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Harmonic differential quadrature method for static analysis of
functionally graded single walled carbon nanotubes based on
Euler-Bernoulli beam theory

Abstract

Bending analysis of functionally graded single walled carbon

nano tubes is presented in this paper. Carbon nano tubes

are modeled as Euler-Bernoulli beam theory in this study.

Harmonic differential quadrature (HDQ) method is used to

discretize the governing equations. In order to show the ac-

curacy of present work, the results are compared with those

of other existing results. Then the effects of different pa-

rameters such as power law index, inner and outer radius of

nano tubes and length nano tubes of are studied, too.
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1 INTRODUCTION

The concept of functionally graded materials (FGMs) was first proposed by Japanese mate-

rial scientists in the early 1980s [17]. An advantage of functionally graded materials (FGMs)

over laminated composites is that material properties vary continuously in an FGM as op-

posed to being discontinuous across adjoining layers in laminated composites. El-Abbassi and

Meguid [10] presented a new thick shallow shell element to study the thermoelastic behav-

ior of functionally graded structures made from shells and plates. Tutuncu and Ozturk [24]

obtained closed-form solutions for stress and displacements in functionally graded pressure

vessels subjected to internal pressure alone by using the infinitesimal theory of elasticity. Qian

et al [22] studied the static and dynamic deformations of thick functionally graded elastic

plates by using higher-order shear and normal deformable plate theory and meshless local

Petrov–Galerkin method. Chen et al. [5] presented elasticity solution for bending and ther-

mal deformations of FG beams with various end conditions, using the state space method

coupled with differential quadrature method. Şimşek and Kocatürk [9] considered the free

and forced vibration of a functionally graded beam subjected to a concentrated moving har-

monic load. Malekzadeh et al [18] investigated the out-of-plane free vibration of functionally

graded circular curved beams in thermal environment based on the first order shear defor-

mation theory (FSDT), using differential quadrature method. Janghorban and Rostamsowlat

Latin American Journal of Solids and Structures 9(2012) 633 – 641



634 M. Janghorban et al / Harmonic differential quadrature method for static analysis of functionally graded nanotubes

[13] studied the bi-directional functionally graded plate based on three-dimensional elasticity

theory. Differential quadrature method was used to solve the governing equations. The ad-

vancements of micro technology and nanotechnology have enthused scientists and engineers in

their pursuit of studying all sorts of micro/nanostructures such as carbon nanotubes (Fig. 1).

Single walled nanotubes use a single sheath of graphite one atom thick, called “graphene” but

multi walled nanotubes are either wrapped into multiple layers or are constructed of multiple

cylinders, one inside the other. Nanotubes are members of the fullerene structural family,

which also includes the spherical buckyballs. The ends of a nanotube may be capped with a

hemisphere of the buckyball structure. Civalek and Akgöz [6] presented the static analysis of

carbon nano tubes using the nonlocal Bernoulli-Euler beam theory by differential quadrature

method. Demir et al [4] studied the free vibration analysis of carbon nanotubes based on

Timoshenko beam theory using discrete singular convolution (DSC) method. Nonlocal longi-

tudinal vibration of single-walled-carbon-nanotubes with attached buckyballs was considered

by Murmu and Adhikari [20]. Hashemnia et al [12] studied the dynamical analysis of single

walled carbon nanotubes conveying water considering carbon–water bond potential energy and

nonlocal effects.Ansari and Hemmatnezhad [2] proposed the nonlinear vibrations of embedded

multi-walled carbon nanotubes using a variational approach. In most recent years, function-

ally graded materials are finding increasing employments in micro-/nano-electro-mechanical

systems [8, 11]. On the basis of the modified couple stress theory, the size-dependent static

and vibration behavior of micro-beams made of functionally graded materials are analytically

studied by Asghari et al [3]. Ke et al [16] investigated the nonlinear free vibration of function-

ally graded carbon nanotube-reinforced composite beams based on Timoshenko beam theory

and von Kármán geometric nonlinearity. Ke et al [15] presented the nonlinear free vibration

of size-dependent functionally graded micro beams based on the modified couple stress theory

and von Kármán geometric nonlinearity. Mohammadi-Alasti [19] investigated the mechanical

behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear

electrostatic pressure using step-by-step linearization method and finite difference Method.

Functionally graded carbon nanotubes/hydroxyapatite (CNTs/HA) composite coatings have

been fabricated by laser cladding technique using CNTs/HA composite powders by Pei et al

[21]. Recently, Janghorban and Zare [14] investigated the free vibration analysis of function-

ally graded single walled carbon nanotubes with variable thickness based on Timoshenko beam

theory using differential quadrature method. In this paper, functionally graded single walled

carbon nanotubes subjected to mechanical loading based on Euler-Bernoulli beam theory is

investigated. Harmonic differential quadrature method as an efficient and numerical tool is

used to solve the beam equation.

2 MATERIAL PROPERTIES

Young’s modulus of the functionally graded single walled carbon nanotubes is assumed to vary

across the longitude directional of nanotubes. In this case, in order to compute the results for

single walled carbon nanotube subjected to mechanical loading, the Young’s modulus can be
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Figure 1 Nanotube [1]

defined as follow,

E(x) = E2 + (E1 −E2)(x/L)n (1)

where 0 < x < L and n is the power law index. E1 and E2 refer to the Young’s modulus at

both ends of functionally graded carbon nanotubes.

3 HARMONIC DIFFERENTIAL QUADRATURE METHOD

Harmonic Differential quadrature (HDQ) method is a relatively new numerical technique in

applied mechanics. The harmonic differential quadrature method is a development of the

differential quadrature method, which has been used successfully to solve a variety of problems.

The HDQ method chooses harmonic functions as its test functions instead of polynomials in

the DQ method, i.e.,

f(x) = {1, sinπx, cosπx, sin2πx, cos2πx, ..., sin(N − 1)πx/2, cos(N − 1)πx/2} (2)

where N is an odd number. The weighting coefficients of the first-order derivatives Aij can be

obtained by using the following formula:

Aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(π/2)P (xi)
(xi−xj)P (xj) for i ≠ j

−
Nx

∑
j = 1
i ≠ j

Aij for i = j (3)

where P (xi) =
Nx

∏
k=1,i≠k

sin[(xi − xk)π/2]
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Figure 2 The effects of length to width ratio on the deflections of clamped

The weighting coefficients of second order derivative can be obtained as,

[Bij] = Aij[2A
(1)
ii − πctg(xi − xk)π/2] i,j = 1,2,3, ...,N, (4)

The weighting coefficient of the fourth order derivatives (Dij) can be computed easily from

(Bij) by

Dij =
N

Σ
j=1

Bij Bij (5)

The above equation is the same for differential quadrature and harmonic differential quadra-

ture methods. In numerical computations, Chebyshev-Gauss-Lobatto quadrature points are

used, that is,

xi

a
= 1

2
{1 − cos[ (i−1)π(Nx−1)]};

for i= 1,2, . . . ,Nx

(6)

4 GOVERNING EQUATIONS

This study is carried out on the basis of the Euler-Bernoulli beam model (Fig. 2). Consider

a single walled functionally graded carbon nanotubes with length L, inner radius and outer

radius . The beam model is subjected to centrally concentrated load. For single walled carbon

nanotubes, the equation for Euler-Bernoulli beam model can be expressed as follow,

∂V /∂x + q(x) = pA∂2W /∂t2 (7)
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where q(x) is the mechanical loading on single walled carbon nanotubes, p is the density, W

is the vertical deflection of nanotube, A is the cross section of beam model and V is the shear

force which is define as follow,

V = ∂M/∂x (8)

The bending moment in equation (6) can be define as,

M = ∫ yσds (9)

where, σ = Eε. For small deflection, the axial strain is define by,

ε = −y∂2W /∂x2 (10)

Shear force and bending moment can be expressed as,

V = −EI∂2W /∂x3 M = −EI∂2W /∂x2 (11)

From the classical Euler beam theory, the vertical deflection W that results from load

distribution d(x) satisfies the fourth-order ordinary differential equation:

q(x) = EI∂4W /∂x4 + ∂2EI/∂x2∂2W /∂x2 + 2∂EI/∂x∂x3W /∂x3 + pA∂2W /∂t2 (12)

In order to solve the bending equation, the harmonic differential quadrature method is

used. The discretized form of equation above is,

q(xi) = EI
N

Σ
j=1

Dxij Wj + pA
N

Σ
j=1

BtijWj + ∂2EI/∂x2
N

Σ
j=1

BxijWj + ∂2EI/∂x
N

Σ
j=1

CxijWj (13)

The weighting coefficient of the fourth order derivatives (Dij) can be computed easily from

(Bij) by

Dij =
N

Σ
j=1

Bij Bij (14)

Two-types of boundary conditions are considered. These are,

Fully clamped, (at both ends)

W = 0, ∂W /∂x = 0 (15)

Simply supported, (at both ends)

W = 0, ∂2W /∂x2 = 0 (16)

The discretized form of boundary condition can be obtained by,

Latin American Journal of Solids and Structures 9(2012) 633 – 641



638 M. Janghorban et al / Harmonic differential quadrature method for static analysis of functionally graded nanotubes

Fully clamped, (at both ends)

Wi = 0,
N

Σ
j=1

AijWj = 0 (17)

Simply supported, (at both ends)

Wi = 0,
N

Σ
j=1

BijWj = 0 (18)

5 NUMERICAL RESULTS

For functionally graded carbon nanotubes, different examples are investigated in this section.

From the knowledge of author, there are not any results exist for static analysis FG nanotubes.

So in order to show the validation of present results, a comparison is made for the isotropic

case. The material properties used in the present study are as follows:

E1150GPa, E2200GPa, r = 15nm, R = 20nm, L = 600nm (19)

where E1 and E2 refer to the Young’s modulus at both ends of functionally graded carbon

nanotubes, r and R are the inner and outer radius of carbon nanotubes and L is the length of

the carbon nanotubes. The deflection of functionally graded carbon nanotubes subjected to

mechanical loading can be defined as follow,

W = 1000 ∗w ∗E2 (20)

In Table 1, a comparison is made between the present results and the results of Civalek et

al [7] for the isotropic case (n = 0). Exact analytical solution is also obtained by the analytical

formula given by

Reddy and Pang [23] for comparison. Excellent agreement has been achieved between the

present results and the results obtained by analytical formula given by Reddy and Pang [23].

It is obviously shown that the harmonic differential quadrature method can achieve accurate

results. In Fig. 3, the effects of power law index on the deflections of simply supported

functionally graded single walled carbon nanotubes subjected to centrally concentrated load

are shown. One can easily see that with the increase of power law index, the deflections of

nanotube will increase. The effects of lenght of fully clamped single walled carbon nanotubes

under centrally concentrated load are investigated in Fig. 4. As it is expected, increasing the

length of nanotubes will also increase the deflections of nanotubes. In Figs. 5 and 6, the effects

of inner and outer radius of functionally graded single walled carbon nanotubes are studied, as

it can be seen in Fig. 2. The results for fully clamped functionally graded carbon nanotubes

vs. different inner radius are figured in Fig. 5. It is obtained that increasing the inner radius

will increase the deflections of nanotubes. The outer radius of carbon nanotube is considered

in Fig. 6. One can understand that in order to decrease the deflections of single walled carbon

nanotubes, the outer radius must increase.
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Table 1 Comparison of maximum deflection (wEI/qL4) under uniformly distributed loading,(I = 105 ∗
10−34, v = 0.3,E = 2 ∗ 109)

HDQ Civalek et al [7] Reddy et al [23]
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 Figure 3 The effects of power law index on the deflections of simply supported functionally graded nano tubes
q = (200nN)
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Figure 4 The effects of length of nanotubes on the deflections of fully clamped functionally graded nanotubes
(N = 4)
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 Figure 5 The effects of inner radius of nanotubes on the deflections of fully clamped functionally graded
nanotubes (N = 1)
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Figure 6 The effects of outer radius of nanotubes on the deflections of simply supported functionally graded
nanotubes (N = 1)

6 CONCLUSION

Based on Euler-Bernoulli beam theory, static analysis of functionally graded carbon nan-

otubes subjected to mechanical loading was investigated. The harmonic differential quadrature

method was employed to solve the governing equations. Various parameters were studied for

functionally graded nanotubes in this paper. It was shown that the results for isotropic carbon

nanotubes are very different from the results for functionally graded carbon nanotubes. It was

also shown that in order to decrease the deflections of functionally graded carbon nanotubes,

the power law index, the length and inner radius of nanotubes should decrease and the outer

radius must increase.
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