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Robust high-cycle fatigue stress threshold optimization under
uncertain loadings

Abstract

This paper proposes a strategy to achieve robust optimiza-

tion of structures against high-cycle fatigue when a poten-

tially large number of uncertain load cases are considered.

The strategy is heavily based on a convexity property of some

of the most commonly used high-cycle design criteria. The

convexity property is rigorously proven for the Crossland fa-

tigue criterion. The proof uses a perturbation technique and

involves the principal stress components and analytical ex-

pressions for the applicable fatigue criteria. The multiplicity

of load cases is treated using load ratios which are bounded

but are otherwise free to vary within certain limits. The

strategy is applied to a notched plate subject to traditional

normal and shear loadings that possess uncertain or unspec-

ified components.
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1 INTRODUCTION

Traditionally, structural design does not take into account fatigue life issues. Engineers con-

ceive projects based on parameters such as stress limits, maximum displacements, fundamental

frequency and buckling. Nevertheless, structures break down even when admissible loads, de-

termined by the design criteria above, are applied. Commonly, it occurs after a long time the

structure becomes operational and the cause of failure is the end of the component fatigue life.

In the aerospace industry several aircraft structural components deserve full attention from

the fatigue point of view. In the fuselage upper panels, windshield, door frames, pressure

domes, wing and empennage connections and engine pylon are sensitive components. In the

wing lower panels, spars, landing gear fixtures, flap and aileron connections, and engine pylon

are all prone to fatigue. Moreover, vertical and horizontal tails should be carefully designed

for fatigue.

In order to ensure infinite fatigue life for metallic structures loaded by multiaxial time-

varying loadings, designers must include a multiaxial high-cycle fatigue (MHCF) criterion in

the structural analysis [11]. However, it is very difficult to evaluate the optimal structure con-

figuration in the case of uncertain loadings, because it is required to integrate an optimization
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method with a robustness strategy.

Mrzyg lód and Zieliński [9, 10], without using a robust technique, implemented a structural

optimization analysis adapting the time load history in a car front suspension arm regarding

eight geometric decision variables, using the Dang Van fatigue criterion as a constraint and

minimizing the objective function computed by the arm mass. The optimization method

applied was a probabilistic search based on evolutionary algorithms, with an optimum result

of 5.6% decrease of arm mass at the 29th generation. Certainly, a large number of finite

element simulations were performed to achieve this result, spending a large calculation time.

Steenackers et al. [13] integrated an optimization method with a robustness strategy ap-

plied to the slat track (airplane component) finite element model taking into account the

uncertainty of design parameters. They concluded that in order to obtain accurate results, an

extensive computation time is necessary to run a large number of Monte Carlo simulations in

combination with FE models.

Jung and Lee [5] proposed a method for robust optimization problems which conjugates

the probability in design process and sensitivity analysis. Moreover they used the advanced

first-order second moment method in order to reduce the calculation time. This method

has the advantages of gradient-based optimization methods, since the second-order sensitivity

information is not required, but the first-order sensitivity information is still necessary.

d’Ippolito et al. [3] introduce a methodology based on reliability analysis and design

optimization in order to ensure robustness for their structural design considering fatigue life

of its components. A probabilistic optimization method to fatigue life based on strain-life

approach was implemented. The authors used a hybrid meta-model/FE strategy to save

computation time. Besides a quadratic response surface model based on design of experiments

(DOE) results was necessary in order to reduce the number of FE analysis.

This work presents a new robust approach in metallic structural design optimization prob-

lem considering (multiaxial) high-cycle fatigue criteria. For the purpose of saving compu-

tational time, removing sensitivity analysis of design variables and performing a minimum

number of finite element analyses as a possible, the optimization strategy is based on extreme

modeling which adds robustness to the optimal design. It is necessary to combine this tech-

nique with convexity of fatigue criteria. A numerical example was solved applying the proposed

robust optimization technique and the results were discussed.

2 LOADING REPRESENTATION AND PROBLEM FORMULATION

Consider an arbitrary structure with boundary conditions and L applied loadings shown in

Fig. 1. A 2D sketch is drawn to facilitate visualization but 3D structures can also be resolved

under the approach to be developed. The regions of application of the loadings are assumed to

be fixed. This assumption rules out the class of moving loads [2] but is generally accepted in

the context of fatigue investigations. Moreover, moving load problems induce relevant dynamic

effects which are disregarded in high-cycle fatigue studies.

The stress state of an arbitrary point x is given by the Cauchy stress tensor σ resulting
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Figure 1 Applied loadings

from all the loadings applied. Admitting that the loadings vary with time, the stress tensor σ

also varies with time. Additionally, since linear elasticity is assumed, the resulting stress state

is the summation of the stresses produced by individual loadings:

σ = r1σ1 + ... + rLσL, (1)

where σl relates to the loading pl. The principle of superposition embedded in Eq. (1) is valid

for linear elasticity. In nonlinear problems Eq. (1) is no longer applicable. However, since the

high-cycle fatigue stress thresholds are well below the yield stress, linearity is a very reasonable

assumption in the present analysis.

The load ratios r1, ..., rL represent the relative contribution of the loadings and are bounded

by 0 ≤ rl ≤ 1 for all l = 1, ..., L. Usually the loadings are not applied simultaneously and the

load ratios may obey a given relationship to reflect it. A useful relation is the linear convex

combination r1 + ... + rL = 1 which assumes that the relative contribution of the loadings add

up to 100%. A natural question that arises refers to the most dangerous loading combination.

As an example, consider only two loadings: p1 and p2. What combination leads to the worst

situation in terms of fatigue: (i) r1 = 1, r2 = 0, (ii) r1 = 0, r2 = 1, (iii) r1 = 0.5, r2 = 0.5 or (iv)

another combination where r1 + r2 = 1? This question will be answered in this paper.

Any loading pl is written in terms of two components as in Eq. (2)

pl = pm
l + ral (t)pa

l (2)

where the superscripts m and a were adopted to comply with usual terminology [6] in fatigue

investigations: m relates to the mean (average) of the loading component whereas a reflects

amplitude and time variability. Parameter ral (t) varies with time and is usually harmonic (e.g.

sin(ωt+ϕ)) in traditional fatigue investigations. pm
l and pa

l are nominal or reference loadings

that may be known from the loading envelope of the structure.

When ral (t) are specified functions of time and the load ratios rl introduced in Eq. (1) are

fixed (or known) a traditional optimization procedure can be proposed considering the loading

trajectory in time along with a suitable multiaxial fatigue criteria [11, 12]. On the other hand,

whenever uncertainties are present in either rl or ral (t), more elaborate strategies are required

including, for instance, a statistical treatment of the applicable loadings [8].
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The optimization strategy proposed in this work to handle the lack of specification in

both rl and ral (t) is based on extreme modeling. The extreme modeling adds robustness to

the optimization effectively eliminating sensitivity of optimal designs against variations in the

uncertain loadings. However, in order to be economical, the extreme modeling technique should

work in conjunction with convexity properties. In essence the extreme modeling technique

obtains optimal designs against not only one particular load case, but against an entire space

of admissible loadings.

Uncertainty is introduced in the problem admitting that rl and ral are not known beforehand

but vary within bounds for all instants of time t. These box constraints, mathematically defined

in Eq. (3), guarantee a bounded problem. In practice this means that a reasonable estimative

of the range of variability of rl and ral must be available.

0 ≤ rl ≤ 1, ∑L
l=1 rl = 1, (ral )MIN ≤ ral ≤ (ral )MAX. (3)

Notice that Eq. (3) does not assume beforehand how the load ratios may vary with time.

This is an important aspect of the loading representation since nonharmonic and asynchronous

loadings can be considered. Therefore, time variability of ral (t) becomes unimportant since

what essentially matters are the side constraints (ral )MIN and (ral )MAX. Statistically the inter-

pretation for time independence is that ral is assumed to have uniform probability of attaining

any value contained within the box defined in Eq. (3c).

The traditional optimization problem may be posed as volume minimization under the

constraint that a given multiaxial fatigue criterion is satisfied, e.g. Dang Van [14], Crossland

[1], McDiarmid [7], Findley [4], Mamiya [6], among others:

min
θ

V (θ)

s.t. ∶ max
x

max
r

σc(θ,x, r) ≤ b (4)

where θ is the vector of design variables such as thickness distribution over a plate or cross

section dimensions of stiffeners in a reinforced panel, V (θ) is the total structural volume, σc

is the critical fatigue stress which depends on the stress tensor σ at x, b is the fatigue stress

threshold, and r(t) = { r1 ra1(t) r2 ra2(t) r3 ra3(t) ... rL raL(t) }T . Notice that r is a

function of time and so is σc.

Equation (4) shows that the most demanding procedure in the solution of the optimization

problem is the computation of the constraints which involves double maximization of σc over

x and r(t). Additionally, the constraint in Eq. (4) is nondifferentiable with respect to θ since

the worst r certainly varies with θ. The next section shows how to significantly simplify the

double maximization problem required to evaluate the constraints present in Eq. (4).

3 CONVEXITY OF FATIGUE CRITERIA

The critical fatigue stress σc is calculated based on the stress tensor σ at a particular point

x. The stress tensor, in turn, depends on the load ratios r. The approach to solve the double
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maximization problem is twofold. Firstly, consider a fixed point x1 and vary r. Once the most

dangerous load ratios r1 are obtained for point x1 another point x2 is to be assessed and its

most dangerous load ratios r2 obtained. Observe that, since time independence is assumed,

usually r1 ≠ r2.

Computation of the worst r is an important part of the constraint evaluation which can be

sped up if σc is more carefully examined. Since most multiaxial stress fatigue criteria depend

on the principal stresses of σ it is worth investigating how the principal stresses vary as σ

is perturbed. Assume that vector r produces a given stress tensor at point x which can be

computed as in

σ =
L

∑
l=1

rlσl =
L

∑
l=1

rl[σm
l + ral (t)σa

l ] =
L

∑
l=1
[rlσm

l + rl(t)σa
l ], (5)

where σm
l and σa

l relate, respectively, to the loadings pm
l and pa

l defined in Eq. (2). The

newly defined parameter rl(t) is simply the product rl × ral (t) and, according to Eqs. (3a) and

(3c), obey the relationship

0 ≤ rl(t) ≤ (ral )MAX. (6)

Equation (5) is linear in r1, r1, ..., rL, rL. Therefore, a first order perturbation in these

parameters lead to a first order perturbation in σ of the type σ + δσ, not containing higher

order terms δ2σ, δ3σ, etc.

The principal stresses are computed from the eigenvalue problem stated in Eq. (7)

(σ − λI)n = 0, (7)

where I is the identity tensor, λ is the principal stress and n is the principal direction. The

perturbed eigenvalue problem is

[(σ + δσ) − (λ + δλ + δ2λ + ...)I](n + δn + δ2n + ...) = 0. (8)

Equation (8) can be split into higher order problems such that the first order problem is

(δσ − δλI)n + (σ − λI)δn = 0 (9)

and the second order problem is

−(δ2λ)n + (δσ − δλI)δn + (σ − λI)δ2n = 0. (10)

Premultiplication of Eq. (9) by nT , use of Eq. (7), symmetry of σ and the fact that

nTn = 1 yields

δλ = nT δσn. (11)
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Equation (11) shows how the principal stresses vary when r is perturbed. However, not

much useful information can be retrieved from it. Premultiplication of Eq. (10) by nT , use of

Eqs. (7) and (9), and the fact that nTn = 1 yields

δ2λ = −δnT (σ − λI)δn. (12)

Equation (12) gives important information regarding the sign of the second derivative of λ

(the principal stresses). Notice that σ can be written as σ =NΛNT where N is the matrix of

eigenvectors (stored columnwise) and Λ is the diagonal matrix whose trace is composed of the

principal stresses σI , σII , σIII with σI ≥ σII ≥ σIII . It is clear that NTN = NNT = I holds.

Hence, Eq. (12) can be rewritten as

δ2λ = −δnTN

⎡⎢⎢⎢⎢⎢⎣

σI − λ 0 0

0 σII − λ 0

0 0 σIII − λ

⎤⎥⎥⎥⎥⎥⎦
NT δn. (13)

There are two important situations: (i) λ = σI and (ii) λ = σIII . When λ = σI the diagonal

matrix in Eq. (13) is negative semi-definite and when λ = σIII it is positive semi-definite. In

one case δ2λ = δ2σI ≥ 0 and in the other δ2λ = δ2σIII ≤ 0.

The conclusions just drawn can be immediately employed to prove convexity with respect

to r1, r1, ..., rL, rL of one of the most commonly used high-cycle fatigue criterion in finite

element analyses: Crossland [1].

The Crossland (σCR) stresses can be expressed as

σCR =
√
J2 + κCRσH , (14)

where κCR is a parameter that can be expressed from data of two fatigue tests (reversed

bending and reversed torsion), σH = (σI + σII + σIII)/3 is the hydrostatic stress (three times

the trace of the stress tensor) and J2 is the second invariant of the stress deviator tensor given

by

J2 =
1

6

√
(σI − σII)2 + (σI − σIII)2 + (σII − σIII)2. (15)

The square root of J2 appearing in Eq. (14) is an amplitude and not an instantaneous

value. The calculation of this amplitude necessitates the definition of a complete load cycle.

From a complete load cycle one can calculate the amplitude of the square root of J2 and the

maximum hydrostatic stress σH occurring within this cycle to apply the Crossland criterion.

Notice, however, that time dependancy is not an issue anymore since extreme modeling is

being applied (see Eqs. (3a) and (6)). Since trace (3σH) is a linear function of σI , σII , σIII

its second variation (or derivative) is zero, i.e., δ2σH = 0. On the other hand, J2 is a quadratic

function of σI , σII , σIII meaning that its second variation must be nonnegative, what also

implies that the second variation of
√
J2 is also nonnegative, i.e., δ2

√
J2 ≥ 0. It follows that

δ2σCR = δ2
√
J2 + κCRδ

2σH ≥ 0. (16)
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As an example, consider two reference stress states given by

σm
1 =
⎡⎢⎢⎢⎢⎢⎣

20 0 0

0 −10 5

0 5 2

⎤⎥⎥⎥⎥⎥⎦
, σm

2 =
⎡⎢⎢⎢⎢⎢⎣

20 10 0

10 20 0

0 0 −1

⎤⎥⎥⎥⎥⎥⎦
, σa

1 = σa
2 = 0

and assume two load ratios r1 = r and r2 = 1 − r, 0 ≤ r ≤ 1, are associated with σm
1 and σm

2 ,

respectively, such that the resulting stress state is σ = r1σ
m
1 + r2σm

2 . Taking κCR = 0.5 it

is possible to draw the stress curves shown in Fig. 2. As expected, it is clear that σCR is a

convex function of r. Moreover, notice that trace is a linear function or r, what is also expected

since δ2σH = 0. Nothing can be stated about the convexity of the second principal stress σII .

Actually, it is seen that the sign of δ2σII is either positive or negative.
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Figure 2 Stress curves for varying load ratios

4 ROBUST OPTIMIZATION STRATEGY

Equation (4) states the robust optimization problem that must be solved in order to find the

optimal design θ. In the previous section it was proven that the critical fatigue stress σc is

convex with respect to variations in the applied loadings r, i.e., δ2σc ≥ 0, at least for the

Crossland criterion.
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Convexity of σc with respect to variations in the load ratios can be schematically seen in

Fig. 3a. The critical stress surface is constructed by computing σc for different load ratios

represented generically by ri and rj . It must be clear that only two axes of load ratios are

drawn to permit visualization in 3D. However, many more may be present as explained in

section 2. The load ratios are represented by dots in the rirj plane. Notice that the loading

envelope described in Eqs. (3a) and (6) is highlighted in Fig. 3a and termed convex hull.

This terminology is justified by the fact that any other set of load ratios, represented by dots

within the convex hull, can be written as a linear convex combination of the vertices V1 −V4 of

the convex hull. Figure 3b shows the geometrical representation of Eq. (3b) where the plane

r1 + r2 + ... + rL = 1 can be seen.

With regard to the optimization strategy, constraint evaluation in Eq. (4) requires solution

of the inner loop that maximizes σc with respect to r. This inner maximization problem can

be solved by checking the projections P1−P4 of the convex hull vertices V1−V4 onto the critical

stress surface. The worst possible load ratios is the one whose point Pk is associated with the

greatest σc. Notice that, in a situation where there are several loadings applied, even using

the convexity of σc entails computation of a very large number of possibilities. For a structure

with L loadings the number of possibilities is L× 2L, where L comes from the vertices defined

by Eq. (3b) and 2L comes from the box constraints defined in Eq. (6). Since linearity of the

mechanical response is assumed, 2L load cases can be computed beforehand and the result

stored for evaluation of the worst σc, being L loadings pm
l and L loadings pa

l . The next section

presents an example to clarify this point.
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Figure 3 Convexity of critical fatigue stress

The outer loop necessary to compute the constraints in Eq. (4) requires a search over

the complete structure domain since x is the position of an arbitrary point. Mathematically,

searching over the structure domain is the most precise procedure. In practice, however, finite

element models are usually used to model complex structures. Therefore, a simpler alternative

for the outer maximization loop consists in evaluating σc at the nodes.
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5 NUMERICAL EXAMPLE

The rectangular notched plate shown in Fig. 4 is used as an example. It has length 1.0 m,

width 0.5 m and circular notch with radius 0.1 m located at the plate center. Notice that the

plate has a nonuniform thickness distribution and the loadings may have mean and amplitude

components as expressed by Eq. (2).

X Y

Z

Nxy

Nxx

Nxx

Nyy

Nyy

Nxy

Figure 4 Notched plate with loadings with nonuniform thickness distribution

A finite element code was developed to obtain the critical fatigue stress σc based on the

Crossland criterion. This code employs the 4-noded quadrilateral element with the usual

bilinear shape functions

N1(ξ, η) =
1

4
(1 − ξ)(1 − η) N2(ξ, η) =

1

4
(1 + ξ)(1 − η)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η) N4(ξ, η) =

1

4
(1 − ξ)(1 + η). (17)

The element stiffness matrix Ke can be computed by

Ke = ∫
Ωe

h(x, y)BTCBdΩ, (18)

where

Φ = [ N1 N2 N3 N4 ]
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B =
⎡⎢⎢⎢⎢⎢⎣

Φ,x 0

0 Φ,y

Φ,y Φ,x

⎤⎥⎥⎥⎥⎥⎦
C−1 =

⎡⎢⎢⎢⎢⎢⎣

1/E −ν/E 0

−ν/E 1/E 0

0 0 1/G

⎤⎥⎥⎥⎥⎥⎦
(19)

and the displacements u and v can be interpolated using the respective nodal values u1, u2,

u3, u4 and v1, v2, v3, v4 as

u =Φ{ u1 u2 u3 u4 }T v =Φ{ v1 v2 v3 v4 }T . (20)

Notice that the integral in Eq. (18) involves the thickness h(x, y) which varies over the ele-

ment domain. The thickness distribution of the plate is assumed to be adequately represented

by nodal thicknesses such that, similarly to Eq. (20), it can be interpolated as

h =Φ{ h1 h2 h3 h4 }T (21)

and integration in Eq. (18) is numerically carried out using 2 × 2 Gaussian quadrature.

The mesh shown in Fig. 5 with bilinear elements was used to model the plate. Refinement

around the notch boundary was ensured because this is the region where stress concentrations

shall occur.

Figure 5 Meshed notched plate

The optimization strategy selected to solve Eq. (4) is topometric, i.e., plate volume mini-

mization is achieved through thickness variation. The procedure implemented is simple:

i. For a given thickness distribution θi find the worst σc at all nodes

ii. For each node I, update thickness hI,i+1 = hI,i ∗ σcI/b

iii. Stop when all hI do not change considerably
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Figure 6 presents the flowchart of the optimization procedure described here and in the

previous section. The stresses evaluated at the nodal positions are computed on average, i.e.,

if two or more elements share node I, then the stress is given by the average of the stresses

computed using interpolation functions and nodal displacements of these two or more elements.
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end 

NO 

YES 

Figure 6 Optimization flowchart

The three loadings (L = 3) to be applied in this plate example are those illustrated in Fig.

4. They are more precisely described in Tab. 1, split into mean and average components, and

amplitude parameters. According to Tab. 1 the loadings are limited to 0 ≤ Nxx ≤ 800 kN/m,

0 ≤ Nyy ≤ 200 kN/m, −400 kN/m ≤ Nxy ≤ +400 kN/m and, in theory, L × 2L = 24 vertices must

be assessed.

Table 1 Definition of loadings and load ratios

Load pm (kN/m) pa (kN/m) (ra)MIN (ra)MAX

Nxx Nm
xx = 400 Na

xx = 400 -1.0 1.0

Nyy Nm
yy = 100 Na

yy = 100 -1.0 1.0

Nxy Nm
xy = 0 Na

xy = 400 -1.0 1.0

Closer examination of the 24 vertices reveals that only 4 are necessarily the most dangerous.
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Tables 2-4 give clear account about how this conclusion is drawn. Consider for instance Tab.

2 where r1 = 1 and r2 = r3 = 0. r1 relates to the normal load Nxx, r2 relates to the normal load

Nyy and r3 relates to the shear load Nxy. The first three columns of Tab. 2 correspond to all

possible permutations of ra1 , ra2 and ra3 which can assume only two values (-1 or +1) according to

Tab. 1. Columns 4-6 of Tab. 2 are the values of r1, r2 and r3 computed by the product rl = rlral
(see Eq. (5)). Finally, columns 7-9 of Tab. 2 are computed using Tab. 1 and Eq. (5). For

example, the fifth row is obtained computing Nxx = r1Nm
xx+r1Na

xx = 1×400+1×400 = 800 kN/m,

Nyy = r2Nm
yy + r2Na

yy = 0 × 100 + 0 × 100 = 0 kN/m and Nxy = r3Nm
xy + r3Na

xy = 0 × 0 + 0 × 400 =
0 kN/m.

Examining Tabs. 2-4 it can be concluded that most of the loading vertices correspond

to null loadings such that only four of them must be evaluated: (i) Nxx = 800 kN/m, Nyy =
0 kN/m, Nxy = 0 kN/m, (ii) Nxx = 0 kN/m, Nyy = 200 kN/m, Nxy = 0 kN/m, (iii) Nxx = 0 kN/m,

Nyy = 0 kN/m, Nxy = 400 kN/m, (iv) Nxx = 0 kN/m, Nyy = 0 kN/m, Nxy = −400 kN/m. This

simplification is not always as straightforward since the existence of nonzero loading vertices

and complex geometries of structural components commonly lead to situations where obvious

undangerous loadings cannot be discarded beforehand.

Table 2 Determination of loading vertices for r1 = 1, r2 = r3 = 0

ra1 ra2 ra3 r1 r2 r3 Nxx (kN/m) Nyy (kN/m) Nxy (kN/m)

-1 -1 -1 -1 0 0 0 0 0

-1 -1 1 -1 0 0 0 0 0

-1 1 -1 -1 0 0 0 0 0

-1 1 1 -1 0 0 0 0 0

1 -1 -1 1 0 0 800 0 0

1 -1 1 1 0 0 800 0 0

1 1 -1 1 0 0 800 0 0

1 1 1 1 0 0 800 0 0

Table 3 Determination of loading vertices for r2 = 1, r1 = r3 = 0

ra1 ra2 ra3 r1 r2 r3 Nxx (kN/m) Nyy (kN/m) Nxy (kN/m)

-1 -1 -1 0 -1 0 0 0 0

-1 -1 1 0 -1 0 0 0 0

-1 1 -1 0 1 0 0 200 0

-1 1 1 0 1 0 0 200 0

1 -1 -1 0 -1 0 0 0 0

1 -1 1 0 -1 0 0 0 0

1 1 -1 0 1 0 0 200 0

1 1 1 0 1 0 0 200 0

Latin American Journal of Solids and Structures 9(2012) 615 – 631



A.R. de Faria et al / Robust high-cycle fatigue stress threshold optimization under uncertain loadings 627

Table 4 Determination of loading vertices for r3 = 1, r1 = r2 = 0

ra1 ra2 ra3 r1 r2 r3 Nxx (kN/m) Nyy (kN/m) Nxy (kN/m)

-1 -1 -1 0 0 -1 0 0 -400

-1 -1 1 0 0 1 0 0 400

-1 1 -1 0 0 -1 0 0 -400

-1 1 1 0 0 1 0 0 400

1 -1 -1 0 0 -1 0 0 -400

1 -1 1 0 0 1 0 0 400

1 1 -1 0 0 -1 0 0 -400

1 1 1 0 0 1 0 0 400

In order to illustrate the weaknesses of the conventional optimization against single loadings

five optimization cases are considered as presented in Tab. 5. Cases I-IV correspond to single

loads whereas case V corresponds to the robust optimization case. The ‘±’ in case V indicates

that either positive or negative shear may be applied as just discussed. It must be clear that,

as implied by Eq. (5), loadings in case V are not applied simultaneously; it is actually a

varying load case where the four load cases I-IV of Tab. 5 are applied as a convex combination

σ = ∑4
l=1 rlσl, with ∑4

l=1 rl = 1 and 0 ≤ rl ≤ 1.

As explained in section 4 the loading ratios r1, r1, ..., rL, rL are free to vary but must satisfy

Eqs. (3) and (6). For optimization purposes, it was shown in section 4 that it is sufficient to

check the vertices of the loading space corresponding to Nxx = 800 kN/m, Nyy = 200 kN/m,

Nxy = +400 kN/m and Nxy = −400 kN/m, one at a time. However, the optimal design thereby

obtained is guaranteed to sustain any linear convex combination of these four loadings.

Table 5 Effective loadings for optimization

Case Nxx (kN/m) Nyy (kN/m) Nxy (kN/m)

I 800 0.0 0.0

II 0.0 200 0.0

III 0.0 0.0 -400

IV 0.0 0.0 +400

V 800 200 ±400

The material properties used in the numerical example are: E = 205 GPa, ν = 0.3, κ

= 0.35, b = 160 MPa. Table 6 presents the volume of the optimal designs obtained and the

critical fatigue stresses calculated at the loading vertices. The highest volume is associated

with optimal design V since this is the robust design, i.e., the only one that can equally well

sustain all load cases (σc ≤ 160 MPa). The vulnerability of the traditional optimal designs,

cases I-IV, is evident. For instance, optimal design I is able to sustain load case I but it fails

for all the other load cases II-IV (stresses much higher than the threshold b = 160 MPa). The
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last column of Tab. 6 is simply the maximum value of the critical fatigue stresses.

Table 6 Critical fatigue stress for optimal designs∗

Optimal volume Load case

design (m3) I II III IV V

I 1.6066 × 10−3 160.0 2332.9 2683.2 2683.2 2683.2

II 4.4153 × 10−4 5300.0 160.0 4184.3 4184.3 5299.9

III 1.3728 × 10−3 2456.0 873.0 160.0 260.4 2456.0

IV 1.3728 × 10−3 2456.0 873.0 260.4 160.0 2456.0

V 1.9383 × 10−3 160.0 149.5 154.1 154.1 160.0
∗ stresses in MPa

A visualization of the optimization procedure is shown in Fig. 7. Figures without scales are

drawn since the intention is to give a qualitative view of the stress and thickness distributions.

Rows 1 to 5 correspond to the five effective loadings described in Tab. 5. In the first column are

the critical fatigue stress results for the uniform plate. In the second column are the thickness

distributions of the optimal designs. In the third and last column are the the critical fatigue

stress results for the optimal plates. All optimization processes began with a uniform plate

1.0 mm thick, which corresponds to an initial volume of 4.6858 × 10−4 m3. As shown in Fig.

7 (first column) stress concentrations occur around the notch. Therefore, although the initial

structural volume is small (4.6858×10−4 m3) compared to those obtained in Tab. 6, the initial

uniform plate suffers from fatigue under all loadings.

It is clear that stress concentration regions around the notch are observed in all cases of

uniform thickness distribution (red regions), whereas stresses are much more spread in the

optimal designs (last column in Fig. 7). Cases III and IV are equivalent since they corre-

spond simply to a change in sign of the shear loads. The thickness distribution of the robust

optimal design (last row) is such that it reinforces the region around the notch where stress

concentrations seen in the first column arise. Figure 7 shows optimal designs with unusual

shapes (second column). It is obvious that the stress is concentrated around the notch (with

a maximum value of 3 times the applied stress in single tension) and increasing the thickness

can decrease this maximum value but, the question whether these shapes are acceptable is

dependant on the application. In practice, some kind of smoothing may be necessary prior to

actual production of optimal designs, similarly to what is observed in topology optimization.

The critical stress surface can be visualized for the plate example simulated. Figure 3b

schematically shows the reference plane r1 + r2 + r3 + r4 = 1. Since in the plate example load

cases III and IV are exactly the same, except for a change in sign of the shear load, r3 and

r4 can be collapsed into r∗3 , where positive values of r∗3 relate to r3 and negative values of r∗3
relate to r4. Figure 8 depicts the critical stress surface where now the reference plane equation

is given by r1 + r2 + ∣r∗3 ∣ = 1. The concavity of the surface can be clearly observed. The legend

shows values for the normalized maximum critical fatigue stress σ∗ = (maxx σc)/b such that,
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Figure 7 Optimal design results

for the robust optimal design, 0 < σ∗ ≤ 1. The highest values of σ∗ happen in the region around

the edges of the reference plane.

For the sake of comparison against Fig. 8, Fig. 9 depicts the critical stress surface obtained

for the optimal design under load case I solely. Though still concave, the critical stress surface

is now severely distorted. The normalized maximum critical fatigue stress σ∗ assumes now

values of up to 15.7 which is way beyond the fatigue threshold b.

6 CONCLUSIONS

Robust optimal designs may be heavier than designs optimized against one individual load

case but they are definitely safer. However, if multiple load cases are to be handled by a

traditional optimization strategy, the resulting optimal design would be even heavier than

the one obtained through the robust optimization technique proposed. It must be clear that

the robust optimal designs obtained through the optimization procedure proposed can safely

sustain a potentially large number of individual loadings, identified as vertices of the convex

hull shown in Fig. 3, as well as any convex combination of these vertices. This property ensures

that eventual nonharmonic or asynchronous, not predicted in the loading envelope, are not as

harmful.
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Figure 8 Maximum critical stress surface for robust optimal design
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Figure 9 Maximum critical stress surface for optimal design of case I
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The optimal results are robust against fatigue. However, from a practical view point,

that is, if one must design a real structure, even the robust optimal design would hardly be

manufactured. As a suggestion to obtain a viable optimal design which can be used in practice,

geometric constraints could be included on the volume minimization. The simplest possibility

is to consider that the plate is composed of a base plate whose thickness is uniform and fixed

and external layers of variable thickness exist. A more elaborate proposal is to add constraints

on the maximum thickness gradient such that the maximum difference in thickness between

adjacent elements must not exceed a certain amount.

The topometric numerical optimization adopted may not result in strictly optimal designs

in the global sense. However, it is a fast procedure that does not require evaluation of gradients.

Notice that, although gradient of volume is easily computed, the maxx maxr σc in Eq. (4) is a

nondifferentiable constraint. Hence, the use of gradient-based optimization procedures would

require considerable effort and ingenuity to overcome the lack of necessary smoothness in the

constraint.
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