transverse displacement w  as transverse displacement w  is the primary unknown quantity. 

2. On the other hand, inclusion of more number of terms in series expansion of bending component bw  of transverse displacement w  is 

required to achieve convergence of derived unknown quantities such as xM  and xQ . 

a. Series expansion of bw  upto 21m   is required to achieve convergence of xM  (Figure B.8). 

b. Series expansion of bw  upto 49m   is required to achieve convergence of xQ  (Figure B.9). 
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