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Stability of a half-sine shallow arch under sinusoidal and step loads in 
thermal environment 

Abstract 
The complex structural behavior of shallow arches can be remarkably af-
fected by many parameters. In this paper, the structural responses of a 
half-sine pin-ended shallow arch under sinusoidal and step loadings are 
accurately calculated. Additionally, the effects of environmental tempera-
ture changes are considered. Three types of sinusoidal loadings are sepa-
rately investigated. Displacements, load-bearing capacity, the magnitude of 
the axial force and the locus of critical points (including limit and bifurca-
tion points) are directly obtained without tracing the corresponding equi-
librium path. Furthermore, the boundaries identifying the number of criti-
cal points are investigated. All mentioned structural responses are formu-
lized based on the rise of the arch and the environmental temperature 
change, which are introduced in a dimensionless form. The proposed for-
mulation is also developed for generalized sinusoidal loadings. Additional-
ly, the structural behavior of the shallow arch under two types of step load-
ings is investigated. Finally, the accuracy of the suggested approach is ex-
amined by a non-linear finite element method. 

Keywords 
Half-sine shallow arch, equilibrium path, critical point, bifurcation, stability 
analysis. 

1 INTRODUCTION 

Shallow arches are widely used in structural, mechanical and aerospace engineering, and the investigation of 
structural stability has always been of the researchers’ interest. The failure of such structures is in the form of 
material failures, structural instability or a combination of them. 

The tendency of structure to return to the static state, after creating a perturbation in the degrees of freedom, 
is called stability (Thompson and Hunt, 1973; Khalil, 2002). In the analysis of structural stability, since the struc-
ture experiences the sudden deformations, the investigation of critical points (such as limit and bifurcation point) 
is crucial. Such deformations cause severe changes in strains and stresses. The geometry of the arch is an influen-
tial parameter on its load-bearing capacity (Cai et al., 2012; Bateni and Eslami, 2015; Bradford et al., 2015; Re-
zaiee-Pajand and Rajabzadeh-Safaei, 2016). In addition, various loadings (e.g., the sinusoidal (Plaut and Johnson, 
1981), concentrated (Pi et al., 2008; Chandra et al., 2012; Tsiatas and Babouskos, 2017), distributed (Moghad-
dasie and Stanciulescu, 2013b) and end moment loads (Chen and Liao, 2005; Chen and Lin, 2005)), geometric 
imperfections (Virgin et al., 2014; Zhou et al., 2015a), and boundary conditions (Pi and Bradford, 2012; Pi and 
Bradford, 2013; Han et al., 2016) are other important factors in the structural design. 

In most cases, shallow arches become elastically unstable when the lateral load reaches a critical value (Chen 
and Li, 2006). This means that a large deformation could be observed while the material remains elastic. Practical 
experiences also confirm this issue (Chen and Liao, 2005; Chen and Yang, 2007a; Chen and Ro, 2009). Conse-
quently, the behavior of shallow arches can be explained by the non-linear theory of elastic stability. In some 
analyses, it is assumed that the displacements of the arch are limited to avoid a material failure (Pippard, 1990; 
Xu et al., 2002; Chen and Hung, 2012). In addition, the variation in the environment temperature can be influen-
tial on the stability of structures (Matsunaga, 1996; Hung and Chen, 2012; Stanciulescu et al., 2012; Kiani and 
Eslami, 2013). 

Several approaches can be applied to investigate the structural behavior of shallow arches. Previously, both 
analytical and numerical methods are discussed in the literature (Plaut and Johnson, 1981; Reddy and Volpi, 
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1992; Pi et al., 2002; Xenidis et al., 2013). In some analytical techniques, the displacement field is replaced by a set 
of orthogonal functions to derive the non-linear equilibrium and buckling equations (Xu et al., 2002; Chen et al., 
2009; Chen and Hung, 2012; Moghaddasie and Stanciulescu, 2013b; Zhou et al., 2015a). Using the principle of 
stationary potential energy is another robust analytical approach to investigate the equilibrium and stability of 
shallow arches (Moon et al., 2007; Pi et al., 2007; Pi et al., 2008; Pi et al., 2010). On the other hand, the non-linear 
finite element method has been widely applied by researchers to trace the equilibrium path (Chandra et al., 2012; 
Saffari et al., 2012; Stanciulescu et al., 2012; Zhou et al., 2015b). Identifying the corresponding critical point(s) 
and finding the relationship between imperfections and load-bearing capacity are the capability of this numerical 
technique (Eriksson et al., 1999; Moghaddasie and Stanciulescu, 2013b; Rezaiee-Pajand and Moghaddasie, 2014). 

This paper provides an analytical method to find the exact response of the half-sine shallow arch under the 
sinusoidal and step loads. Furthermore, the effect of temperature change on the equilibrium paths is investigated. 
For this purpose, the displacements of the structure are rewritten in the form of the Fourier series. By the substi-
tution of displacements into the governing equations of the arch, the initial and bifurcated equilibrium path are 
obtained. On the other hand, the critical (limit and bifurcation) points on the static paths are achieved when the 
stiffness matrix is singular. In this paper, the behavior of the shallow arch under five types of distributed loads are 
separately investigated by the suggested approach. 

The advantages of the proposed method are: (1) obtaining the exact solution of displacement field, equilibri-
um paths and the locus of critical points, (2) performing one parametric analysis instead of multiple analyses with 
specified values, and (3) finding the critical points without tracing the equilibrium paths. On the other hand, some 
limitations of the supposed method can be listed as (1) the changes in environment temperature are gradual, (2) 
the theory of plane stress is applied, (3) the height of the arch is limited, and (4) the material remains elastic dur-
ing the analysis. 

In the following section, the governing equations of the half-sine shallow arch under an arbitrary load are 
provided and the relative equilibrium paths are obtained. Then, the way of finding the locus of critical (limit and 
bifurcation) points is proposed (Section 3). The behavior of the half-sine arch under a number of distributed load-
ings is investigated by using the suggested method in Section 4. Finally, concluding remarks are given. 

2 THE GOVERNING EQUATIONS OF THE SHALLOW ARCH 

In this section, the governing equations of a half-sine shallow arch under an arbitrary loading *Q  are ob-

tained (Figure 1(a)). In this regard, a modified Bernoulli beam theory with large transversal displacement is ap-
plied. The material is assumed isotropic and variations in the temperature are gradual (no transversal tempera-

ture gradient is considered). E , A , I ,   and * , respectively, represent the Young’s modulus, area, moment of 

inertia, mass density and thermal expansion coefficient, which are assumed to be constant over the span L . 
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Figure 1: A half-sine pinned shallow arch under (a) arbitrary, (b) half-sine, (c) one-sine, (d) one and half-sine, (e) 

symmetric and (f) asymmetric loadings 

 

The assumptions used for the analysis are as follows: (1) The axial force is constant over the span (Xu et al., 
2002; Plaut, 2009; Chen and Hung, 2012); (2) The material is elastic (Chen and Li, 2006); (3) out-of-plane deflec-
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tions are neglected (Chen and Yang, 2007a); and (4) The range of displacements and curvatures of the arch is 

small in comparison with the length of the span max(0 / 1 / 10 1 / 50)y L    (Xu et al., 2002). Given the above 

assumptions, the equation of motion can be written as follows (Plaut and Johnson, 1981; Chen and Yang, 2007b; 
Chen et al., 2009): 

* *
, 0 , ,( )tt xxxx xxAy EI y y P y Q      (1) 

where, 0y  is the initial shape of the arch, the subscripts “,t ” and “,x ” show the partial differentiation with respect 

to the time and the longitudinal position of arch, respectively. The value of the axial force ( *p ) is 

* * 2 2
0 , 0,0

1( ( ) )
2

L
x xP EA T y y dx

L
      (2) 

Here, 0T  denotes environmental temperature changes. 

Since the supports are fixed at the ends, the displacement of the arch in the direction x  is neglected. In addi-

tion, the temperature change can cause the axial force in the structure, which is denoted by the term *
0EA T  . 

Eqs. (1) and (2) could be rewritten in a dimensionless form: 

, 0 , ,( )u u u pu Q       (3) 

2 2
0 , 0,

0

1 ( )
2

p T u u d


  


      (4) 

where, 

2 3 2
*

0 0 2 3 2 2
1( , ) ( , ), , , *,r E L Lu u y y x t Q Q
r L L EIr r

    
  

      (5) 

Here, r  represents the radius of gyration of the cross section calculated by /r I A . The boundary con-

ditions for Eq. (3) is as follows: 

0 , 0, 0 , 0,(0) (0) 0, (0) (0) 0, ( ) ( ) 0, ( ) ( ) 0u u u u u u u u               (6) 

By considering the boundary conditions, the initial and deformed shapes of the arch can be rewritten in the 
Fourier series form: 

0( ) sinu h   (7) 

1
( , ) ( )sinn

n
u n    




  (8) 

In Eq. (7), h  is the initial dimensionless rise of the arch. The external load Q  based on Fourier series can be 

written as 

1
sinn

n
Q Q n




   (9) 

0

2 sin , 1,2,...nQ Q n d n


 


   (10) 

By substituting Eqs. (7)-(9) into (3), a set of equations will be obtained: 

4 2 , 1,2,...n n n nn pn q n        (11) 
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Here, 1 1q Q h  , n nq Q for 2,3,...n   and p is as follows: 

2 22

0
14 4

k

k

khp T






      (12) 

At equilibrium state, n  for 1,2,...n   is equal to zero. Therefore, the Eq. (11) is written as: 

4 2 0 , 1,2,...n n n nR n pn q n       (13) 

where, nR is the unbalanced force. The set of equations in (13) denotes the equilibrium state dependent on the 

external load Q . 

3 THE CRITICAL POINTS 

In this section, the critical load of the shallow arch is addressed. If the external load is a function of an inde-
pendent parameter  ( ( ))Q Q  , the solution of Eq. (13) results in a relationship between the displacement 

u  and the load factor  . In the other words, the equilibrium states in the space of ( , )u  represent a number of 

curves that are called equilibrium paths. An example of equilibrium paths is shown in Figure 2. Each point on the 
curves represents the position of an equilibrium state relative to the load factor. 

 
Figure 2: Primary (black) and bifurcation (gray) equilibrium paths 

 

In some equilibrium states, sudden changes can be observed in the behavior of the structure. These such 
points, which are part of the equilibrium path, are called the critical points. The critical points are categorized into 
limit and bifurcation points. At limit points, the slope of the equilibrium path is zero (Point A in Figure 2), while 
bifurcation points are located at the intersection of equilibrium paths (Point B in Figure 2). 
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One way to obtain critical points is equating the determinant of tangent stiffness matrix to zero. The (modal) 
tangent stiffness matrix is calculated by the derivation of the unbalanced force. This can be done by substituting 

the magnitude of p  from Eq. (12) into Eq. (13) and taking derivatives with respect to m : 

2 2
2 2( ) , , 1,2,...

2
n

nm n m nm
m

R n mK n n p n m  



    


 (14) 

Here, nm  is the Kronecker delta. By equating the determinant of nmK to zero, the critical condition illustrat-

ing limit and bifurcation points is obtained: 

4

1
0

2nm n m nm
r

r
K   





         
  (15) 

2 2

2 2
( ) , , 1,2,...

/ 2nm nm
n n p n m
n m

    (16) 

The magnitude of the determinant n m nm    in Eq. (15) can be calculated by the following procedure: 

2 221 11 1 2 11 1
2 2

2 1 2 22 22 2
1

1 1
1 1n m nm q

q

     
         





           


 
 

     
 (17) 

By using algebraic operations, Eq. (17) becomes the determinant of an upper triangle matrix: 

 
2

2
11 1

2 1
2

22 2
1 2

33 3

1 1 1

0 0
0 0

n

n nn

n m nm q
q


 


     

 







               









   

 (18) 

Consequently, Eq. (15) is rewritten as 

4 2

1 1 1
1 0

2
n

nm kk
r k n nn

r
K






 

  

                        
   (19) 

or 

2

1 11
0kk n kk

k kn
k n

  
 

 


           
   (20) 

4 RESULTS FOR LOADING PATTERNS 

In this section, the behavior of shallow arch under a number of distributed loads are separately investigated. 

The patterns of loadings, respectively, are half-sine 1 sinQ    (Figure 1(b)), one-sine 2 sin2Q    (Figure 

1(c)), one and half-sine 3 sin3Q    (Figure 1(d)), k-sine sinkQ k  , symmetric step function SQ  (Figure 

1(e)) and asymmetric step function AQ  (Figure 1(f)). In this way, a new formulation is proposed to achieve the 

relationship between displacements and load parameter. The result is verified by a finite element method (FEM). 
In addition, the equilibrium paths and the locus of critical points of the arch for each loading are drawn. 
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4.1 Half-sine loading 

By considering the type of loading shown in Figure 1(b), the values of nq  for 1,2,...n   are equal to 

1
0, 2,3,...n

q h
q n

    
 (21) 

For 0nq  , two types of structural responses are obtained. In the former type which is corresponding to the 

initial equilibrium path, the parameters n  are equal to zero for 2,3,...n  , while there is a non-zero n  (for 

instance, j ) in the latter type (bifurcation path). The parameters n  for the initial equilibrium path is obtained 

from Eqs. (13) and (21): 

1 1
0, 2,3,...n

h
p

n





     

 (22) 

By substituting n  into Eq. (12), the value of p  is calculated: 

22

0 2
( )

4 4(1 )
hhp T

p
     


 (23) 

From this equation,   is as follows: 

2
2 0

2 2 2 2
2(1 )

2(1 ) 4(1 ) (1 ) (1 )
Th h pp

p p p p



                 

 (24) 

By substituting (22) into Eq. (8), the displacement field of the shallow arch is obtained: 

    0( ) sin
1
hu u u h

p
   

          
 (25) 

This equation is compatible with the results previously presented in the literature for a pin-ended shallow 
arch under a half-sine distributed loading (Plaut and Johnson, 1981). Eqs. (24) and (25) reveals the equilibrium 
path in the space ( , )u  for the different values of p . For example, the displacement in the middle of the span 

( / 2  ) is equal to 

( / 2)
1Mid
hu u h

p


          
 (26) 

Figure 3 shows the equilibrium path for four different values of h  and 0  T . In this diagram, the solid 

curves are the obtained initial equilibrium paths from Eqs. (24) and (26). In order to verify the suggested method, 
a non-linear FEM procedure is applied. In Figure 3, the signs   represent the structural responses obtained by 
FEM. Here, 60 Timoshenko beam elements with large displacements are used for modeling the shallow arch 
(Reddy, 2004). Each element includes six DoFs in the space of ( , )u . The equilibrium paths are traced by an in-

cremental-iterative procedure (Crisfield, 1991; Crisfield, 1997). In this way, a modified cylindrical arc-length 
method is applied to find the next static state from the previous one (Moghaddasie and Stanciulescu, 2013a; Re-
zaiee-Pajand and Moghaddasie, 2014). The procedure of non-linear FEM begins from the initial unloaded state 
( 0  ) and traces the equilibrium path for both directions 0   and 0  . All calculations were performed 
with the software Wolfram Mathematica 10. 
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Figure 3: Initial equilibrium paths for four different values of h  and 0T  

 

The comparison between the formation of curves and the result of finite element method displays the per-
formance of the proposed strategy. It is noteworthy that the non-linear FEM procedure obtains a number of dis-
crete equilibrium points, while a continuous equilibrium curve is given by the suggested method. 

As it is mentioned previously, there is a non-zero term in bifurcation paths ( 0j  ). From Eq. (13), the val-

ue p is obtained ( 2p j ), and by considering Eq. (12), the magnitude of j is calculated: 

22
2

0 2 2
( )2 ,

4
 

4(1 )
2,3,j

hhT j
j j

j     


    (27) 

Similar to the initial equilibrium path, the displacement field relative to the j th bifurcation path is obtained 

by substituting the coefficients n  into Eq. (8): 

  2
( )sin sin , 2, 3,...
1j j
hu h j j

j
       


 (28) 

This equation shows a linear relationship between    and u . By considering   / 2  , the displacement of 

the midpoint in the j th bifurcation path is computed: 

2
( ) sin , 2, 3,...

21j Mid j
h ju h j

j
     


 (29) 

The gray curves in Figure 4 represent the calculated bifurcation paths given by Eq. (29). 
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Figure 4: Initial and bifurcation paths for different values of h  and 0T  

As it can be seen, for greater values of h  and 0  T , the number of bifurcation paths increases. This issue 

will be discussed later. 
To investigate the structural behavior, a number of static states are displayed in Figure 5. These states are re-

lated to points a-g specified in Figure 4(b). In this Figure, the points a-c and d-g are, respectively, corresponding 
to the initial and bifurcation paths. 

 
Figure 5: Equilibrium states corresponding to the points a-g shown in Figure 4(b) 
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A particular case which can be of interest is the relationship between the external load parameter and the ax-
ial force along the equilibrium path. Figure 6 draws this relationship by considering Eq. (23). In this figure, four 

cases corresponding to the values of h  and 0  T  given in Figure 3(a)-(d) are shown. 

 
Figure 6: Relationship between load parameter and axial force for four different values of h  and 0T  

 

The solid black and gray curves are relative to the initial and bifurcated paths, respectively. Note that, nega-
tive values for the axial force p  represent that the shallow arch is in compression. As it is seen, the arch is always 

in tension for the case (a). By increasing the parameters h  and 0  T , the magnitude of p  becomes negative in 

some parts of initial equilibrium paths. All bifurcation paths happen when the arch is in compression. 
In order to obtain limit points, Eq. (19) can be rewritten in a simpler form: 

2

1
1 0n

n nn







   (30) 
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By substituting the obtained values n  from Eq. (22) into Eq. (30), the critical load is calculated: 

2

3

( )
1 0

2(1 )
crh
p


 


 (31) 

In this equation, cr  represents the critical load. Eqs. (23) and (31) display the locus of limit points in the 

space 0, )( ,cr T h  . 

Figure 7 shows the relationship between the magnitude of critical load and the values of h  and 0  T  for 

the interval   2
0 0{ , R 0 10, 10 10}h T h T         . As it can be seen, depending on the values of 

0T  and h , the equilibrium path can include zero or two points.

 

 

Figure 7: The locus of limit points in the space of   0, ,cr T h   
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The projection of the surfaces displayed in Figure 7 on the plane of  0,h T  draws a boundary which is 

identifying the number of limit points on the equilibrium path. Figure 8 illustrates the mentioned boundary and 
the locus of states (a)-(d) in Figure 3. As a result, the initial equilibrium paths corresponding to the upper side of 
the boundary (e.g. states (b)-(d)) include two limit points, while there is no limit point for the state (a). This issue 

would also be realized by the investigation of critical surfaces passing over the supposed h  and 0  T  in Figure 

7. 

 
Figure 8: The boundary identifying the number of limit points in the space of  0,h T  

 

It can be proven that the magnitude of the axial force on the boundary ( LB ) is constant and equal to 1 . By 

substituting the critical condition (31) into Eq. (23) and considering 1p  , a relationship between the parame-

ters h  and 0  T  is obtained for the boundary LB : 

 
2

2
0 0, R 1

4L
hB h T T 

            
 (32) 

As previously mentioned, the bifurcation points have the following characteristics: 

2
0, 2, 3,... ,

, 2,3,...
n n n j
p j j
      

 (33) 
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Since bifurcation points are located on both initial and bifurcation paths, these points include all properties 

of both paths (especially, the condition 0j  ). By considering Eq. (27), a relationship between h , 0T  and 

 cr  is obtained: 

 
22

2
0 22

( )
0,         2, 3,

4 4 1
cr

j
hhc T j j

j





       


 (34) 

The equation 0jc   provides surfaces in the space 0, )( ,cr T h  . These surfaces describe the value of criti-

cal loads  cr corresponding to bifurcation points on the equilibrium path. According to the values of h  and 

0T , the number of bifurcation points can be zero, two, four, six and eight. In Figure 9, the green, red, blue and 

yellow surfaces represent the magnitude of critical points corresponding to the first, second, third and fourth 
bifurcation paths, respectively. 

 
Figure 9: The locus of bifurcation points in the space of   0, ,cr T h   
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In a similar way, the boundaries which are identifying the number of bifurcation points on the equilibrium 

path ( BB ), can be derived by projecting the surfaces on the plane of h  and 0T . For this purpose, the con-

straint 0j crc     should be satisfied. This constraint concludes cr h  . Consequently, the following formu-

lation for the set of boundaries BB  is obtained from (34): 

 
2

2 2
0 0, R ,     2,3,

4B j
hB h T T j j 

              
 (35) 

Figure 10 shows the boundaries B jB  for different values of j . 

 
Figure 10: The boundaries identifying the number of bifurcation points in the space of  0,h T  

 

It is noteworthy that, all initial equilibrium paths corresponding to the states between two specific curves in-
clude the same number of bifurcation points. 

4.2 One-sine loading 

Figure 1(c) shows the second loading type 2 sin2Q   . By substituting the value of 2Q  in Eq. (10), the 

magnitude of nq  is obtained as follows: 
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2

1    

 0 , 3,4,....  n

q h
q
q n



     

 (36) 

If the procedure, which is previously described in the Subsection 4.1, is applied, the values of n  and p  will 

be calculated: 

1

2

 
1

16 4   

0, 3,4,...n

h
p

p

n







       

 (37) 

   
2 2 2

0 2 24 4 1 16 4

h hp T
p p

     
 

 (38) 

Additionally, the dimensionless displacement field for the initial equilibrium path is obtained from Eq. (8): 

 Δ
2 cos sin

1 16 4
hp

u
p p

  
         

 (39) 

Consequently, the displacement of the midpoint is as follows: 

1Midu hp
p

 


  (40) 

Figure 11 displays the equilibrium paths for four different values of h  and 0  T . The comparison between 

the results given by the proposed method and the non-linear FEM shows the accuracy of the suggested technique. 

As it can be seen, for large values of h  and 0T , a secondary equilibrium path is appeared (Figure 11(b)-(d)). 

Since the procedure of FEM begins from the initial unloaded state (which is known a priori) and is capable to 
trace only the paths passing through this state, the secondary equilibrium paths cannot be achieved by FEM. 
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Figure 11: Initial and secondary equilibrium paths for four different values of h  and 0T  

 

Similar to the Subsection 4.1., j  can be obtained: 

   
2 2 2

2
0 2 22 2

2 ,
4 4 1

3,
6

4
4

,
1

j
h hT j j

j j j

         
 

 (41) 

Eqs. (42) and (43), respectively, show the displacement field and displacement of the midpoint for the j th 

bifurcation state: 

   Δ
2 2

3, 42 cos sin sin ,
1 1

,
6 4j j

hu h jj
j j

    
             

 (42) 

2

2
sin ,        

21
3,4,j Mi jd

hj j j
j

u 
       
 

 (43) 

In Figure 12, bifurcation equilibrium paths are shown by gray curves. Although the initial equilibrium path 
does not include any critical point, the second path has limit and bifurcation points. 
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Figure 12: Initial, secondary and bifurcation paths for different values of h  and 0T  

 

In addition, to have a better analogy, the relationship between the load parameter and the axial force is given 
in Figure 13. 

 
Figure 13: Relationship between load parameter and axial force for four different values of h  and 0T  
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Figure 14 shows the equilibrium states relative to the points a-g in Figure 12(a). 

 
Figure 14: Equilibrium states corresponding to the points a-g shown in Figure 12(a) 

 

In order to obtain the locus of limit points, the values of n  given by Eq. (37) are substituted into Eq. (30): 

   

22

3 3

2
1 0

2 1 16 4
crh

p p


  

 
 (44) 

Eqs. (38) and (44) reveal the location of limit points as a set of surfaces in the space of 0, )( ,cr T h  . For the 

interval   2
0 0{ , R 0 10, 10 10}h T h T         , the mentioned surfaces are shown in Figure 15. In this 

figure, each surface specifies a couple of critical points corresponding to the supposed h  and 0  T . 
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Figure 15: The locus of limit points in the space of   0, ,cr T h   

 
On the other hand, the equation (45) should be satisfied for the bifurcation points on the j th bifurcation 

path: 

2
0, 3, 4,... ,

, 3, 4,...
n n n j
p j j
      

 (45) 

By considering 2p j  in Eq. (38), an explicit relationship between h, 0T  and  cr is achieved: 

   
22 2

2
0 2 22 2

0 3, 4,,
4 4 1 16 4

cr
j

h hc T j j
j j


        

 
 (46) 
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Figure 16 shows surfaces 0jc   for   2
0 0{ , R 0 10, 10 10}h T h T         . The green, red and 

blue surfaces represent the magnitude of bifurcation points corresponding to the first, second and third bifurcat-
ed paths, respectively. 

 
Figure 16: The locus of bifurcation points in the space of   0, ,cr T h   

 

4.3 One and half-sine loading 

If the loading pattern is assumed to be 3 sin3Q    (Figure 1(d)), the values of nq  and subsequently the 

magnitudes of n  are obtained as follows: 
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2

1

3

0

, 4, 5,....0n

q h
q
q
q n



      

 (47) 

 

2

1

3

1

9 9
4,5,...

0

0,n

h
p

p
n








      





 (48) 

Furthermore, the calculated parameters p , u  and Midu  are respectively given by Eqs. (49)-(51): 

   
2 2 2

0 2 24 4 1 36 9

h hp T
p p

     
 

 (49) 

   Δ sin sin 3
1 9 9
hpu
p p

    
 

 (50) 

 1 9 9Mid
hp
p

u
p

   
 

 (51) 

Figure 17 shows the equilibrium paths for four different values of h  and 0T . The solid curves and the 

signs  , respectively, represent the obtained responses of the proposed technique and the finite element method. 

 
Figure 17: Initial and secondary equilibrium paths for four different values of h  and 0T  
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In a similar way, the displacement field and displacement of midpoint for the j th bifurcation path can be cal-

culated: 

   Δ
2

2 2
sin sin3 sin  , 2,4,5,...

1 9 9j j
hju j j
j j

       
 

 (52) 

 
2

2 2
sin 2,4,5,.., .

21 9 9jMi jd
hj j ju
j j

    
 

 (53) 

By considering Eq. (12), j is computed: 

   
2 2 2

2
0 2 22 2

2 , 2, 4,5,...
4 4 1 36 9

j
h hT j j

j j j

        
 

 (54) 

In Figure 18, the bifurcation paths are denoted by gray curves. 

 
Figure 18: Initial, secondary and bifurcation paths for different values of h  and 0T  

 

Figure 19 shows the structural states corresponding to the points a-f in Figure 18(b). Here, Figure 19(a)-(e) 
are relative to the initial and secondary equilibrium paths, while the last figure is related to the bifurcation path. 
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Figure 19: Equilibrium states corresponding to the points a-f shown in Figure 18(b) 

 
Figure 18 shows that the initial equilibrium path does not include any critical point, and all critical points 

(limit and bifurcation) are located on the second equilibrium path. By substituting the values of n  into Eq. (30), 

the critical load is calculated: 

   

22

3 3
1 0

2 1 18 9
crh

p p


  

 
 (55) 

The locus of limit points in the interval   2
0 0{ , R 0 10, 10 10}h T h T          is presented in Fig-

ure 20: 

 
Figure 20: The locus of limit points in the space of   0, ,cr T h   
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On the other hand, the bifurcation points should satisfy the following conditions: 

2
0, 2, 4,5,...,

, 2,4,5,...
n n n j
p j j
      

 (56) 

By substituting the value p  from Eq. (56) into Eq. (49), the location of bifurcation points in the space of 

0, )( ,cr T h   is obtained: 

   
22 2

2
0 2 22

0, 2, 4, 5,...
4 4 94 1

cr
j

h hc T j j
jj


       


 (57) 

The locus of bifurcation points for the interval   2
0 0{ , R 0 10, 10 10}h T h T          is shown in 

Figure 21. The green, red and blue surfaces represent the magnitude of bifurcation points corresponding to the 
first, second and third bifurcated paths, respectively. 

 
Figure 21: The locus of bifurcation points in the space of   0, ,cr T h   
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4.4 k-sine loading 

In this subsection, the effect of general sinusoidal loading pattern ( sinkQ k  ) on the structural behavior 

of the shallow arch is investigated. The parameter k  describes the formation of the external loading. Based on 

this supposition, the magnitude of nq  for 1,2,3,n   can be calculated for different values of k : 

1 ,            1         
1 : 0,                  2,3,  n

q h n
k q n

       
 (58) 

1 , 1
2,3,... : 0, 2, 3,... ,n

k

q h n
k q n n k

q 

       

 (59) 

By considering Eqs. (13), (58) and (59), the coefficients n  are obtained in a generalized form: 

1(I): 1
0 ,        2, 3,   n

h
P

n





      
 (60) 

1

2

1
(II): 0, 2, 3,... ,n

j

h
p

n n j

from p j







        

 (61) 

1

2 2

1
(III): 0, 2,3,... ,

( )

n

k

h
p

n n k

k k p






        

 (62) 

1

2 2

2

1
0, 2,3,... , ,

(IV):

( )

n

k

j

h
p

n n k n j

k k p
from p j








           

 (63) 

The States I and II are corresponding to 1k  , while the others are relative to the condition 1k  . Addi-
tionally, the States I and III can describe the initial equilibrium path. For this purpose, the magnitude of axial force 
is calculated by substituting Eqs. (60) and (62) into (12): 

 22

0 2
(I): 

4 4(1 )
hhp T

p





    


 (64) 

  
2 2 2

0 2 22 2
(III): 

4 4(1 ) 4

h hp T
p k k p

     
 

 (65) 

Subsequently, the dimensionless displacement field for the initial equilibrium path is achieved by consider-
ing Eq.(8) for the States I and III: 
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Δ(I):  sin
1
hu h

p
 

       
 (66) 

 
Δ

22 2
(III):  sin sin

1
hu h k
p k k p

 
                  

 (67) 

On the other hand, the States II and IV, are corresponding to the bifurcation equilibrium path. Similarly, the 
displacement field for the j th bifurcation path can be derived: 

 Δ
2

(II):  sin sin  
1j j
hu h j

j
   

        
 (68) 

   Δ
2 2 2 2

(IV):  sin sin sin  
1j j
hu h k j
j k k j

    
                 

 (69) 

The displacement of the midpoint is obtained when / 2   for the four mentioned states. The parameter 

j for the States II and IV are calculated by substituting Eqs. (61) and (63) into (12) and considering 2p j : 

 
 

22
2

0 22

2(II): 
4 4 1

j
hhT j

j j


 


     


 (70) 

   
2 2 2

2
0 2 22 2 2 2

2(IV):
4 4 1 4

j
h hT j

j j k k j

       
 

 (71) 

In order to find limit points on the initial equilibrium path, Eq. (30) is applied: 

 
 

2

3
(I): 1 0

2 1
crh

p


 


 (72) 

      
2 22

3 22 2 2
(III):  1 0

2 1 2
crkh

p k p k k p


  

  
 (73) 

Furthermore, the condition (74) should be satisfied for the j th bifurcation point: 

2
0,  2, 3,..., ,

, ,...,2, 3
n n n k n j

p j j kj
      

 (74) 

By substituting Eq. (74) into Eqs. (64) and (65), the locus of bifurcation points is computed: 

 
 

22
2

0 22
(I),(II):    0

4 4 1

cr
j

hhc T j
j





     


 (75) 

   
22 2

2
0 2 22 2 2 2

(III),(IV):  0
4 4 1 4

cr
j

h hc T j
j k k j


      

 
 (76) 

It is noteworthy that bifurcation points are located on both initial and bifurcated paths. 
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4.5 Symmetric step loading 

A type of symmetric step load is shown in Figure 1(e). This loading pattern can be defined in the following 
form: 

  0  0 0.25 0.7and 5
  0.25 0.75Q

    
    

       
 (77) 

By using the Fourier series, the values of nq  for 1,2,...n   are obtained: 

1
2 2

4 sin sin , 2, 3,...
2 4n

q h

n nq n
n




 


    

 (78) 

Note that for even values of n , the magnitude of nq  is equal to zero. If the procedure, which is previously de-

scribed, is applied, the values of n  and p  will be calculated: 

 

2 2

3 2

1

sin sin
2 4 , 2,3 .

1

, ..
4

n

n n

n
n n

p

p

h














 

  



 

 (79) 

   
 

2 2
2

0 ,12 2

2
4 4 1 1

S

hh hp T p
p p

   


      
 

 (80) 

where, the function  ,S i p  is defined in Appendix. The displacement field  u   and the displacement of the 

midpoint  / 2u   for the initial equilibrium path are obtained from Eq. (8): 

 
   

      2
1

3

sin
2 1 2 1

4
sin 2 1

1 2

sin
2 4

1
n

2
s

1
i

i

i i
hp i

p i i
u

p

 

 


 




                

  


  (81) 

 ,21Mid S
hp p

p
u  


    (82) 

Figure 22 displays the equilibrium paths for four different values of h  and 0  T . As it is seen, the proce-

dure of FEM becomes divergent in the case of 9.5h   and 0   8.0T  . This issue shows the efficiency of the 

proposed technique. 
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Figure 22: Initial equilibrium paths for four different values of h  and 0T  

 

In the case of bifurcation path, there is a non-zero n  for even values of n  (e.g., 2 0j  ). Subsequently, the 

axial force is equal to 24p j   based on Eq. (13). By considering Eq. (12), 2 j  is achieved: 

   
 

2 2
2 2 2

2 0 ,12 22 2

21 4 4 , 1
4 4 1 4 1

,2,
4

j S
hh hT j j j

j j j
   


          

 
 (83) 

Eqs. (84) and (85), respectively, show the displacement field and displacement of the midpoint for the j th 

bifurcation state: 

 
   

      

Δ

3

2

22

21
2

4
sin2

1 4
2 1 2 1

4
sin 2 1 , 1

2 1 2

sin

sin sin
2 4 ,2,

1 4

j j

i

h
j

j
u

j
i i

i j
i i j



 



  

 




 


                  

 
 (84) 

 
2

2
,22

4
4 ,         1

1 4
,2,Sj Mid

j h
j j

j
u      


 (85) 

In Figure 23, the bifurcation paths are given. 
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Figure 23: Initial and bifurcation paths for different values of h  and 0T  

 

By substituting the values of n  into Eq. (30), the critical load is calculated: 

   
 

2
2

,33 3

2 2
1 0

2 1 1
cr S cr

hh p
p p

     
 

 (86) 

The locus of limit points in the interval   2
0 0{ , R 0 10, 10 10}h T h T          is presented in Fig-

ure 24. In this figure, each surface demonstrates a couple of limit points corresponding to the specific h  and 

0  T . 

 
Figure 24: The locus of limit points in the space of   0, ,cr T h   
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On the other hand, by substituting the value 24p j   into Eq. (80), the location of bifurcation points in the 

space of 0, )( ,cr T h   is obtained: 

   
 

2 2
2 2 2

0 ,12 22 2

2
4 4 0, 1,2,...

4 4 1 4 1 4
j cr S cr

hh hc T j j j
j j

 


         
 

 (87) 

The locus of bifurcation points for the interval   2
0 0{ , R 0 10, 10 10}h T h T          is shown in 

Figure 25. The green and red surfaces represent the magnitude of bifurcation points corresponding to the first 
and second bifurcated paths, respectively. 

 
Figure 25: The locus of bifurcation points in the space of   0, ,cr T h   
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4.6 Asymmetric step loading 

An asymmetric step load is shown in Figure 1(f). This loading pattern is defined as 

    0 0.5
0  0.5Q
  

   
     

 (88) 

The values of nq  for 1,2,...n   are achieved by using the Fourier series: 

1
2

2

4 sin , 2, 3,...
4n

q h

nq n
n







            

 (89) 

It is noteworthy that the magnitude of nq  is equal to zero when 4n j  (for 1,2,j  ). Similar to Subsec-

tion 4.5, the values of n  and p  can be calculated: 

 

2

1

3 2

2

sin
4 , 2, 3,..

1

4
.n

n

n
n

h

p

p

n














 

         



 


 (90) 

   
 

2 2
2

0 ,12 24 4 1 1
A

h h hp T p
p p

 


       
 

 (91) 

where, the function  ,A i p  is defined in Appendix. Subsequently, the values of  u   and Midu  for the initial 

equilibrium path are 

 
      

      

1

1

3 2

3 2

sin 2 1
1 2 1 2 1

sin 4 2

2sin

4

4 2 4 2

i

i

u hp i
p i i

i
i i

p

p









 












             
          

  




  




 (92) 

 ,21Mid A
hp p

p
u  


    (93) 

The initial equilibrium paths for different values of h  and 0  T  are drawn in Figure 26. 
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Figure 26: Initial equilibrium paths for four different values of h  and 0T  

 
As it is observed, the procedure of FEM becomes divergent in Figure 26(d). 

In the case of asymmetric loading, there can be a non-zero 4 j  for the j th bifurcation path. Consequently, 

the axial force p  equals 216 j  according to Eq. (13). By considering Eq. (12), 4 j  will be obtained: 

 

 
 

2 2

4 0 22

1 2

2 2 2
,122

1
2 4 4 1 16

16 16 , 1
1 16

,2,

j

A

h hT
j j

h j j j
j

 

  

    
      

 (94) 

Accordingly, the displacement field and displacement of the midpoint for the j th bifurcation state are as fol-

lows: 

 
      

      

2

2 23 2

34 22
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1

16 sin 2 1
1 16 2 1 2 1 16
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4 sin 4

n

2 , 1
4 2

4 , ,
4 16

2
2

i

j
i

j h i
j i i j

i
i j

u

j j
i

 

   

 












             
             

  




  




 (95) 
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 
2

2
,22

16 16
1 16Mid Au j h j

j
   


  (96) 

In the asymmetric step loading, there is only one bifurcation path which can be seen in the case of 9.5h   

and 0   8.0T   (the gray solid curve in Figure 27). 

 
Figure 27: Initial and bifurcation paths for 9.5h   and 0 8.0T   

 
Similar to the previous subsection, the locus of limit points can be determined. In this way, the critical con-

straint (30) is rewritten in the following form by considering Eq. (90): 

   
 

2
2

,33 3
21 0

2 1 1
cr A cr

h h p
p p

 


   
 

 (97) 

The locus of limit points in the interval   2
0 0{ , R 0 10, 10 10}h T h T          is shown in Figure 

28. As it is observed, based on the magnitude of h  and 0  T , the number of limit points could be zero, two, four, 

six or eight along the corresponding equilibrium path for this interval. 
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Figure 28: The locus of limit points in the space of   0, ,cr T h   

 

In order to find the location of bifurcation points in the space of 0, )( ,cr T h  , Eq. (91) with the constraint 

216p j   is applied: 

 

 
 

2 2

0 22

2 2 2
,122

4 4 1 16

16 16 0, 1,2,...
1 16

j

cr A cr

h hc T
j

h j j j
j



 




   


     


 (98) 

The locus of bifurcation points for the interval   2
0 0{ , R 0 10, 10 10}h T h T          is shown in 

Figure 29. 
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Figure 29: The locus of bifurcation points in the space of   0, ,cr T h   

 

5 CONCLUSIONS 

The stability behavior of shallow arches is always being of the researchers’ interest. In this paper, an analyti-
cal method to find the exact solution of a half-sinusoidal elastic shallow arch in the thermal environment under 
sinusoidal and step loads is proposed. For this purpose, the structural displacement is rewritten in a form of Fou-
rier series, and subsequently, both initial and bifurcated equilibrium paths are obtained by substituting the trans-
formed displacements into the governing equations of the arch. In addition, the critical points (such as limit and 
bifurcation points) are calculated by equating the determinant of stiffness matrix to zero. Furthermore, a new 
generalized formulation for various types of sinusoidal loadings is proposed. 

In this research, the stability behavior of a half-sine shallow arch under three types of sinusoidal and two 
types of step function loads is separately investigated. Simultaneously, a non-linear finite element method is ap-
plied to show the accuracy and robustness of the suggested approach. In some cases, FEM becomes divergent 
during the path following procedure, while the proposed method is able to obtain the equilibrium path(s) com-
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prehensively. Moreover, finding the critical points without tracing the equilibrium path is the superiority of the 
suggested technique. 
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APPENDIX 

Here, the functions  ,S i p  and  ,A i p  are defined and their magnitudes are given for some values of i : 
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