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A mixed 3D-1D finite element formulation for analysis of geomaterial 
structures with embedded curvilinear inclusions: application to load 

transfer in mooring anchor systems 

Abstract 
A finite element model for structural analysis of media with embedded in-
clusions is presented. The “embedded element concept” is adopted to mod-
el the contact interaction of two medium components along the contact in-
terface considering a mixed 3D-1D formulation. The Mohr-Coulomb inter-
face model is employed to define the bond-stress and bond-slip relation 
and strains associated with bond-slip are assumed to remain infinitesimal 
along the interface. Nonlinear analysis is performed with a corotational 
kinematics description introduced in the context of embedded approach. 
The problem of load transfer in mooring anchor systems was investigated 
and reasonable results were obtained using the present model. 

Keywords 
embedded inclusion; bond-slip model interface; finite element modeling; 
embedded model; corotational kinematics. 

 

1 INTRODUCTION 

Many problems of structural engineering as well as geotechnical and petroleum engineering involve linear or 
curvilinear inclusions embedded in a solid material matrix. Reinforced concrete is the most common example 
with reinforcing steel bars modeled as cable elements and incorporated into the finite elements referring to the 
concrete material (see for instance Manzoli et al. (2008), Oliver et al. (2008) or Figueiredo et al. (2013), to cite 
some recent references among the numerous contributions in the field). Similar approaches, such as those im-
plemented by Zhou et al. (2009) or Maghous et al. (2012), may also be used in geotechnical applications, especial-
ly for load evaluations in anchoring systems employed in offshore oil platforms, where soil-mooring line interac-
tion can be characterized using a mixed 3D-1D finite element formulation. In this case, the kinematic and constitu-
tive descriptions of the interface phenomena play a key role. 

It is underlined that when the medium consists in a homogeneous matrix reinforced by several linear inclu-
sions that are arranged periodically, the homogenization method or multiphase modelling appear as alternatives 
to handling the matrix/inclusion interaction problem (see for instance Bernaud et al. (1995), de Buhan and 
Sudret (1999), Sudret and de Buhan (2001), Bennis and de Buhan (2003), Hassen and de Buhan (2006), de 
Buhan et al. (2008), Bernaud et al. (2009), Hassen et al. (2013), to cite a few). 

Mooring systems are utilized in the offshore petroleum industry to maintain floating platforms attached to 
the exploitation site. A mooring system is basically composed by mooring lines and anchors, which is submitted to 
hydrodynamic and aerodynamic loads applied on the floating structure and transferred to the mooring lines 
through fairlead points located on the platform. Owing to friction forces developed along the mooring line, the 
load applied on the anchoring device is not the same as that observed on the platform. Taking into account that 
the mooring system depends totally on the strength of the anchor, dissipation produced by friction forces acting 
on the soil-cable interface along the buried segment of the mooring lines must be determined in order to properly 
evaluate the load applied on the anchoring device, considering that the friction forces acting along the line seg-
ment immersed in the sea water are determined. Previous works on this subject may be found in Degenkamp and 
Dutta (1989), Neubecker and Randolph (1995), Yu and Tan (2006) or Wang et al. (2010a, 2010b). 
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The structural response of one-dimensional structures immersed in a three-dimensional solid medium re-
quires a special system. Although a numerical model based on contact mechanics for multibody systems can be 
adopted for the analysis (Wriggers, 2006; Laursen, 2010), the use of the so-called “embedded element concept” is 
much more efficient, considering that the diameter of the embedded one-dimensional structure is significantly 
smaller than the typical size of the surrounding solid. The embedded formulation was introduced by Phillips and 
Zienckiewicz (1976) to analyze concrete structures. Since then, improvements have been made regarding the 
description of mechanical behavior and search algorithms for localization of the reinforcement within the solid 
matrix. Chang et al. (1987) modified the original formulation in order to allow straight reinforcement elements 
embedded in arbitrary direction with respect to the local axes of the solid matrix element. Balakrishnan and Mur-
ray (1986) presented an embedded formulation with bond-slip interface, while Elwi and Hrudey (1989) extended 
the two-dimensional embedded formulation by using reinforcements with curved shape. Barzegar and 
Manddipudi (1994) proposed a general model for spatial modeling of straight segments of embedded reinforce-
ment using inverse mapping and a search algorithm for intersection points between reinforcement and solid ele-
ments. Owing to the use of straight elements, a refined mesh is necessary in the matrix solid field in order to de-
fine reinforcements with curved shape. Ranjbaran (1996) proposed a numerical formulation for embedded rein-
forcements in 3D brick elements, where full bond between the solid matrix and reinforcement are assumed. 
Gomes and Awruch (2001) extended the search algorithm proposed by Barzegar and Manddipudi (1994) to ac-
count for curved elements embedded in hexahedral finite elements with quadratic interpolation functions. More 
recent works have improved the description of the solid-structure system including flexural rigidity in order to 
represent the one-dimensional structure using beam models, which can be utilized to simulate soil-structure in-
teraction problems involving piles (e.g., Sadek and Shahrour; 2004; Ninic et al., 2014). 

In the context of mixed 3D-1D formulation, special emphasis must be given to properly describe the interface 
phenomena. A Mohr-Coulomb interface model can be adopted to define the constitutive relationship between 
bond-stress and bond-slip, where an elastic-plastic formulation is utilized in order to define the bond-stress evo-
lution based on the slip motion along the tangential direction of the interface, which may be reversible or irre-
versible. Unlike matrix and embedded inclusion, which may undergo large strains, the bond-slip is assumed to 
remain infinitesimal along matrix/inclusion interface. This assumption may be viewed as first approach to as-
sessing the kinematical description of the relative motion on the interface. Clearly enough, a more comprehensive 
modeling is still to be developed in order to properly take into account large relative displacements along the 
interface. 

In this context, it is noted that the objective of this contribution is to formulate a mixed 3D-1D finite element 
method for analyzing solid-structure interactions in geomaterials with embedded curvilinear inclusions. In terms 
of engineering application, the proposed finite element modeling is applied to evaluate the load attenuation at the 
anchoring point of a typical mooring line utilized in anchoring systems of offshore platforms, considering the sol-
id-structure interaction occurring along the buried segment of the mooring line. 

2 FUNDAMENTALS OF THE EMBEDDED FORMULATION IN THE INFINITESIMAL FRAMEWORK 

This section is intended to provide the basic elements of the 3D-1D mixed formulation used for implementa-
tion of the so-called “embedded model”. 

2.1 Geometric and kinematic setting 

A basic assumption to be defined in embedded formulations is related to the strain field of the material in-
volving a one-dimensional structure. Let us assume that the motion of any material point located on the contact 
surface between a curvilinear body, such as a bar or a cable, and the surrounding solid medium can be described 
using a local coordinate system attached to that curvilinear structure. In this system, the tangent direction is 
aligned with the longitudinal axis of the cable and the normal direction is related to any radial direction defined 
on the plane of its cross section (see Fig. 1). Depending on the physical problem, one can also assume that the 
contact along the normal direction is permanent and the normal component of relative displacement between the 
solid matrix and the cable is null, while the relative displacement in the tangential direction is not. This condition 
is called bond-slip and is valid when the surrounding material is sufficiently compact such that only tangential 
movements are permitted on the contact interface. A limit condition can be also adopted when no slip is allowed 
and the immersed curvilinear body adheres perfectly to the surrounding material. In the case of perfect adher-
ence between reinforcement and the solid medium, the axial strain in the immersed cable εc can be obtained ac-
cording to the following compatibility condition: 
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Figure 1: Global and local coordinate systems. 

 

Tensor εm is composed by strain components associated with the strain field of the surrounding material and 
evaluated at the solid/cable interface. Notice that the curvilinear structural elements are modeled as flexible in-
clusions (shear forces and bending moments are disregarded). Accordingly, compatibility condition (1) is simply 
expressing that the cable elements are endowed with the same kinematics as the embedding solid medium fol-
lowing axial direction. The row matrix Tε is obtained from the second-order transformation matrix T usually 
adopted during rotation of components of stress and strain tensors, which is given in the general case by: 
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 (3) 

where li, mi and ni represent the direction cosines referring to the cable local axes (l, m, n) with respect to the 
global coordinate system (X1, X2, X3). 

When relative movement between the immersed cable and the surrounding material is considered, the dis-
placement field in the solid matrix domain must be described using a composition of solid matrix displacements 
and relative displacements at material points located on the solid/cable interface. In the present work, this com-
position is only valid along the tangential direction of the immersed cable, whereas full bond between matrix and 
cable is assumed along the normal direction. Denoting by uc the cable displacement and by um that of the solid 
matrix, the displacement jump along the matrix-cable interface may be expressed as: 

 c ms m cu u u    u u l  (4) 

with: 

       T T

1 2 3 c,1 c,2 c,3 m 1 2 3 m,1 m,2 m,3. , .cu l l l u u u u l l l u u u   (5) 

It is recalled that continuity of normal component of displacement is assumed along the interface, that is 

 c m su u u l  ( l being the unit vector along inclusion direction). 
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In infinitesimal framework, the weak form of the equilibrium condition applied to the mechanical system 
constituted by the solid matrix and embedded inclusions, takes the form: 
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Subscripts m, c and int respectively refer to matrix, embedded cable and contact interface regions of the me-
chanical system. Accordingly, Ωm and Γm define volume and boundary surfaces related to the spatial domain of the 
matrix material, Ωc and Γc define volume and external surface related to the spatial domain of the cable, such that 
Ωc = Ac.Lc and Γc = Pc.Lc, where Ac, Pc and Lc are the cross-section area, cross-section perimeter and length of the 
immersed cable. The body forces acting on the system are denoted by vectors bm and bc, which generally reduce 
to gravity. Stresses in the different components of mechanical system are denoted respectively by σm for matrix, 

σc for embedded inclusion and by τint for interface. The traction vector acting along Γm is denoted by mt , while ct  

stands for the traction in axial direction of the embedded inclusion. In order to avoid volume superposition be-
tween matrix and embedded cable when rigidity and geometrical characteristics are locally similar, integration of 
terms referring to the volume of the matrix material may be performed considering the following spatial domain: 

m m cd d d      (7) 

2.2 Constitutive equations for matrix and embedded inclusion 

Relations between stress and strain are first presented to describe the constitutive equations of the matrix 
material considered in the present formulation. The state equation for the soil matrix phase is formulated within 
the framework of finite plasticity. Explicit rate-form expression involving the Jaumman derivative of the stress 
tensor as well as the associated corotational description is detailed in section 3.1. For the sake of clarity, the main 
features of the soil matrix constitutive behavior are provided in this section, restricting the description to the 
context of infinitesimal plasticity. 

In the elastic range, the Cauchy stress tensor σm and the small strain tensor εm referring to the matrix materi-
al are related according to the following equation: 

m . e
mD   (8) 

where De is the fourth-order elastic constitutive tensor for an isotropic material, which may be described as: 

2
2

3
e
ijkl ik jl ij klD G K G        

 
 (9) 

where δij denotes the components of the Kroenecker delta and K and G are the bulk and shear moduli, 

respectively. The incremental form of Eq. (8) is given as: m .  e
mD  . 

In the elastoplastic range, the constitutive equation referring to the matrix material is described in the in-
cremental form as follows: 

ep
m m  D   (10) 

with: 

e T e
g fep e
T e
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 
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D a a D
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f g
m m
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 (12) 
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where κ is the hardening parameter, mf  is the yield function and mg  is the plastic potential. The total strain rate 

is decomposed into elastic and plastic parts using the additive decomposition, that is: 

e p
m m m       (13) 

The flow rule is written as: 

p
m

m

mg 
  





 (14) 

where   is a positive scalar representing the plastic multiplier. The complete description of the elastoplastic 

formulation requires the yield function mf , the plastic potential mg  and a hardening law to be prescribed. In the 

present work, the generalized formulation presented in references (Nayak and Zienkiewicz 1972; Owen and 
Hinton, 1980; Souza Neto et al., 2008) is adopted to describe the material models utilized here for the matrix 
material. 

As regards the embedded inclusions, an elastic behavior is considered in the analysis, with account for geo-
metric nonlinearities. The specific state equation for inclusions will be described in section 3.2. Meanwhile, it 
takes the following form in the context of infinitesimal elasticity: 

c c cΕ   (15) 

where σc and εc are the axial components of the Cauchy stress and small strain tensors, respectively, and Ec is the 

Young modulus of the constitutive material. The incremental form of Eq. (15) may be expressed as c c cΕ   
. 

2.3 Constitutive behavior for interface material 

We address hereafter the elastoplastic constitutive formulation referring to the contact interface. The differ-
ential form of the total relative displacement on the interface is decomposed into reversible and irreversible 
parts, which are described according to the local coordinate system defined in terms of tangential and normal 
components, that is: 

el ir
s s sdu du du   (16) 

el ir
n n ndu du du     (17) 

where superscripts el and ir indicate the reversible and irreversible parts of the corresponding jump 
displacement components. Notice that the total relative displacement in the normal direction is zero owing to the 
assumption of bond-slip contact at the interface. 

 
Figure 2: Illustration of the plastic criterion and plastic potential used for interface. 
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In order to define the interval of stress states that correspond to reversible relative displacements, a yield 
criterion must be defined. In the present work, the Mohr-Coulomb yield criterion is adopted (see Fig. 2): 

int intf c     (18) 

where c is the cohesion and μ is the friction coefficient of the material interface. Coefficient μ is usually defined 
from the internal friction angle ϕ: tg   . The stress vector acting upon a current point of the interface is 

defined in terms of the tangential (τint) and normal (σint) stress components. The tangential stress component is 
updated according to the elastic-plastic formulation, where the yield criterion described above indicates if the 
stress increment associated with the relative displacement on the interface is obtained using an elastic 
constitutive equation or an elastic-plastic constitutive equation. 

We deal now with the crucial issue related to how the normal vector v  to cylindrical interface can be defined 
in the plane of inclusion cross-section (see Fig. 3). It is emphasized that this key point is inherent to the mixed 3D-
1D formulation when the interface behavior is accounted for. The underlying question is: how interaction forces 
between a 1D structural element and the surrounding 3D continuous body are possibly modeled from a rigorous 
mechanical viewpoint? An approximate approach to deal with this challenging issue has been proposed in 
Figueiredo et al. (2013). In the subsequent analysis, we develop a heuristic approach in which interaction efforts 
are defined from minimization of the shear component of the stress vector generated on all the facets of the 
soil/inclusion interface by the stress tensor in the soil. The stress vector acting along the interface is first comput-
ed from the stress tensor σm in the solid matrix: 

m t v  (19) 

The normal stress is simply the projection of t on the normal direction: 

int  t v  (20) 

From a computational viewpoint, tensor σm is evaluated at macroscopic points of the matrix element contain-
ing the inclusion element, coinciding with the integration points of the inclusion element. Unit normal vector v is 
defined in the global coordinate system (X1, X2, X3) by its orientation θ in the inclusion cross-section plane and the 
direction cosines li, mi and ni of the local frame (l, m, n): 

1 2 3

1 2 3

1 2 3
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l l l

m m m
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      
      

v  (21) 

 
Figure 3: Stress vector acting at matrix/inclusion interface and corresponding normal component. 

 

The inclusion is geometrically described by a curvilinear structure in the 3D-1D mixed formulation, where 

the orientation   of the normal vector v is arbitrary. To resolve this indetermination, the subsequent analysis 
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considers the orientation   that minimizes the value of shear stress intc   complying with the yield criterion 

(18). This arbitrary definition implicitly assumes a constant stress state when moving around the soil/inclusion 
interface, which could reveal questionable in some situations. It is readily shown that condition dσint/dθ = 0 
yields: 

tg2
C


 


 (22) 

with: 

2 2 2
m 2 m 2 m 2 m 2 2 m 2 2 m 2 22 2 2l m n l m l n m n                 (23) 
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2 2 2
m 3 m 3 m 3 m 3 3 m 3 3 m 3 3C 2 2 2l m n l m l n m n                 (25) 

The solution to Equation (22) that leads to higher value of int  is hence retained. 

The direction of relative plastic displacement is derived from the flow rule given as follows: 

int

ir
s

g
du d





 (26) 

int

ir
n

g
du d





 (27) 

where d  is the plastic multiplier and g is the plastic potential. The latter is assumed under form: 

int intg tg     (28) 

where    is the dilatancy angle. 

The consistency condition employed in the present formulation may be expressed as: 

int int
int int

f f f
c 0

c
d d d 

 
  

  
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 (29) 

The last term of the equation above is related to material hardening when this feature is considered in the 
mechanical description of the material. A linear isotropic strain hardening model is assumed here to describe the 
cohesion evolution after yielding, which may be expressed as follows: 

c ir
sd h du  (30) 

where h is the hardening modulus. Notice that the cohesion evolution does not explicitly depend on the normal 
component of the stress state along the interface. 

Recalling that the normal component of the total relative displacement ndu  is zero, one obtains: 

int

0el ir el
n n n

g
du du du d


    


 (31) 

The elastic constitutive equation describing the behavior of interface written in terms of differential stress 
components and differential relative displacements reads: 

int

int

el
n n

el
s s

d k du

d k du





 



 (32) 
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in which kn and ks refer to normal and tangential stiffness moduli. It is observed that these quantities are 
expressed in units of force per cubic length [Pa/m]. 

By substituting Eq. (31) into the constitutive equation corresponding to the normal stress component, the 
plastic multiplier can be obtained as follows: 

int

tgn

d
d

k




    (33) 

On the other hand, making use of the consistency equation together with constitutive equations (32) leads 
to: 

int
int

´
( )

h d d
d sign

tg

  



  (34) 

Finally, the plastic multiplier may be rewritten as follows: 

int
int

int

( )

( )n

sign
d d

k tg tg h sign

 
  

 


 (35) 

It stems from the constitutive equation of the interface following the tangential direction that: 

 int
int

ir
s s s s s

g
d k du du k du d 


      

 (36) 

Taking into account the particular form (28) of potential g  and expression (35) of plastic multiplier, the 

elastoplastic constitutive equation of the matrix-reinforcement interface is given as follows: 

int

int

1
( )

s
s

s

n

k
d du

k

k tg tg h sign


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




 (37) 

Therefore, the incremental form of the constitutive equations referring to the contact interface reads: 

int s sk u    (38) 

in the elastic range, and: 

int

int

1
( )

s
s

s

n

k
u

k

k tg tg h sign



  
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



 (39) 

in the plastic range. When 0   (no dilation), condition 0ndu   can be ensured by choosing / ~1/n sk k tg . 

3 FINITE STRAIN APPROACH 

Nonlinear problems are usually analyzed employing the incremental approach, where strain increments are 
evaluated based on the last incremental displacement field obtained from the solution of the equilibrium equa-
tions. At each iterative step, the respective stress updates are obtained according to the material behavior. When 
large strains are involved, the latter can be described in the corotational coordinate system adopting objective 
stress rate. 

Although the matrix and the inclusions may undergo large strains, a fundamental assumption of the present 
modeling is that the strains along matrix/inclusions interface remain infinitesimal. 

3.1 Corotational description of matrix particles motion 

A basic issue to the corotational description of the motion of a continuum body is the decomposition of the 
reference frame into base and corotated configurations (Felippa and Haugen, 2005a, 2005b). The base configura-
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tion usually refers to the undeformed configuration, while the corotated one is obtained through a rigid body mo-
tion from the base configuration. The coordinate system of the corotated configuration follows the material mo-
tion and can be easily related to the global coordinate system through rotation operations. In the finite element 
approach, each element possesses its own set of coordinate systems located at the respective quadrature points. 

 
Figure 4: Quadrature-attached frame. 

 

The starting point of the analysis is the decomposition of geometric transformation of matrix into a rigid 
body motion and pure deformation performed at the element level in the corotational coordinate system. Such a 
corotational description maintains orthogonality of the attached reference frame as illustrated in Figure 4, thus 
providing an effective setting for rate form formulation of the constitutive equations in the context of large 
strains. Note that rotation R  transforming the current configuration into corotational configuration can be de-
fined from the rotation component in polar decomposition of deformation gradient (Espath et al., 2014). 

Assuming that all kinematical variables are known at the previous configuration t = tn of the matrix, the dis-
placement field at the end of the current load step can be obtained from integration of the strain rate tensor along 
time interval [tn, tn+1]. The whole steps of the reasoning are performed in the corotational coordinate system, 

where notation ̂  shall be used to express any field   in the corotational frame. The strain rate tensor in the 

corotational system is defined as: 

Tdef def
m m

m

ˆ ˆ1ˆ
ˆ ˆ2

   
       

v v
d

x x
  (40) 
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where 
def
mv̂  represents the velocity field associated with the deformation part of the motion expressed in the 

corotational system. The strain increment is computed using the mid-point integration proposed in Hughes and 
Winget (1980). In this procedure the velocity is assumed to be constant within the time interval and the reference 
configuration is attached to the intermediate configuration at t = tn+1/2 in the corotational system. Accordingly: 

1
T

def def
m m

m m
n 1 2 n 1 2

ˆ ˆ1ˆ ˆd
ˆ ˆ2

n

n

t

t




 

             


u u
d

x x
  (41) 

where 
def
mˆu  is referred to the deformation part of the total displacement increment mˆu  in the corotational 

system and n 1 2ˆ x  is the intermediate geometric configuration of the matrix element in the corotational system, 

which can be computed as: 

 n+1 2 n+1 2 n+1 2 n+1 2 n n+1

1
ˆ

2
    x R x R x x  (42) 

where n+1 2R  is the orthogonal transformation tensor performing rotation from the global coordinate system to 

the corotational coordinate system defined locally at the intermediate configuration 1/2nt   of the matrix element. 

The displacement increment mu  referring to time interval [tn, tn+1] is decomposed at element level according to: 

def rot
m m m   u u u  (43) 

In the above local relationship, 
def
mu  and 

rot
mu  denote respectively the deformation and rotation parts of 

the displacement increment defined in the global coordinate system. 
The increment of deformation displacements expressed in the corotational system is defined by: 

def def
m n 1 n n+1 2 mˆ ˆ ˆ     u x x R u  (44) 

since the strain rate tensor is evaluated at the intermediate configuration 1/2nt  . Coordinates nx̂  and n 1ˆ x

corresponding to geometric configurations in the corotational system at nt t  and 1nt t   are obtained from the 

following transformations: 

n n n n+1 n+1 n+1ˆ ˆand   x R x x R x  (45) 

where nR  and n+1R are orthogonal transformation tensors performing rotations from the global coordinate 

system to the corotational coordinate system defined locally at nt t  and 1nt t  , respectively. Vectors nx  and 

n+1x  refer to geometric configurations defined in the global coordinate system. Omitting subscripts 

 , 1/ 2, 1n n n   referring to considered time, the components of the transformation R are given by: 

1j 2j cj 3j
1j 2j 3jT T T

1 1 2j cj 2j cj 3 3

)
; ; ( j 1, 2,3)

) )


   

 

r (r r r
R R R

r r (r r (r r r r
 (46) 

with: 

T
1j 2jT T

1j j 2j j cj 1j 3j 1j 2j cjT
1j 1j

; ; ; ( )      
r r

r x r x r r r r r r
r r

   (47) 

 , ,    and x  are vectors containing local nodal coordinates and global nodal coordinates associated with the 

considered finite element, respectively (Duarte Filho and Awruch, 2004). 
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The Cauchy stress tensor in the global system is obtained from objective tensor transformation as follows: 

T
m mˆR R   (48) 

where m  and m̂  are the Cauchy stress tensors evaluated in the global and corotational system, respectively. To 

formulate the constitutive behavior of matrix constitutive material, a set of assumptions are stated. First, the 
elastic part of the deformation gradient of matrix particles is assumed to remain infinitesimal, meaning that large 
strains are of irreversible (plastic) nature. In addition, the constitutive material is considered as elastically 
isotropic and that elastic properties are not affected by the plastic strains. Under these conditions, it can be shown 
that the state equation formulated in rate form relates a rotational time derivative of stress tensor (Jaumman 
derivative) and the strain rate tensor (see for instance Dormieux and Maghous, 1999; Bernaud et al., 2002; 
Bernaud et al., 2006) through: 

 J e p J
m m m m m m m m m

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆwith    D d d +             (49) 

where 
p
md̂  denotes the plastic strain rate and m̂ is the spin tensor defined in the corotational system. The above 

equation is used for stress updates in the corotational system in the context of large strains. It is observed that the 

corotational spin tensor has also to be integrated over the time interval 1[ , ]n nt t   following the same mid-point 

rule adopted in (41). 

3.2 Description of deformation in embedded inclusion 

As adopted for surrounding matrix, the kinematics of the embedded inclusion is described referring to con-

figuration nt . With respect to this configuration, the Green-Lagrange axial strain writes: 

c c

1
      with  

2
c

c
t t t

u
u

x x x


     

           
c cu u

u lE  (50) 

where cu  is the displacement vector at any point along the embedded inclusion. Derivations are taken with 

respect to coordinate t lx x  along the tangential direction, as illustrated in Figure 5. 

It is recalled that the displacement jump at the surrounding matrix/inclusion interface is purely tangential 
(see section 2.1): 

c m su u u l  (51) 

where l  is the unit vector along the cable. Accordingly, the components of cu  in the local coordinate system may 

be expressed from su and the displacement components in the global coordinate system um
T = (um,1, um,2, um,3) of 

the geometrically coinciding matrix particle: 

1 2 3 m,1

1 2 3 m,2

1 2 3 m,3

0

0

s

s

u l l l u

u m m m u

n n n u



    
            
         

c mu l + R u  (52) 
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Figure 5: Displacements of an element of embedded inclusion. 

 

As defined in Figure 1, li, mi and ni are the direction cosines of inclusion local axes ( )l , m ,n  with respect to 

the global coordinate system 1 2 3( , , )X X X . Matrix R  is the coordinate rotation transformation between local 

and global frames. 

The axial strain cE  is computed using the matrix notation (52): 

1

2

3

  0

0

c t s t m m m

c t m m m
t

c t m m m

u x u x u x u y u z l

v x v x v y v z l
x

w x w x w y w z l



                
                                            

cu +R  (53) 

The embedded curvilinear inclusion is discretized by means of succession of linear elements. Each element is 
embedded within a brick element (parent element) associated with a constant tangent vector l  and a constant 
matrix transfer R*. When perfect bonding is considered at the interface solid matrix/inclusion, the first term in 

the right hand-side of (53) should be removed (i.e., 0s tu x   ). 

Keeping in mind that the approach is based on the updated Lagrangian scheme, the axial strain cE  is defined 

referring to the last equilibrated configuration of the embedded inclusion. The latter configuration is defined in 
the corotational coordinate system referring to the embedding matrix element (parent element) as sketched in 
Figure 6. 
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Figure 6: Updated Lagrangian scheme and corotational configuration in the context of embedded approach. 

 

Assuming an elastic behavior for the inclusion constitutive material, the stress increment during time inter-

val 1[ , ]n nt t   is related to axial strain by means of the uniaxial linear relationship: 

ccE  E  (54) 

  is the second Piola-Kirchhoff stress tensor and cE  is the elastic stiffness of the inclusion constitutive material. 

3.3 Finite element discretization 

In the subsequent analysis the eight-node hexahedral finite element formulation with one-point quadrature 
is adopted to discretize the displacements of matrix particles. At the element level, the displacement vector of 

matrix particles between nt  and 1nt   is approximated, using Voigt notation, as follows: 

1
m mwith n nt t 

 
      
  

m m m m

N 0 0

u x x N u N 0 N 0

0 0 N

 (55) 

where 

mu  is the vector of nodal displacements referring to eight-node hexahedral element and mN is the 3 24  

matrix defined by sub-matrix  1 8N , , NN   that contains the associated shape functions. In the context of 

geometrically nonlinear analysis, these quantities are evaluated considering the current configuration of the 

element in the corotational coordinate system ( ˆmu and mN̂ , respectively). At element level, the strain increment 

is thus computed according to: 

 m m mB u  (56) 
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mB being the 3 24  matrix aimed to generate the symmetric part of the displacement gradient at element 

level (see Eq. (41)). It is should be observed that matrix mB  must be also evaluated considering the differential 

operator in the corotational coordinate system, that is operating with mB̂ . Finally, similar procedures are used 

for the finite element approximation of strain rate tensor and spin tensor. 
Regarding the embedded inclusions, their geometry is discretized into piecewise linear elements. Instead of 

nodal displacements of the inclusion elements, the approach operates with nodal displacements jump. Along each 
two-node element, the tangential relative displacement between matrix and inclusion particles defined in (4) is 
approximated from the nodal values: 

su
 su  (57) 

where 

su  is the tangential displacement jump vector related to the linear finite element nodes of the embedded 

inclusion. Matrix Φ, whose dimension is 1 2 , contains the shape functions of the two-node linear element. 

Recalling that su
 c mu l +R u  (see equations (51) and (52)), the discretized expression of axial Green-

Lagrange strain between nt  and 1nt   reads in each inclusion element: 

T T
c s

1

2
   

  s m mu u d G G d  E  (58) 

where 
t

d

dx
sB


 is the 1 2 matrix containing the derivatives of shape functions with respect to tangential 

coordinate along the inclusion element, T is the 1 6 matrix introduced in (2). Matrix G , whose dimensions are 

3 26 , is defined by: 

1 j 2 j 3 j
j j j t

1 j 2 j 3 j
j j j

1 j 2 j 3 j
j j j

l l l l l l
x x x x

m l m l m l
x x x

n l n l n l
x x x

    
 
    

    
   
    
    

N N N

N N N
G 0

N N N
0



 (59) 

Vector d contains 26 components of nodal displacements associated with the matrix element (brick ele-
ment) and embedded linear inclusion element: 






 
 
 

m

s

u
d =

u
 (60) 

Rearranging (58) yields: 

  T T
c s

1

2
  

 m d d G G d  E  (61) 

It is observed that  s m   is a 1 26 matrix defined from sub-matrices  m   and s . 

If perfect bonding is considered at the matrix/inclusion interface, the latter expression reduces to 

T T
c

1

2
  

 m m m mu u G G u  E  (62) 

where matrix G  is obtained from matrix G  by removing its last two columns. 
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The subsequent developments deal with the finite element formulation of the equations governing the re-
sponse of the mechanical system to a prescribed external loading. It is recalled that the mechanical system refers 
to the solid matrix and embedded inclusions in mutual interaction. Discretization of the weak form of balance 
momentum expressed at current configuration of the mechanical system results in a set of nonlinear equations. 
These equilibrium equations must be iteratively satisfied using the incremental approach (see Bathe, 1996), since 
both the stiffness matrices and the internal force vectors are functions of the current element configuration. A 
linearization procedure based on Newton-Raphson method and Taylor series expansion of the general internal 

force vector within the time interval 1[ , ]n nt t   leads to the following global system: 

tan ext int
n 1,i 1 n+1,i n 1 n 1,i 1( ) ( )     K U U F F U  (63) 

where subscript 1n   denotes the current position in the time marching, while subscripts i  and 1i   refer 
respectively to current and previous iterative steps in the Newton-Raphson procedure applied over the time 

interval 1[ , ]n nt t  . 
tanK  is the tangent stiffness matrix, 

extF  and 
intF  are the external and internal force vectors, 

respectively. U  represents the global vector whose components are node values of the matrix displacement and 

the interface relative displacement between nt  and 1nt  . Vector U  is obtained by assembling procedure to 

incorporate the contribution of all element nodal displacements 

mu  or d . 

At each iterative step, the stiffness matrix and the internal force vector are evaluated in the corotational co-
ordinate system. In particular, the terms related to the elementary contribution of matrix (matrix element with-
out embedded inclusion) take the following expressions: 

 T ep geo int T
m

ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆd ; d
e e
m m

e e
m m

 

     tan
m m m m mk B D D B f B   (64) 

where ˆ e
m  stands for the current configuration of the matrix element volume in the corotational system. epD̂  is 

the stress-strain constitutive matrix defined in (49), geoD̂  is the geometric stiffness matrix associated with the 

Jaumann rate terms m m m m
ˆ ˆˆ ˆ      , and m̂  is the corotational Cauchy stress tensor (see Braun and 

Awruch, 2008; Duarte Filho and Awruch, 2004 for further details). In order to solve the equilibrium equation, the 
tangent stiffness matrix and the internal force vector are brought back to the global coordinate system using the 
following objective transformations: 

tan T tan int T intˆˆ ; m m m mk R k R f R f  (65) 

where R  is the rotation transformation matrix defined in Eqs. (45) and (46). 
The finite element formulation is based on reduced integration, where hourglass control techniques are employed 

in order to avoid numerical instabilities, such as volumetric locking and/or shear locking. Detailed description of 

the stabilization procedures adopted in this work may be found in Braun and Awruch (2008, 2013). 

As regards the contribution of embedded inclusions to tangent stiffness matrix and force vector, the work 

performed by the internal axial force   in any virtual elastic evolution cE  should be analyzed. Denoting by ˆ e
c  

the last equilibrated configuration of the inclusion element with respect to the corotational system of the sur-
rounding matrix element (parent element), the internal force vector related to inclusion element is defined as: 

T
int T

s
ˆ ˆ

ˆ ˆ ˆˆ ˆˆ ˆ d d
e e
c c

e e
c c 



 

      c mf G G d    (66) 

The elementary tangent stiffness matrix due to inclusion contribution is obtained by linearizing the above 

expression of internal force vector with respect to generalized displacement vector 
T

,  m sd = u u  (see Eq. 

(60)): 
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T
T

s c s
ˆ ˆ

ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆE d d
e e
c c

e e
c c c 

 

          tan
c m mk G G       (67) 

where cE is the longitudinal elastic stiffness of inclusion material and c  is the axial Cauchy stress tensor along 

the inclusion element. 
For a single element with embedded inclusion segment, the discretized weak form of equilibrium equation 

writes 

 
n 1,i n 1n 1,i 1 n 1,i 1




    

                               

int intext ext
mm mm,cc mc m m,cm m m,c

G int intext
cm cc ss s s,cs s

k k k f fu f f
k

k k k f fu f
 (68) 

where: 

 T ep geo

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ     with     d
e
m

e
m



   T
mm mm mm m mk R k R k B D D B  (69) 

T

c c

L̂

ˆ ˆ ˆˆ ˆ     with      E A dL
e
c

e
c 

        T
mm,cc mm,cc mm,cc m mk R k R k      (70) 

T
s c c s

L̂

ˆ ˆ ˆˆ ˆ     with      E A dL
e
c

e
c  T

cc cc cck R k R k    (71) 

T

c c s

L̂

ˆ ˆ ˆˆ ˆ        with       E A dL
e
c

e
c

    T
mc mc mc mk R k R k     (72) 

T
s c c

L̂

ˆ ˆ ˆˆ ˆ        with        E A dL
e
c

e
c

    T
cm cm cm mk R k R k     (73) 

b,t c

L̂

ˆ ˆ ˆ          with        K P dL
e
c

e
c  T

ss ss ssk R k R k    (74) 

T

ˆ

ˆ ˆ ˆd
e
c

e
c c



 Gk G G  (75) 

T

ˆ

ˆ ˆ ˆ ˆˆ        with        d  
e
m

e
m



  int T int int
m m m m mf R f f B   (76) 

T

c

L̂

ˆ ˆ ˆˆ      with          A dL
e
c

e
c c

    int T int int
m,c m,c m,c mf R f f    (77) 

int c

L̂

ˆ ˆ ˆ       with        P dL
e
c

e
c  int T int int

s s sf R f f   (78) 

T
s c

L̂

ˆ ˆ ˆˆ        with        A dL
e
c

e
c c  int T int int

s,c s,c s,cf R f f   (79) 

T T
m m

ˆ ˆ

ˆd d
e e
m m m

e
m m

   

    ext
m m mf N t N b  (80) 

T T
m m c

ˆ L̂

ˆd A dL
e e
c c c

e
c c

  

   ext
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   T T
c

ˆ L̂

ˆd A dL
e e
c c cc

e
c c

  

     ext
s c cf t l b l   (82) 

For a matrix element without embedded inclusion, (68) reduces to: 

       n 1,i n 1 n 1,i 1n 1,i 1        ext int
mm m m mk u f f  (83) 

After assembling all the elements, the global system takes the form given by Eq. (63), which is solved itera-
tively with implementation of Generalized Displacement Control Method (e.g. Yang and Shieh, 1990). 

4 VERIFICATION TEST OF NUMERICAL PROCEDURE 

In order to check the finite element implementation of the proposed model as well as related accuracy, the 
numerical simulation of a kind of inclusion pull-out test is analyzed in the sequel. The structure sketched in Fig. 7 
consists of a reinforced cantilever beam with length L and rectangular b x h cross-section. The loading is defined 
by the following conditions: 
• body forces are neglected; 
• both matrix and inclusion are clamped along the plane x = 0; 

• a force xPe  is applied at the free end of the reinforcing inclusion, while the matrix is free of stresses along the plane x = L. 

The matrix constituent material is elastic perfectly plastic with a von Mises condition for plastic yielding. A 
Mohr-Coulomb elastoplastic constitutive law with a non associated plastic flow is considered for the ma-
trix/inclusion interface. The corresponding model data are given in Table 1. The finite element grid used for the 
simulation is shown in Fig. 7 and consisted of 110x20x20 hexahedral eight-node elements, resulting from a pre-
liminary mesh sensitivity (convergence) analysis. The influence of interface properties on the structure response 

is investigated by varying the value of two typical parameters, namely the interface elastic stiffness sk  and the 

interface cohesion c . 

 
Figure 7: Geometry and finite element mesh of inclusion pull-out test. 
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Table 1: Material properties for the inclusion pull-out test. 

Properties Values 

Matrix 

Elastic modulus E  25000 MPa  

Poisson ratio   0.2  

Yield strength y  2.2 MPa  

Inclusion 
Cross-section area cA  

4 21.0 10  m  

Elastic modulus cE  210000 MPa  

Soil-cable interface 

Tangential stiffness modulus sk  
1 112.0 10  2.0 10  Pa / m    

Normal stiffness modulus nk  
610 sk  

Cohesion c  0.25 1.0 kPa  

Internal friction angle   30
 

Dilatancy angle   0
 

 
Table 2 summarizes the numerical predictions derived from the formulation implemented in this paper, to-

gether with the finite element solutions obtained from ANSYS software. The latter has been used considering hex-
ahedral 20-node elements (SOLID 95) for both the matrix and inclusion domains, while quadrilateral 8-node ele-
ments (CONTA 174 and TARGE 170) have been used for the contact interface. The structural response is evaluat-

ed by computing the axial displacement 
max ( )c cu u x L   at the free end of the inclusion (loaded point), the rela-

tive tangential displacement 
max ( )s su u x L   at the same point, and the reaction force R  applied to the inclu-

sion at its fixed (clamped) end ( 0x  ). As it can be observed from this comparison, a good agreement is obtained 
from the two distinct numerical approaches, thus providing a first validation of the proposed numerical formula-
tion. The accuracy of the latter can be illustrated by evaluating the maximum relative difference observed be-
tween the two approaches considering the 36 simulations that are reported in Table 2: displacement at inclusion 

free end 
max max/ 3.5%c cu u  ; relative displacement at inclusion fixed end 

max max/ 11.5%s su u  ; reaction 

force at inclusion fixed end / 6.5%R R  . Interestingly, the maximum relative differences between the two 

approaches are observed for the higher values of interface stiffness and cohesion. 
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Table 2: Results obtained from numerical simulations of the inclusion pull-out test. 

c (MPa) 
Ks 

(Pa/m) 

max
su  

(m) 

max
su  – ANSYS 

(m) 

max
cu  

(m) 

max
cu  – ANSYS 

(m) 

R 
(KN) 

R – ANSYS 
(KN) 

0.25 

2.0x101 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x103 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x105 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x106 3.99x10-3 4.00x10-3 4.00x10-3 4.00x10-3 83.9 83.9 

2.0x107 3.95x10-3 3.96x10-3 3.95x10-3 3.96x10-3 82.5 82.7 

2.0x108 3.78x10-3 3.80x10-3 3.80x10-3 3.82x10-3 76.6 77.1 

2.0x109 3.77x10-3 3.79x10-3 3.78x10-3 3.81x10-3 75.1 76.1 

2.0x1010 3.71x10-3 3.79x10-3 3.73x10-3 3.81x10-3 73.4 76 

2.0x1011 3.71x10-3 3.79x10-3 3.73x10-3 3.81x10-3 73.4 76 

0.5 

2.0x101 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x103 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x105 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x106 3.99x10-3 4.00x10-3 4.00x10-3 4.00x10-3 83.9 83.9 

2.0x107 3.95x10-3 3.96x10-3 3.95x10-3 3.96x10-3 82.5 82.7 

2.0x108 3.62x10-3 3.66x10-3 3.65x10-3 3.68x10-3 72.4 73.3 

2.0x109 3.54x10-3 3.59x10-3 3.57x10-3 3.62x10-3 66.8 68.3 

2.0x1010 3.48x10-3 3.59x10-3 3.52x10-3 3.62x10-3 64.6 68 

2.0x1011 3.45x10-3 3.59x10-3 3.49x10-3 3.62x10-3 63.6 68 

0.75 

2.0x101 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x103 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x105 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x106 3.99x10-3 4.00x10-3 4.00x10-3 4.00x10-3 83.9 83.9 

2.0x107 3.95x10-3 3.96x10-3 3.95x10-3 3.96x10-3 82.5 82.7 

2.0x108 3.56x10-3 3.61x10-3 3.59x10-3 3.64x10-3 71.2 72.3 

2.0x109 3.03x10-3 3.24x10-3 3.39x10-3 3.44x10-3 61.4 61.3 

2.0x1010 2.73x10-3 2.99x10-3 3.37x10-3 3.44x10-3 60.7 60 

2.0x1011 2.64x10-3 2.99x10-3 3.35x10-3 3.44x10-3 59.6 59.7 

1.0 

2.0x101 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x103 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x105 4.00x10-3 4.00x10-3 4.00x10-3 4.00x10-3 84 84 

2.0x106 3.99x10-3 4.00x10-3 4.00x10-3 4.00x10-3 83.9 83.9 

2.0x107 3.95x10-3 3.96x10-3 3.95x10-3 3.96x10-3 82.5 82.7 

2.0x108 3.56x10-3 3.61x10-3 3.59x10-3 3.64x10-3 71.2 72.3 

2.0x109 2.39x10-3 2.55x10-3 3.28x10-3 3.33x10-3 61.4 61.4 

2.0x1010 2.09x10-3 2.34x10-3 3.27x10-3 3.33x10-3 60.5 59.9 

2.0x1011 2.04x10-3 2.31x10-3 3.27x10-3 3.33x10-3 60.3 59.2 

 
Figure 8 shows the relative displacements at the matrix/inclusion interface along the beam longitudinal axis. 

The curves ( )s su u x  are displayed for each value of the interface cohesion

 0.25 MPa, 0.5 MPa, 0.75 MPa, 1.0 MPac , the tangential elastic stiffness being kept constant equal to 

9 2.0 10  Pa / msk   . Although the predictions obtained from the proposed formulation and from ANSYS 

software exhibit similar trends, some discrepancy is observed for the highest values of interface cohesion. 
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Figure 8: Numerical predictions of relative displacement profiles along the matrix/inclusion interface 

 

Figures 9a and 9b display the load-strain curves characterizing the response of the reinforced beam under 

pull-out test. Fixing the value of interface tangential elastic stiffness to 
9 2.0 10  Pa / msk   , the plots of ap-

plied force P  versus normalized axial displacement 
max /cu L  (Fig. 9a) and versus normalized tangential relative 

displacement 
max /su L  (Fig. 9b) at the free end are shown for the different values of interface cohesion. Compari-

sons of the numerical model with the analysis using ANSYS corroborate the previous comments referring to the 
validity of the numerical procedure. 

 

Figure 9: Load-strain curves for the inclusion pull-out test: (a) applied force versus 
max /cu L ; (b) applied force versus 

max /su L . 
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The impact of interface stiffness on the structural response of reinforced beam is illustrated in Figure 10 in 

terms of inclusion free end displacement 
max
cu versus interface tangential elastic stiffness sk . It is observed that 

there exists a range of stiffness range, say 
710  Pa / msk  , for which the displacement at the inclusion free end 

and corresponding relative displacement remain coincident (i.e., 
max max
c su u ). These results are suggesting that 

the reinforced beam exhibits a free slip-like behavior within this range of interface stiffness. 

 
Figure 10: Influence of interface tangential stiffness and cohesion on structural response in the inclusion pull-out test 

 

Finally, the effects of interface parameters ( , )sk c  on the load attenuation induced by friction along the inclu-

sion are investigated. The load attenuation level can be defined by ratio /R P , that is the ratio between axial load 
at the inclusion fixed end and applied load at the inclusion free end. Figure 11 displays for each value of interface 
cohesion variations of load attenuation as a function of interface stiffness. The good agreement of the model pre-
dictions with ANSYS finite element solutions should first be emphasized. Corroborating the comments formulated 
previously, some qualitative features regarding the structural response can be also underlined: 

• The interface condition slightly affects the attenuation load as long as 
710  Pa / msk  . 

• There exists a threshold value for interface cohesion beyond which the load attenuation remains unchanged, as suggested by the perfect 
identity observed for the 0.75 MPac   predicted curve and the 1.0 MPac   predicted curve. 

 
Figure 11: Influence of interface tangential stiffness and cohesion on load attenuation. 
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5 NUMERICAL APPLICATIONS 

The numerical model is applied to analyze loads transfer in undrained conditions along a mooring line em-
bedded in soil and used in petroleum exploitation units. 

5.1 Problem description 

Mooring systems are basically composed by mooring lines and anchors, which are responsible for maintain-
ing floating platforms attached to the exploitation site. Special anchorage devices, such as the torpedo anchor (see 
Wodehouse et al. (2007) and Souza et al. (2011) for a more detailed information), have been developed for oil 
extraction in deep waters, where fixed anchoring points are utilized to connect the mooring lines to the anchors. 
In catenary mooring configuration, the suspended length of mooring line in the seawater assumes the typical 
shape of a free hanging line, reaching the touchdown point on the seabed surface horizontally. The final segment 
of the mooring lines lies embedded in the soil, comprehending the touchdown point and the anchoring point lo-
cated at some position on the anchorage device. This embedded segment is usually represented considering an 
inverse catenary curve. 

From a mechanical viewpoint, load transfer in anchorage system may be summarized as follows. As the plat-
form drifts horizontally with the wind action and ocean current, loads are induced to the mooring system and 
finally transferred to the anchor (Fig. 12). Although many anchoring devices are available, torpedo anchors have 
proved to be a very attractive alternative for deep water anchorage. Torpedo anchors are introduced into the 
seabed by free fall from a previously determined altitude immersed in the seawater. The anchorage depth is de-
termined by soil conditions and drop height, which usually varies from 30 m to 150 m. The holding capacity of a 
typical torpedo anchor is basically defined by the penetration depth and soil properties. 

 
Figure 12: Schematic representation of load transfer along mooring line (a); equivalent bar modeling the buried part of 

mooring line (b). 

 

The present investigation shall be restricted to load action along a mooring line segment defined between the 
touchdown point located on the seabed surface and the anchoring point located at the top of a torpedo anchor. 

Aerodynamic and hydrodynamic loads, denoted symbolically by pF , acting on the floating structure are trans-

ferred to the mooring system through fairlead points located on the platform. However, the anchor is subjected to 
lower loads owing to friction forces acting throughout the length of the mooring line. Therefore, the main objec-

tive of the present study is to determine the load tf  applied to the anchor after dissipation produced by friction 

forces acting on the soil-cable interface along the buried segment of the mooring line, considering that dissipation 

produced in the seawater results in a load bf  at the touchdown point (see Fig. 12), which is lower than that ap-

plied at the platform level, i.e., b pf F . It should be emphasized that evaluating the load tf  acting on the torpedo 
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anchor is an important issue in design of such anchors, since its value is directly related to the undrained load 
capacity. 

5.2 Geometry discretization aspects 

The geometry model is shown in Figure 13. It typically consists of a parallelepiped volume of soil whose up-
per face lies on the seabed plane 0y  . The finite element discretization is defined by means of hexahedral finite 

elements. The shape of the mooring line segment utilized in the present analyses is defined according to an in-
verse catenary curve, which corresponds to the geometrical form usually observed from field measurements and 
numerical predictions. The final form of the curve depends on the anchoring depth. An equivalent bar with circu-
lar cross-section is adopted here to represent mooring lines made up of chains (Fig. 12b). The inverse catenary 
curve, located on the vertical mid-plane as shown in Fig. 13a, is approximated using Lagrange polynomial interpo-
lation, taking into account that a minimum number of points to define the embedded leg of the mooring line is 
available. As the mooring line is modeled using linear cable elements, all intersections between the discretized 
mooring line and the finite element mesh referring to the soil material must be obtained employing a numerical 
algorithm for intersection detection. The numerical scheme adopted in this work to define the cable elements may 
be summarized as follows: 
• A specific number of points is chosen along the cable line, which are obtained using the shape of the mooring line determined from field 

measurements or numerical predictions. Then, Lagrange polynomials are adopted to approximate the shape of the mooring line, 
where the polynomial degree is specified according to the number of interpolation points initially chosen. Now, a large number of 
points must be created in order to discretize the interpolation curve using small straight line segments. These segments are 
employed to define all the intersections between the interpolation curve and element faces corresponding to the matrix material, 
whereas the embedded cable and matrix material are discretized using linear finite elements. 

• Once the points on the interpolated curve representing the embedded cable are defined, the elements of the matrix material containing the 
end points of the mooring line segment are to be determined. The intersection search between the interpolation curve and the faces 
of matrix elements begins with that matrix element containing the first point of the interpolation curve. 

• Taking into account the element containing the first point of the discretized curve, the subsequent points are covered in order to find the 
intersection between the interpolated curve and some face of the current matrix element. The subsequent points are tested to define 
whether the point is contained or not in the present element of the matrix material. The first point outside the spatial domain of the 
matrix element and that point immediately before are chosen to construct a straight line from which the intersection point can be 
obtained. 

• After the first intersection point is obtained, the procedure described above is repeated considering the element of the matrix material in 
contact with the element face of the preceding element where the intersection occurs. The first point of the straight segment 
representing a cable segment is now considered as the last intersection point. The points initially defined on the interpolation curve 
are again covered from the point subsequent to the point outside the previous matrix element. The first point outside the present 
element is chosen as the last point of the straight line representing a cable segment. After all the points on the interpolation curve 
are covered, all the straight segments representing the mooring line will be defined. 
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Figure 13: Finite element model referring to the anchoring point at 15 m depth: computational domain (a); intermedi-

ate plane containing the embedded segment of the mooring line (b). 

 

In order to investigate the effect of the anchoring depth on the numerical predictions, three different situa-
tions have been considered, corresponding to the following anchoring depths: 15 m, 20 m and 25 m. Figure 13 
illustrates the finite element discretization referring to the anchoring point at h=15 m depth, where the spatial 
domain related to the surrounding soil material and the discretized mooring line segment can be identified. The 
computational domain extends over a hexahedral volume with 20 m height, 40 m length and 7 m width. These 
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dimensions were chosen in order to avoid the influence of boundary effects over the present results. The finite 
element mesh consists of 44800 eight-node hexahedral elements, which are uniformly distributed over the com-
putational domain. Similar characteristics have been considered for the finite element meshes referring to the 
anchoring points at h=20 m and h=25 m using 72000 and 109200 eight-node hexahedral elements, respectively. 
Smooth-wall boundary conditions are imposed on the bottom and lateral surfaces of the domain geometry. On the 

upper surface, a hydrostatic load wq  that stands for the seawater pressure acting at the seabed level (depth 

H=2135 m from sea level) is applied. 
As mentioned previously, the curvilinear bar representing the embedded segment of the mooring line is lo-

cated on the intermediate vertical plane (z = 3.5 m) of the computational domain. The anchoring point at the end 
of the embedded mooring line segment is modeled considering that the anchor is a rigid body with all degrees-of-
freedom restricted. Hence, the anchor and the soil-anchor interface are not considered in the present approach. 
The lower end of the cable is positioned according to the anchoring depths analyzed here, where all the displace-
ment degrees-of-freedom are restrained to simulate the connection between the mooring line and the torpedo 
anchor. On the other hand, the upper end is located on the seabed surface, where an axial load is applied repre-
senting the aerodynamic and hydrodynamic forces acting on the floating platform, and transmitted from the fair-
lead to the touchdown point through the immersed segment of the mooring line in the seawater. The inverse ca-
tenary shapes referring to the different anchoring depths analyzed in this work can be approximated with the 
following polynomial functions, according to the anchoring depth h: 

2 3 6 4( ) 15 0.7939 0.0117 0.0003 2x10 for h=15 my x x x x x       (84) 

2 3 6 4( ) 20 0.9791 0.019 0.0004 4x10 for h=20 my x x x x x       (85) 

2 3 6 4( ) 25 1.2323 0.0304 0.0007 7x10 for h=25 my x x x x x       (86) 

These functions are obtained from least square fitting applied on typical data obtained from mooring sys-
tems installed in Brazilian offshore fields. 

5.3 Model data 

A main purpose of the analysis is to investigate the mechanical response of soil/mooring cable system under 
undrained loading conditions. In the context of total stress constitutive behavior, the soil is assumed to be elastic 
perfectly plastic with isotropic physical properties evolving with depth. A Tresca-like plasticity model is adopted 
for plasticity with undrained shear strength profile: 

 uS y y  (87) 

which means that uS linearly increases with depth. Parameter   [Pa/m] can be evaluated from field tests like 

Cone Penetration Test. As regards the soil elastic properties, the Young modulus is considered to evolve with 
depth according to: 

 ( ) uE y S y  (88) 

  being a dimensionless parameter (stiffness ratio) whose typical value ranges from 100 to 500 for normal-

ly consolidated soils. 
The behaviors of mooring cable and related soil contact interface have been described in sections 2.2 and 2.3. 

The equivalent bar with circular cross-section, which is adopted in the present analysis to model the mooring line 

(see Fig. 12b), is considered as elastic with axial rigidity defined by the product c cE A . The elastic-plastic be-

havior of the soil/inclusion interface is defined by normal and tangential stiffness moduli nk  and sk , together 

with cohesion c , friction angle   and dilatancy angle  . 

Table 3 summarizes the reference values adopted here to define the mechanical properties for the seabed 
soil material, the soil-cable interface and the cable model representing the embedded mooring line segment. 
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Table 3: Reference mechanical properties used in the numerical model. 

Properties Values 

Soil 

Undrained shear strength  uS y y  1.4 kPa/m   

Elastic modulus  ( ) uE y S y  300   

Poisson ratio 0.495   

Saturated specific weight 315.1 kN/m   

Mooring cable 
Equivalent bar diameter 0.24 mcd   

Axial rigidity 
6

c cE A 1.1 10  kN   

Soil-cable interface 

Tangential stiffness modulus 
32.43 10  kPa / msk    

Normal stiffness modulus 
610n sk k   

Cohesion 0 kPac   

Internal friction angle 30  
 

Dilatancy angle 0  
 

 
Apart from gravity, further loading components shall be detailed in the sequel. The deep seawater pressure 

acting at the seabed level is fixed to 
42.135 10  kPawq   , corresponding to a seabed depth of about 

2135 mH  . 
An important aspect of the analysis is related to the initial stress distribution in the soil, i.e., the stress state 

prior to the application of structural load applied by the floating structure and transferred to anchor through the 
buried mooring cable. A comprehensive approach would theoretically rely on the analysis of whole torpedo an-
chor penetration process in the soil, which falls beyond the scope of the present investigation. Instead, it is as-
sumed that the structure is loaded by the soil stress state undisturbed by the anchor installation process. More 
precisely, the following simplified expression for initial stress distribution is considered: 

0 0 0
0;v w h vy q K       (89) 

where 
0
v yy  and 

0
h xx zz     are the horizontal and vertical stress components of the initial stress state. 

Parameter 0K  is similar to the coefficient of lateral earth pressure at rest, and value 0 1K   is considered for 

most of subsequent numerical simulations. 
The last component of loading mode considered in the present analysis is the structural load originating from 

the floating platform and transferred to the anchor system defined by soil – embedded mooring cable – interface. 

The load is modeled by means of an axial force bf  applied to the upper extremity of buried mooring cable, which 

corresponds to the touchdown point located on the seabed surface ( 0y  ) (see Fig. 13a). A typical load record 

referring to mooring lines installed in Brazilian offshore fields shown in Fig. 14a will be considered in the numeri-
cal simulations. The corresponding spectral frequency density function is displayed in Fig. 14b, showing that the 
main frequencies associated with the load record are ranging around 0.002 Hz . Note also that the mean load 

value is approximately b 4000 kNmean f . 



Alexandre Luis Braun et al. 

A mixed 3D-1D finite element formulation for analysis of geomaterial structures with embedded curvilinear inclusions: application 
to load transfer in mooring anchor systems 

Latin American Journal of Solids and Structures, 2018, 15(8), e103 27/36 

 
Figure 14: Typical load record (a); and associated spectral density function (b). 

 

5.4 Preliminary numerical simulations 

Two series of preliminary numerical calculations were undertaken with the objective to qualitatively: (a) as-

sess whether the inertial effects induced by applied load bf  would significantly affect, or only marginally, the me-

chanical response of the system constituted by cable, surrounding soil and related contact interface; and (b) pro-
vide insight into the role of interface tangential stiffness in load attenuation along embedded cable. 

5.4.1 Spectral density of considered mechanical system 

As mentioned above, a dynamic analysis aimed to evaluate the response of the mechanical system under free 

vibration is first performed. Fixing the anchoring point at h=15 m  depth, which correspond to computational 

domain displayed in Fig. 13, the loading process consists in applying an initial quasi-static axial load b b0f f  at 

the free end of the mooring cable, followed by impulse loads of magnitude b b0 / 2 f f  or b b0 f f  (Fig. 15a). 

Figure 15b illustrates the structural response in terms of axial displacement obtained at the cable free end (load-

ed point) for b0 b / 4meanf f  and b0 b / 2meanf f . The frequency spectral density function can be finally defined 

considering the structural responses of the cable model over time, which must be compared with the spectral 
density function obtained from time histories referring to the load applied to the mooring line and shown in Fig. 
14. 
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Figure 15: Schematic representation of applied load and associated structural response in terms of axial displacement. 

 

The spectral density function obtained from the numerical simulations carried out herein is shown in Figure 
16. It is observed from this analysis that the main frequencies of the mechanical system are around 20 Hz , thus 

indicating that the main frequencies associated with the dynamic load applied to the system are much lower than 
those of the system cable-surrounding soil-contact interface. 

This preliminary analysis suggests that although the mooring system is subjected to dynamic forces, the me-
chanical response of the system can be evaluated by means of numerical simulations disregarding inertial effects, 
i.e., considering that loads are applied under quasi-static conditions. 

Clearly enough, this conclusion has been drawn in light of calculations performed with a fixed model data. 
Further simulations based on a parametric study by varying several problem parameters would be necessary to 
corroborate this result. 

 
Figure 16: Spectral density function obtained from dynamic simulations. 
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5.4.2 Effects of interface tangential stiffness on load attenuation 

One important component of the model is the tangential stiffness sk of the cable/soil interface, since its value 

is expected to strongly affect the value of load tf  applied to torpedo at the anchoring point. Based on the results of 

the previous section, the analysis is achieved disregarding the inertial effects (i.e., quasi-static analysis). 

 
Figure 17: Load ratio t b/f f  as a function of the interface tangential stiffness sk . 

 

More precisely, the investigation aims to determine the effects of cable-soil interface stiffness regarding the 
load attenuation along the buried mooring line. Considering the reference model data of Table 3 and fixing the 

anchoring point at h=15 m  depth (see Fig. 13), several simulations were performed varying the value of tangen-

tial stiffness values sk . The analysis consisted in applying incrementally an axial load b b
meanf f  at the free end of 

the cable model and to compute the reaction force tf  at the anchoring point when the total load is reached. Figure 

17 presents the load ratio t b/f f  as a function of the tangential stiffness sk , the load attenuation being defined as 

t b/1-f f . It is first observed that, for considered model data, t b/f f  remains close to unity while 
210  kPa / msk 

, followed by an abrupt drop in load ratio in the interval 
2 410  kPa / m 10  kPa / msk  . This kind of curve sug-

gests the existence of a stiffness range for which the load attenuation remains small with a free slip-like behavior, 
and a stiffness range for which the interface acts like a perfect adherent one inducing significant load attenuation. 

The transition zone is characterized by a high sensitivity of load tf  to stiffness variation, underlying the crucial 
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role of this parameter in the structure response. It should be kept in mind, however, that this parameter is not 
commonly available from field or experimental measurements. 

5.5 Further simulations 

Referring to model data of Table 3, simulations with different anchoring point depths are performed to eval-

uate the load tf  applied to the torpedo anchor, as well as associated load attenuation induced by friction along the 

soil/cable interface. Three configurations corresponding to anchoring points located at depths 

h=15 m, 20 m and 25 m , are investigated. Axial load bf  obtained from spectral filtering applied to the load rec-

ord presented in Fig. 14a is applied at the free end of the mooring cable. This procedure leads to an equivalent 
load record with a smaller time interval. 

Figures 18 presents for each anchoring point depth the value of load tf  versus time, together with the applied 

load history bf . Table 4 presents the corresponding load attenuation values obtained from the numerical simula-

tions. As expected, the magnitude of load attenuation increases with anchoring depth. 

 

Figure 18: Applied load history bf  and numerically predicted load tf  at the anchoring point for three different anchor-

ing depths. 
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Table 4: Load attenuation as function of the anchoring depth. 

Anchoring depth Average attenuation Attenuation at the load peak 
15 m 20.7% 23.5% 
20 m 24.6% 26.4% 
25 m 26.8% 27.9% 

 
The effect of stress yielding induced by the presence of embedded cable on surrounding soil can be qualita-

tively assessed by visualization of the von Mises equivalent stress contours (Fig. 19). It is observed from these 
figures that the higher is the anchoring depth, the lower is the surrounding soil yielding (i.e., decreasing von Mises 
equivalent stress). 

 

Figure 19: Contours of von Mises equivalent stress: anchoring point at 15 m depth (a); anchoring point at 20 m depth 
(b); anchoring point at 25 m depth (c). 

The structural response is also evaluated through axial displacement and soil/cable relative displacement at 
the free end of the cable. For illustrative purposes, Figures 20a and 20b show the evolution in time of these quan-

tities in the particular case of anchoring point at h=15 m . Some statistical values referring to the structural re-
sponse obtained in the present analysis are summarized in Table 5. 
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Figure 20: Structural response evaluated at the free end of the cable: axial displacement (a); relative displacement (b). 

 

Table 5: Statistical results referring to the structural response of the cable model. 

Displacements Average value Value at the load peak 
Axial displacement 0.119 m 0.157 m 

Relative displacement 0.0159 m 0.0414 m 
 
The last series of simulations investigate the effects of soil stiffness on the load attenuation evaluated at the 

anchoring point. Recalling that the Young´s modulus of soil is evaluated from undrained shear strength profile uS  

through Eq. (88), two values of stiffness ratio, namely 300  and 500  , were considered. The depth of an-

choring point is fixed to h=15 m . 

Figure 21 shows the results obtained for load tf  acting on anchoring point, together with load bf applied at 

the free end of the cable. Table 6 gives some statistical results corresponding to the attenuation values obtained 
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from the present load evaluations, showing that the magnitude of load attenuation is moderately affected by the 
soil stiffness when compared to the influence of interface stiffness. 
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Figure 21: Applied load history bf  and numerically predicted load tf evaluated at the anchoring point for two different 

values of soil stiffness. 

 

Table 6: Load attenuation as function of the soil stiffness. 

Soil stiffness Average attenuation Attenuation at the load peak 
E(z) = 300 Su(z) 20.7% 23.5% 
E(z) = 500 Su(z) 23.2% 26.9% 

 

6 CONCLUSIONS 

A mixed 3D-1D finite element formulation for structural analysis of solids with embedded curvilinear inclu-
sions with account for interface behavior has been presented in the context of elastoplasticity. The analysis fo-
cused on the specific situation of a geomaterial surrounding bar-like inclusions that are assumed to take only ten-
sile-compressive forces. The embedded approach together with a corotational kinematics description is adopted 
for nonlinear analysis of such geo-structures. 

The numerical implementation of the model to investigate the problem of load transfer in mooring anchor 
systems has demonstrated its aptitude to deal with and macroscopically capture essential features of deformation 
in a complex structure. Although the simulations have mainly concerned quasi-static analyses, the current version 
of finite element tool can be adopted for dynamic analyses. However, such analyses handled in 3D setting require 
developing more efficient computational strategies including remeshing procedure and parallel computing. 

From both theoretical and numerical viewpoints, several fundamental issues should be foreseen in the fu-
ture. In particular: 
• Development of a mechanically consistent method to properly model the interaction forces at the soil/cable interface, in the spirit of the 

multiphase approach proposed in Figueiredo et al. (2013). 
• Formulation of the interface constitutive behavior in the context of large strains, that is to address large relative displacements between 

embedded inclusion and surrounding matrix. It is well know that such a task is complex regarding the finite element 
implementation. 

• Extension of the model formulation to the situation of porous media. At the macroscopic scale, the hydromechanical coupling in soils, and 
more generally in geomaterials, can be account for in the framework of infinitesimal or finite poroplasticity. This is an essential 
aspect for addressing problems connected with geotechnical or petroleum engineering. This issue is actually the object of current 
developments. 

As mentioned above, dynamic analyses in 3D nonlinear setting involve large computational cost. This in-
cludes parallel implementation of the finite element model with specific data structure storage and iterative solv-
er. 
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