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Abstract

The overview paper deals with fundamental constitutive issues in the elastic-plastic-
damage rate theory and numerical analyses of the large strain elastic-plastic deformation
behavior of anisotropically damaged ductile metals. The proposed model is based on a
generalized macroscopic theory within the framework of nonlinear continuum damage me-
chanics taking into account kinematic description of damage. It employs the consideration of
damaged as well as fictitious undamaged configurations related via metric transformations.
To be able to address both the plastic flow and the anisotropic damage process, respective
Helmholtz free energy functions of the fictitious undamaged configuration and of the current
damaged configuration as well as a generalized yield condition and a damage criterion are
introduced separately. The evolution laws for plastic and damage strains are based on numer-
ous experimental observations and numerical calculations at the micro-level. Identification of
material parameters is discussed in some detail. The applicability of the proposed continuum
damage theory is demonstrated by numerical simulation of the inelastic deformation process
of tension specimens.

Keywords: Elastic-plastic metals, Anisotropic ductile damage, Voids and micro-cracks, Finite
strains.

1 Introduction

The accurate and realistic description of inelastic behavior of ductile metals is essential for the
solution of numerous boundary-value problems occurring in various engineering fields. For exam-
ple, microscopic defects and cracks cause reduction in strength of materials and shorten the life
time of engineering structures. Therefore, a main issue in engineering applications is to provide
realistic information on the stress distribution within elements of such materials or assessment of
safety factor against failure. It is well known that large inelastic deformations of polycrystalline
materials caused by dislocations along preferred slip planes are usually accompanied by cer-
tain damage processes due to microdefects like microvoids, microcracks, and micro-shearbands.
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These damage processes may start at a certain stage of the deformation process and result in the
development of macrodefects leading to rupture. Thus, proper understanding and mechanical
description of the damage process caused by internal defects are of importance in discussing the
mechanical effects of material deterioration on the macroscopic behavior of materials as well as
in elucidating the process leading from these defects to final fracture.

Therefore, the phenomenon of initiation and growth of cavities and microcracks induced
by large deformations in metals has been extensively studied by means of micromechanical
analyses. McClintock [65] and Rice and Tracey [77] presented first micromechanical studies
of the growth of a single void in an infinite elastic-plastic solid and the results were used to
estimate critical strains for void coalescence. Needleman [71] analyzed an elastic-plastic medium
containing a doubly periodic square array of voids takig into account void interaction effects.
His results predicted smaller critical strains than those obtained by single void models [65,
77]. In addition, a porous ductile material model has been developed by Gurson [34] using
a characteristic volume element consisting of an aggregate of voids and rigid plastic matrix
material. Improvements of this model are given by Tvergaard [87] based on systematic numerical
analyses on the microscale. The continuum mechanical overall effect of those defects is derived
by homogenization [7, 45, 47]. Although at the microscale a good representation of physical
mechanisms can be reached, difficulties arise when these models have to be included in large
scale analyses to predict failure due to the lack of accuracy of local stress calculations for the
microscale level. Thus, a systematic approach to the problems of distributed defects has to be
provided which constitutes a practical tool to take into account the various damaging processes
in materials and structures at a macroscopic continuum level.

To be able to describe the gradual internal deterioration of solids within the framework of
continuum thermodynamics several continuum damage models have been proposed which are
either phenomenological or micromechanically based. Within these concepts the material behav-
ior is modeled by constitutive equations taking into account its progressive deterioration and,
therefore, may be seen as a complementary tool between continuum mechanics and fracture
mechanics. In particular, the fundamental notion of continuum damage mechanics is attributed
originally to Kachanov [41] and was modified by Rabotnov [76] based on the concept of effec-
tive stress in damaged materials. Afterwards, in order to describe the accumulative material
degradation by means of continuous field variables continuum damage mechanics has become an
emerging field of active research. During the past decades the constitutive modelling of ductile
damaged materials in the finite deformation range has received considerable attention, as can
be seen from a large number of bibliographies, reviews and discussions [23, 24, 46, 57, 87, 90].
The predictive utility of an appropriate damage model strongly depends on its particular choice
of the damage variable. As a result of the arbitrary nature of the choice of internal variables,
however, the current literature discusses many ways to phenomenologically define or microme-
chanically derive damage variables representing the state of internal deterioration of the material
properties and, hence, different and often contradictory models have been proposed [4, 46].

Continuum damage mechanics discusses systematically the effects of damage on the mechan-
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ical properties of materials and structures as well as the influence of external conditions and
damage itself on the subsequent development of damage. Critical values of proposed continu-
ous damage variables may be viewed as major parameters characterizing the onset of failure.
Therefore, an important issue in such phenomenological constitutive models is the appropriate
choice of the physical nature of mechanical variables realistically describing the damage state
of materials and their tensorial representation. For example, scalar valued damage variables
have been proposed [2, 29, 41, 54, 55, 58, 76, 78, 85] and have successfully been employed in some
practical applications [31, 32, 38]. Although the simplicity and efficiency of a scalar damage
representation is indeed very attractive, the orientation-independent isotropic damage variable
is subsequently found to be inaccurate as there is strong experimental evidence that damage in
the form of planar microvoids usually nucleates and grows on grain boundaries whose planes
are perpendicular to the maximum tensile stress direction [68, 73]. It has been shown that the
nucleation and growth of voids as well as the orientation of fissures and their lengths observed
in the process of material damage depend significantly on the direction of the applied stresses
or strains and, hence, damage is in general anisotropic. Chow and Wang [25, 26] reported that
isotropic damage models usually predict lower strength of materials compared to the theory of
anisotropic damage, and the importance of the directional nature of material damage in con-
trolling final rupture becomes more pronounced under non-proportional loading conditions. An
analysis without taking into account the damage-induced material anisotropy may therefore lead
to questionable results.

Thus, axial vector representations have been proposed [44, 48, 49] and second order damage
tensors [4, 9, 10, 17–21, 25, 40, 42, 44, 61, 70, 84, 89], as well as higher order damage tensors [22]
have been introduced in order to adequately describe anisotropic damage phenomena. Hence,
different choices are based on assumptions a priori made on the microstructure level according
to the level of simplification of the model. Furthermore, efforts have been made to develop
theories of ductile fracture based upon the nucleation and growth of voids during straining and
upon plastic flow localization into narrow bands within the deforming porous regions which
then become the sites of macrofracture development. An overview and classification of available
models in local approach of fracture are given by Lemaitre [56]. Hence, accurate and efficient
constitutive models of damaged ductile materials are needed as the basis for an accurate theory
of ductile fracture.

The applicability of an accurate material model requires specification of the significant macro-
scopic and microscopic features of the material structure. It has been observed in metallurgical
tests that nucleation of microvoids and their growth and coalescence are the main steps toward
the formation of a mesocrack in ductile materials, which eventually leads to failure. For ex-
ample, while the statistical nature of void formation results in cavities being nucleated over a
range of strains, void nucleation in most alloys begins early in the deformation process and,
as a result, the damage and fracture behavior is controlled by void growth and void link-up.
This behavior affects various local and averaged material properties such as the elastic con-
stitutive parameters [58]. These property changes are indicative of material degradation, and

Latin American Journal of Solids and Structures 1 (2004)



188 Michael Brünig

their measurement can be used to determine appropriate damage variables in engineering ma-
terials. For example, the variation of elastic properties has been proposed as an appropriate
measure of damage [4, 58, 75] which is experimentally realizable due to its clearly identifiable
meaning. Chaboche [23] discussed different ways to define the damage variable through indirect
measurement procedures and each interpretation of damage requires a corresponding model. In
addition, Alves et al. [1, 2] reported of some damage measurements using different experimen-
tal techniques. Their results indicate different values for the damage parameters on the same
specimen according to the definition of damage and to the experimental technique employed
and, therefore, damage is an adjustable parameter. Thus, the choice of the most appropriate
damage measure is not an easy task and the damage parameter determined experimentally must
be carefully related to the theoretical model.

In order to develop an elaborate continuum damage theory for the inelastic behavior of
ductile metals, a systematic macroscopic framework is established for describing the coupled
processes of elastic, plastic and damage deformations of anisotropic nature. Based on the con-
cepts of continuum damage mechanics constitutive equations for ductile engineering materials
are discussed in the present overview by introducing a limited number of state parameters.
Thus, a general anisotropic damage evolution model is proposed and satisfactorily verified by
experimental results and microscopic numerical analyses reported in the literature. Briefly,
the present anisotropic elastic-plastic-damage framework is based on the introduction of metric
transformation tensors. The kinematic description employs the consideration of damaged as
well as fictitious undamaged configurations and the introduction of corresponding Helmholtz
free energy functions. Therefore, the model does not need strain equivalence, stress equivalence
or strain energy equivalence approaches often used in continuum damage theories to be able
to connect matrix material and aggregate variables [25, 54, 55, 79, 80, 89]. The damaged and
corresponding undamaged configurations are related via metric transformations which allow for
the interpretation of damage tensors. Therefore, a characteristic feature of the proposed model
is the kinematic description of anisotropic damage. The modular structure is accomplished by
the kinematic decomposition of strain rates into elastic, plastic and damage parts which take
into account the physics of these deformation processes. To be able to address equally the two
physically distinct modes of irreversible changes a generalized macroscopic yield condition and
a damage surface are formulated separately. The evolution laws for plastic and damage strain
rates are based on numerous experimental observations and numerical calculations at the micro-
level. Identification of material parameters is discussed and the applicability of the present
continuum damage theory is demonstrated by numerical analyses of the inelastic damage pro-
cess of specimens undergoing tensile loading. The influence of different model parameters on the
deformation and failure behavior of ductile metals is studied in some detail and the numerical
results are compared with available experimental data.
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Figure 1: Configurations, metrics, and metric transformation tensors.

2 Kinematics

The kinematic framework presented by Brünig [18] is used to describe inelastic deformation
behavior of anisotropically damaged solids. Briefly, the continuous body in the predamaged but
undeformed initial configuration

o
B is shown in Figure 1. Tensorial quantities referred to this

configuration are formulated using the base vectors
o
gi and the associated metric coefficients

are given by
o
Gij=

o
gi ·

o
gj . In addition, the current elastic-plastically deformed and damaged

configuration B is considered and the corresponding base vectors and metric coefficients are gi

and Gij = gi·gj , respectively (see Fig. 1). All actual quantities are referred to this current
damaged configuration.

The kinematic theory for the mechanics of large deformations of solids is based on the metric
transformation tensor [15,17,52,53]

Q = Qi
.j gi ⊗ gj =

o
G

ik

Gkj gi ⊗ gj (1)

which is used to define the logarithmic Hencky strain tensor

A =
1
2

lnQ =
1
2

(lnQ)i
.j gi ⊗ gj = Ai

.j gi ⊗ gj . (2)
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In addition, the objective Oldroyd rate of the metric transformation tensor (1)

Q̇ =
o
G

ik

Ġkj gi ⊗ gj (3)

leads to the definition of the symmetric strain rate

Ḣ =
1
2

Q−1 Q̇ =
1
2

GikĠkj gi ⊗ gj = Ḣ i
.j gi ⊗ gj . (4)

The mechanical response of the considered body under loading is governed by different
physical mechanisms on micro-, meso- and macroscale levels. Thus, the proposed nonlinear
kinematic model accounts for discontinuous fields of dislocation interaction (plastic flow) as
well as of microvoid and microcrack interactions (damage growth). Thus, the multiplicative
decomposition of the metric transformation tensor [17,18]

Q = Qpd Qel (5)

into its respective inelastic (plastic and damage) part

Qpd =
o
G

ik ∗
Gkj gi ⊗ gj (6)

and its elastic part

Qel =
∗
G

ik

Gkj gi ⊗ gj (7)

is proposed where the metric
∗
Gij of the base vectors

∗
gi of the intermediate configuration

∗
B has

been introduced which represents a fictitious unstressed state at fixed values of internal variables
(see Fig. 1).

Experiments have shown that large inelastic strains of ductile materials are accompanied by
small or moderate elastic deformations. Therefore, the elastic Almansi strain tensor

Ael =
1
2

(1−Qel−1) (8)

is introduced in its mixed-variant representation as an appropriate elastic strain measure. Based
on experimental observations, this tensor (8) is assumed to be kinematically independent from
accompanying inelastic deformations. Using the multiplicative decomposition (5), the proposed
strain rate tensor (4) is rewritten in the form

Ḣ =
1
2

Qel−1 Qpd−1 Q̇pd Qel +
1
2

Qel−1 Q̇el = Ḣpd + Ḣel (9)

which leads to the additive decomposition of the elastic and inelastic strain rates

Ḣel =
1
2

Qel−1 Q̇el (10)

Latin American Journal of Solids and Structures 1 (2004)



An anisotropic continuum damage model 191

and
Ḣpd =

1
2

Q−1 Q̇pd Qel , (11)

respectively.
The central idea of the present continuum damage framework is the introduction of specific

metric coefficients as appropriate measures of evolving damage. It is based on the introduction
of effective undamaged configurations which are obtained by fictitiously removing all the damage
the body has undergone and characterize the deformation behavior of the fictitious undamaged
material [9, 10, 17, 33, 70, 84, 91]. In particular, the current fictitious configuration E of the
body is obtained from the actual damaged configuration B by fictitiously removing the damage
of the deformed body, see Fig. 1. The corresponding base vectors and metric coefficients of
the current undamaged configuration are given by ei and Eij = ei·ej , respectively. The initial

undamaged configuration
o
E with base vectors

o
ei and metric coefficients

o
Eij=

o
ei · o

ej is obtained by

fictitiously removing the initial damage
o
B. In addition, the undamaged stress-free intermediate

configuration
∗
E , which corresponds to the intermediate configuration

∗
B, is characterized by the

base vectors
∗
ei and the metric coefficients

∗
Eij=

∗
ei · ∗ej .

To be able to describe the kinematics of these undamaged configurations, the effective metric
transformation tensor [18]

Q̄ = Q̄i
.j gi ⊗ gj =

o
E

ik

Ekj gi ⊗ gj (12)

is introduced which - similar to the large strain kinematics discussed above - leads to the defi-
nition of the corresponding effective logarithmic strain tensor

Ā =
1
2

lnQ̄ (13)

as well as to the effective strain rate

˙̄H =
1
2

Q̄−1 ˙̄Q . (14)

The multiplicative decomposition of the effective metric transformation tensor

Q̄ = Q̄pl Q̄el (15)

leads to its effective plastic part

Q̄pl =
o
E

ik ∗
Ekj gi ⊗ gj (16)

and to its effective elastic part

Q̄el =
∗
E

ik

Ekj gi ⊗ gj . (17)
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The effective elastic metric transformation tensor Q̄el describes elastic stretching of the matrix
material which is used to introduce the effective elastic Almansi strain tensor

Āel =
1
2

(1− Q̄el−1) . (18)

The plastic part of the effective metric transformation tensor Q̄pl, on the other hand, is arising
from purely irreversible processes due to dislocation motions in the matrix material. In addition,
Eqs. (14) and (15) lead to the additive decomposition

˙̄H =
1
2

Q̄el−1 Q̄pl−1 ˙̄Q
pl

Q̄el +
1
2

Q̄el−1 ˙̄Q
el

= ˙̄H
pl

+ ˙̄H
el

, (19)

where the effective elastic and plastic strain rate tensors are defined as

˙̄H
el

=
1
2

Q̄el−1 ˙̄Q
el

, (20)

and
˙̄H

pl
=

1
2

Q̄−1 ˙̄Q
pl

Q̄el , (21)

respectively.
Experiments [58] have shown that with increasing plastic deformations damage is initiated in

ductile metals and evolves in the continuing deformation process. Additional deformations due
to damage are caused by nucleation and isotropic growth of voids as well as by their coalescence
and the anisotropic formation of microcracks. To be able to compute damage deformations, the
simultaneous motion of the real body and the fictitious undamaged one is considered, and as
can be seen from Fig. 1, the second order tensors

o
R=

o
R

i

.j gi ⊗ gj =
o
E

ik o
Gkj gi ⊗ gj , (22)

∗
R=

∗
R

i

.j gi ⊗ gj =
∗
E

ik ∗
Gkj gi ⊗ gj (23)

and
R = Ri

.j gi ⊗ gj = Eik Gkj gi ⊗ gj (24)

are introduced as metric transformation tensors between the respective damaged and undamaged
configurations. In particular, the initial damage tensor

o
R characterizes the initial damage state

caused, for example, by the process of cold-working, forming or machining of mechanical parts
leading to an initial evolution of defects in the virgin material. R and

∗
R represent internal state

variables which describe the current general anisotropic damage state of the material. As has
been shown in [19], [68], the tensor

∗
R characterizes the damage state of the current configuration

independently of the current elastic deformation and, thus, accurately describes the reduction
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of the material element due to the evolution of microdefects. The relation between the current
damage tensors R and

∗
R is given by

R = Q̄el−1
∗
R Qel (25)

(see Fig. 1) and, thus, the metric transformation tensor Q can be multiplicatively decomposed
as

Q =
o
R
−1

Q̄pl
∗
R Qel . (26)

Its completely different physical counterparts are now kinematically decomposed which allows
separate formulation of the corresponding constitutive laws. In addition, making use of Eqs.
(10), (21), and (26) the strain rate tensor (4) can be rewritten in the form

Ḣ = Ḣel + R−1 ˙̄H
pl

R + Qel−1Ḣda Qel (27)

with the definition of the damage strain rate

Ḣda =
1
2
∗
R
−1 ∗̇

R . (28)

Following the fundamental ideas of Gurson [34] and Tvergaard [87] the current damage state
is assumed to be adequately characterized by the void volume fraction

f =
dv − dv̄

dv
(29)

where dv denotes the differential volume of the current damaged configuration B and dv̄ repre-
sents the differential volume of the current undamaged configuration E . A characteristic feature
of the proposed continuum damage mechanics framework is that the continuous damage param-
eter f is directly given by the material geometry on the microscale. Thus, the current value of
the damage parameter can be directly determined by the use of microscopy. By contrast, many
continuum damage models are based on damage parameters relating to macroscopic material
behavior (see [57] for an overview) with no direct relation to the cause of damage on the mi-
crolevel. Of course, the proposed continuous measure of damage, f , averages many variables,
namely the number of voids, their sizes and shapes, the degree of adhesion between the voids,
local variations of void density, local stress concentration effects and so forth, but it is seen to
be an adequate phenomenological parameter [8].

Then, the trace of the damage strain tensor is exactly given by [17], [52]

trAda = ln
dv

dv̄
= ln(1− f)−1 (30)

and the isotropic part of the damage strain tensor can be written in the form

Ada
iso =

1
3
ln(1− f)−11 . (31)
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Taking into account a logarithmic definition of the isotropic damage strains

Ada
iso =

1
2
ln

∗
Riso (32)

the corresponding spheric part of the damage tensor is expressed as
∗
Riso= (1− f)−2/31 (33)

and making use of Eq. (28) one arrives at the isotropic damage strain rate tensor

Ḣda
iso =

1
3
(1− f)−1ḟ 1 (34)

which describes the increase in volumetric damage strains caused by the isotropic growth of
voids. Since an isotropic damage model is only valid in the early damage state, Eqs. (31), (33)
and (34) are expected to give a reasonable approximation of the current damage behavior up
to a critical porosity fc indicating the onset of void coalescence leading to highly anisotropic
damage processes which will be discussed below. Based on these considerations, Eq. (32) is
generalized by the definition of the logarithmic damage strain tensor

Ada =
1
2

ln
∗
R (35)

which is assumed to adequately describe the anisotropic damage kinematics of the body.
Moreover, it is assumed that the intermediate and the current undamaged configurations,

∗
E

and E , are related in the same way as the intermediate and current damaged configurations,
∗
B

and B [17], [68]. As a result, these undamaged and damaged configurations are subjected to the
identical elastic metric transformation

Qel = Q̄el , (36)

which is a common assumption in homogenization theories. This leads to the equivalence of the
elastic strain tensors

Ael =
1
2

(1−Qel−1) =
1
2

(1− Q̄el−1) = Āel (37)

and the elastic strain rates
Ḣel = ˙̄H

el
. (38)

3 Constitutive equations

3.1 Definition of stress tensors

Stress measures are introduced considering the damaged and undamaged configurations, respec-
tively, in order to formulate equilibrium equations and constitutive laws. The current macro-
scopic stress state of the damaged solid is described by the Kirchhoff stress tensor

T = T i
.j gi ⊗ gj . (39)
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In addition, in the fictitious undamaged configuration the mechanical effect of the Kirchhoff
stress tensor T (39) is characterized by the effective stress tensor

T̄e = T̄ i
.j ei ⊗ ej . (40)

The symmetric tensor T̄e is a fictitious stress measure which represents in the matrix material
the magnified effect of macroscopic stress caused by damage. Alternatively, the effective stresses
can be formulated with respect to the base vectors gi:

T̄ = T̄ i
.j gi ⊗ gj . (41)

Furthermore, in any regular material point at time t the stress tensor T (39) satisfies the
equilibrium conditions

divT + ρob̄ = 0 (42)

where ρob̄ = ρob̄igi represents the body forces, ρo denotes the initial mass density and div is
the divergence operator with respect to the current base vectors gi.

3.2 Effective undamaged configurations

The effective undamaged configurations are used to formulate the elastic-plastic constitutive
equations of the undamaged matrix material [15], [16]. In particular, the rate of the effective
specific mechanical work ˙̄w is defined by

ρo ˙̄w = T̄· ˙̄H . (43)

Using Eq. (19), the rate of effective mechanical work (43) can be additively decomposed accord-
ing to

ρo ˙̄w = ρo ˙̄wel + ρo ˙̄wpl = T̄· ˙̄Hel
+ T̄· ˙̄Hpl

(44)

into an effective elastic part ˙̄wel governed by thermodynamic state equations and an effective
plastic part ˙̄wpl.

The formulation of effective plastic constitutive equations is based on the introduction of
plastic internal variables which may be seen as a basic tool to carry forward informations from the
microscale (e.g. crystal lattice) to the phenomenological macroscale. Thus, the plastic internal
variables determine the hardening behavior of the matrix material. The effective specific free
energy φ̄ of the fictitious undamaged configuration is introduced and, since the effective elastic
behavior of the matrix material is not influenced by the hardening state, φ̄ is assumed to be
additively decomposed into an effective elastic and an effective plastic part

φ̄ = φ̄el(Āel) + φ̄pl(γ) (45)

where γ denotes the internal mechanical state variable which characterizes the current effective
plastic strain state.
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Moreover, the second law of thermodynamics can be written in the form

˙̄w − ˙̄φ ≥ 0 . (46)

Making use of Eqs. (44) and (45) one arrives at

T̄· ˙̄Hel
+ T̄· ˙̄Hpl − ρo

∂φ̄el

∂Āel
· ˙̄Ael − ρo

˙̄φpl(γ) ≥ 0 . (47)

Considering non-dissipative processes in the effective elastic range Eq. (47) leads to the relation

T̄· ˙̄Hel − ρo
∂φ̄el

∂Āel
· ˙̄Ael

= 0 (48)

governing the strictly reversible deformations. It may be easily shown that the effective elastic

strain rate ˙̄H
el

given by Eq. (20) represents the objective Oldroyd rate of the effective elastic
Almansi strain tensor Āel which leads to the effective hyperelastic constitutive equation

T̄ = ρo
∂φ̄el

∂Āel
. (49)

Then Eq. (47) reduces to the effective dissipation function D̄:

D̄ = T̄· ˙̄Hpl − ρo
˙̄φpl ≥ 0 . (50)

As a result, the evolution equation for the effective plastic part of the deformation will be

formulated in terms of ˙̄H
pl

.
In particular, the finite isotropic effective elastic part of the material behavior is assumed to

be governed by the effective Helmholtz free energy function

ρo φ̄el(Āel) = G Āel·Āel +
1
2
(K − 2

3
G) (trĀel)2 (51)

where G and K represent the shear and bulk modulus of the matrix material, respectively.
Taking into account the hyperelastic constitutive relationship (49) the effective stress tensor is
expressed in the form

T̄ = 2G Āel + (K − 2
3
G) trĀel 1 . (52)

It has been shown experimentally that the hyperelastic stress-strain law (52) leads to accurate
results for a wide class of metals undergoing finite elastic stretches. All strain nonlinearities
are incorporated within the nonlinear effective elastic strain tensor Āel while the two effective
elastic material constants, G and K, are determined from infinitesimal strain experiments.

Furthermore, the onset of plastic yielding is assumed to be governed by the yield condition

fpl(T̄, c) = 0 (53)

Latin American Journal of Solids and Structures 1 (2004)



An anisotropic continuum damage model 197

where c denotes the strength coefficient of the matrix material. Experimental studies on the
effect of superimposed hydrostatic pressure on the deformation behavior of metals carried out by
Spitzig et al. [83] and Brownrigg et al. [14] have shown that the flow stress depends approximately
linearly on hydrostatic pressure. Numerical studies presented by Brünig [16] have elucidated that
even small additional hydrostatic stress terms may remarkably effect the onset of localization
as well as the associated deformation modes, and that they can lead to a notable decrease in
ductility. Hence, plastic yielding of the ductile matrix material is assumed to be adequately
described by the yield condition

fpl(Ī1, J̄2, c) =
√

J̄2 − c (1 − a

c
Ī1) = 0 , (54)

where Ī1 = trT̄ and J̄2 = 1
2 devT̄·devT̄ are invariants of the effective stress tensor T̄ (41) and a

represents the hydrostatic stress coefficient where a/c is a constant material parameter [81].
In addition, an appropriate plastic potential function has to be established in order to develop

the desired constitutive equations that accurately describe the mechanical behavior of ductile
elastic-plastic materials observed in experiments. The effective plastic strain rate (21) is assumed
to be related to the current effective stress tensor through the flow rule which satisfies the positive
work dissipation requirements (50). Thus, the plastic potential function gpl(T̄) is also formulated
in terms of the effective stress tensor. In elastic-plastically deformed and damaged metals
irreversible volumetric strains are mainly caused by damage and, in comparison, volumetric
plastic strains are negligible [83]. Therefore, the plastic potential function

gpl(T̄) =
√

J̄2 (55)

depends only on the second invariant of the effective stress deviator swhich leads to the isochoric
effective plastic strain rate

˙̄H
pl

= λ̇
∂gpl

∂T̄
= λ̇

1

2
√

J̄2

devT̄ (56)

where λ̇ is a non-negative scalar-valued factor. The definition of the normalized deviatoric tensor

N̄ =
1√
2 J̄2

devT̄ (57)

leads to the introduction of the equivalent plastic strain rate

γ̇ = N̄· ˙̄Hpl
=

1√
2

λ̇ (58)

which is used to express the plastic strain rate tensor (56) in the form

˙̄H
pl

= γ̇ N̄ . (59)
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3.3 Anisotropically damaged configurations

The anisotropically damaged configurations are considered to formulate the inelastic constitutive
equations of the damaged aggregate. In response of external loading the existence of microdefects
results in an increase of the stress level in the remaining effective material and, on the other hand,
in a decrease of the stored energy in the damaged material when compared to the response of the
virgin undamaged material. This finite elastic-plastic deformation behavior including anisotropic
damage is also viewed within the framework of thermodynamics with internal state variables.
Taking into account Eq. (28), the rate of the specific mechanical work

ρo ẇ = T·Ḣ (60)

is additively decomposed:

ρo ẇ = ρo ẇel + ρo ẇpl + ρo ẇda = T·Ḣel + T·(R−1 ˙̄H
pl

R) + T·(Qel−1 Ḣda Qel) (61)

into an elastic (ẇel), plastic (ẇpl) and damage part (ẇda), respectively.
The complexity of the continuum model is characterized by the form of the Helmholtz free

energy φ and by the number of variables. Thus, the definition of φ constitutes a crucial point
of the formulation since it is the basis for the derivation of the inelastic constitutive equations.
The experimentally observed nonlinearities in ductile metal behavior are well documented in the
literature and arise from two distinct microstructural changes that take place in the material:
one is the plastic flow, the other is the development of microvoids and microcracks. In particular,
plastic flow results in permanent deformation and is the consequence of dislocation processes
along preferred slip planes which are predominantly controlled by microscopic shear stresses.
Since the crystal lattice has been shown to be unaffected during the slip process, the elastic
compliances remain insensitive to this mode of microstructural changes. On the other hand, in
fully dense materials voids are formed during straining usually by the decohsion or fracture of
large inclusions or precipitates and microcracking destroys the band between material grains. It
also results in permanent deformation but in contrast to the plastic material behavior it affects
the elastic properties. As a consequence, the elastic properties depend on damage variables but
not on plastic strains which leads to the assumption of uncoupled elasticity and plasticity. The
free energy due to plastic deformations is usually small in comparison with the elastic counterpart
and, therefore, the effects of damage on the plastic part will be neglected. In addition, the
influence of other state variables on these free energies are assumed to be small. Hence, as has
been proposed by Lemaitre [54] and Lu and Chow [61] among others, it is postulated that the
energies involved in plastic flow and damage processes are independent. In order to take into
account plasticity and damage phenomena in an adequate manner two sets of internal state
variables are chosen characterizing formation of dislocations (plastic internal variables) as well
as describing nucleation and propagation of microdefects (damage internal variables).

Therefore, it is possible to decouple the Helmholtz free energy into potential functions for
each of the internal state variables and coupling is possible in the respective potentials if they
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depend on more than one variable. Therefore, the Helmholtz free energy of the damaged material
sample is assumed to consist of three parts [19], [20]:

φ = φel(Ael,Ada) + φpl(γ) + φda(µ) . (62)

The elastic part of the free energy of the damaged material φel is expressed in terms of the elastic
and damage strain tensors (8) and (35), whereas the plastic part, φpl due to plastic hardening,
and the damaged part, φda due to damage strengthening, only take into account the respective
internal effective plastic and damage state variables, γ and µ. Making use of Eqs. (61) and (62)
the second law of thermodynamics can be written in the form

ρo ẇ − ρo φ̇ = T·Ḣel + (RTR−1)· ˙̄Hpl
+ (Qel TQel−1)·Ḣda

−ρo
∂φel

∂Ael
·Ȧel − ρo

∂φel

∂Ada
·Ȧda − ρo φ̇pl(γ)− ρo φ̇da(µ) ≥ 0 . (63)

Assuming that the axiom of entropy production holds, the inequality (63) results in the ther-
modynamic state law

T = ρo
∂φel

∂Ael
(64)

governing strictly reversible deformations where the previously discussed identity of the Oldroyd
rates Ḣel = Ȧel has been used. Furthermore, the Clausius-Duhem inequality can be separated
into plastic and damage parts

(RTR−1)· ˙̄Hpl − ρo φ̇pl ≥ 0 (65)

and

T̃·Ḣda − ρo
∂φel

∂Ada
·Ȧda − ρo φ̇da ≥ 0 . (66)

From Eq. (66) it can be seen that the evolution equation for the damage part of the defor-
mation will be expressed in terms of the damage strain rate Ḣda introduced kinematically by
Eq. (28) and the damage condition will be expressed in terms of its work-conjugate stress tensor

T̃ = Qel TQel−1 . (67)

Please note that since the plastic potential function φpl with respect to the damaged configu-
ration will not explicitly be formulated the positive plastic work dissipation requirement (65)

will not be used in the present framework and, therefore, the plastic strain rate ˙̄H
pl

, which is
based on the plastic potential function φ̄pl with respect to the undamaged configuration, has
only to enforce the condition (50). It may be assumed that φpl could be chosen in such a way
that the dissipation inequality (65) will always be satisfied. The second dissipation positiveness
requirement (66), on the other hand, will be used since the damage elastic and the damage po-
tential functions, φel and φda, will be considered. Equation (66) may also be used to restrict the
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possibilities in formulating φel and, especially, may lead to restrictions for material parameters
describing elastic deterioration effects.

Moreover, experiments [82] have indicated that the existence of microdefects results in a
decrease of the stress level in the aggregate as well as in a decrease of the elastic material
properties and of the stored energy in the damaged material when compared to the response of
the virgin undamaged material. To be able to describe these phenomena within the constitutive
setting of an efficient continuum damage model the elastic strain energy φel, which characterizes
the elastic behavior of the damaged aggregate, is chosen to be an isotropic scalar function of the
set of its arguments Ael and Ada [19], [35], [62], [69]. Thus, the elastic strain energy function
φel is taken to be

ρo φel(Ael,Ada) = G Ael·Ael +
1
2
(K − 2

3
G) (trAel)2 + η1 trAda (trAel)2

+η2 trAda Ael ·Ael + η3 trAel Ada ·Ael + η4 Ael · (AelAda) (68)

where G and K are again the shear and bulk modulus of the undamaged matrix material and
η1, ..., η4 are material constants which describe the deterioration of the elastic properties by the
occurrence of damage. This leads to the Kirchhoff stress tensor (64) of the damaged material

T = 2(G + η2 trAda) Ael + [(K − 2
3
G + 2η1 trAda)trAel + η3 (Ada ·Ael)] 1

+η3 trAelAda + η4 (AelAda + AdaAel) . (69)

For example, the first and second additional material constants, η1 and η2, are related to the
isotropic character of damage whereas the third and fourth coefficient, η3 and η4, are due to
anisotropic evolution of damage. Laboratory investigations on many ductile metals subjected
to tensile stresses indicate that principal elastic moduli and the Poisson’s ratios decrease as
microdefects grow [35], [51, 82]. These experimental observations place the physical bounds on
the values of the additional constitutive parameters η1, ..., η4 that they have to be taken to be
negative.

Furthermore, constitutive equations for damage evolution are required in the proposed frame-
work of continuum damage mechanics. To determine the onset and the continuation of damage
the concept of the damage surface is employed in analogy to the yield surface concept of the
plasticity theory. However, unlike the yield condition (54) the form of the damage criterion is
not well established. For example, Cordebois and Sidoroff [28] among many others employed
a damage dissipation potential function formulated in terms of their so-called damage strain
energy release rate. In order to overcome certain anomalies associated with the definition of the
damage strain energy release rate tensor Chow and Wang [25] formulated a damage dissipation
potential in terms of their effective stress tensor. Similarly, the damage condition

fda(T̃, σ) = 0 (70)
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is here expressed in terms of the stress tensor T̃ (67), which is work-conjugate to the chosen
damage strain rate tensor (28) (see Eq. (66)) and σ denotes the damage threshold which
represents the material toughness to microdefect propagation.

In addition, to be able to compute damage strain rates, the damage potential function gda(T̃)
is also formulated in terms of the stress tensor T̃ providing a realistic physical representation of
material degradation. This leads to the damage rule

Ḣda = µ̇
dgda

dT̃
(71)

where µ̇ is the rate of the internal damage variable introduced above. The damage rule has to
enforce the dissipation inequality (66) which leads to restrictions for the material parameters
η1, ..., η4 appearing in Eq. (68).

The definition of the damage strain rate tensor (71) requires a damage evolution law which
should be determined from realistic damage propagation conditions. Therefore, experimental,
theoretical and numerical studies have been performed to understand principal evolution modes
of microcracks. Nowadays, it is well known, for example, that voids in structural metals nucleate
from larger inclusions soon after the onset of plastic yielding and grow due to plastic deformations
of the surrounding matrix material. In addition, void size, void spacing and void distribution
may remarkably affect further growth of exising voids and their coalescence [60,74].

Several authors presented numerical studies and experimental observations on nucleation,
growth and coalescence of voids leading to final fracture of tensile bars. For example, microme-
chanical cell model studies [65,71,77] have been used to focus on void nucleation and growth to
final failure. They have shown that the rates of growth of long cylindrical and spherical micro-
scopic voids are significantly elevated by the superposition of hydrostatic tensile stresses on a
remotely uniform plastic deformation field. The volume changing contribution of void growth is
found to remarkably overwhelm the shape changing part when the mean remote normal stress
is large. The void enlargement is amplified over the macroscopic strain rate by a factor arising
exponentially with the ratio of the mean normal stress to the yield stress. In addition, Mackenzie
et al. [63] have shown that the onset of ductile damage in high strength steels strongly depends
on the stress triaxiality. Furthermore, fracture by coalescence of voids would be promoted by
a high level of triaxiality tension which was found in a series of experiments on notched tensile
specimens [36], [37]. Experiments performed by Brownrigg et al. [14] have also shown the dom-
inant effect of hydrostatic stress on nucleation and growth of voids. Since these results suggest
a rapidly decreasing fracture ductility with increasing hydrostatic tension, realistic damage cri-
teria must contain a term depending on the first stress invariant, I1 = trT = trT̃, which may
be seen as the dominating factor regulating the rate of nucleation and isotropic growth of voids.
Moreover, Tvergaard and Needleman [88] analyzed round tensile bars to investigate the effect of
mechanical properties on ductility. They first predicted void formation and nearly isotropic void
growth in plastically deformed regions and, after a critical void volume fraction has been passed,
the onset of shear deformation with an associated coalescence of voids leading to a microcrack

Latin American Journal of Solids and Structures 1 (2004)



202 Michael Brünig

is observed thus indicating anisotropic damage behavior. These numerical results have been
shown to be in good agreement with experimental observations [6], [11]. Hence, provided that
the initial void distribution is not too anisotropic, isotropic damage is assumed to characterize
the early deformation stage in a realistic manner and the onset of damage is governed by the
damage condition

fda
iso = I1 − σ = 0 . (72)

In addition, the damage potential function

gda
iso(T̃) = αI1 (73)

leads to the isotropic damage rule

Ḣda
iso = µ̇

dgda

dT̃
= µ̇α1 (74)

which in comparison with the kinematically motivated Eq. (34) shows the identities

µ̇ = ḟ (75)

and
α =

1
3
(1− f)−1 . (76)

Equation (75) clearly shows that the rate of the damage internal variable µ̇ represents the void
volume fraction rate ḟ .

Moreover, it is generally agreed that voids typically coalesce through a combination of shear-
ing of the primary inter-void ligaments as well as coalescence of secondary voids across the
primary inter-void ligaments also known as void sheeting. This is indicated by the low strain-
to-failure values observed in experiments and the sparse population of relatively small voids
in the intermediate vicinity of ductile fracture surfaces. Based on experimental observations
or finite element analyses on periodically voided ductile metals several authors have proposed
values of the critical void volume fraction fc, which characterizes the onset of coalescence of
voids and, thus, of anisotropic damage evolution. Namely, Brown and Embury [13] suggest that
two neighboring cavities coalesce when their length has grown to the order of magnitude of their
spacing. This local failure mode is a result of development of slip planes in the plastified matrix
material between the cavities or simply of necking of the ligament. Their experiments indicate
a critical void volume fraction for coalescence of voids of about fc = 0.15 whereas numerical
micromechanical analyses presented by Andersson [3] predicted coalescence at fc = 0.25 . How-
ever, experiments performed by Cialone and Asaro [27] and Moussy [67] have shown that lower
void volume fractions were measured in structural alloys near the fracture surface in the center
of the neck of round tensile test specimens. Therefore, the critical porosity fc = 0.15 seems to
be unrealistically large for real engineering materials.
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Figure 2: Effect of initial porosity on critical void volume fraction.

The problem of determining the critical porosity fc through micromechanical finite element
simulations taking into account uniform or periodical distribution of voids has also been widely
discussed in literature. A large number of numerical calculations, however, yield critical void
volume fractions which are quite too large and, thus, lead to an overestimation of the overall
ductility. One reason for the discrepancy is the assumed large initial void volume fraction which
is not realistic in each case. For example, in engineering alloys voids generally form during
straining by the decohesion or fracture of inclusions and, therefore, their initial porosity is very
small. Only powder metallurgy consolidated alloys show significant initial porosity.

Numerical cell model studies performed by Becker et al. [6] and Koplik and Needleman [43]
indicate that the value of fc varys slowly with stress triaxiality and matrix strain hardening but to
depend strongly on the initial void volume fraction. In addition, numerical calculations reported
by Dhar et al. [29] have shown for a wide variation of plastic strains and stress triaxialities that
the critical value of damage remains almost the same. Consequently, they regarded their critical
damage parameter as a material property for prediction of microcrack initiation in ductile metals.

Thus, taking fc to depend only on the initial void volume fraction
o
f may be seen as a reasonable

approximation. Then, based on the results of Becker et al. [6], Brünig [19] proposed that the

critical void volume fraction fc of ductile materials depends linearly on the initial porosity
o
f :

fc = 0.0344 + 1.25
o
f (77)

(see Fig. 2). Note that for smaller initial void volume fractions the values of fc predicted by
Eq. (77) are significantly lower than the value fc = 0.15 suggested by Brown and Embury [13]
and taken into account by Tvergaard and Needleman [88] within their numerical analyses.
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However, one-cell finite element analyses underestimate the observed degradation of strength
with increasing porosity due to the stiffness of the regular-array micro-cell model. Real materials
normally do not contain periodic but often strongly inhomogeneous distributions of voids. In
general, initial voids tend to be gathered in clusters. It is well known that coalescence must
start in void clusters much earlier than it would do in a homogeneously voided material. This
has been clearly established by Becker [5] based on his numerical study of nonhomogeneously
voided solids and also by Thomson et al. [86] using three-dimensional finite element analysis to
examine the effect of particle clustering on void damage rates in ductile materials under triaxial
loading conditions. Magnusen et al. [64] examined experimentally the contrasting behavior of
tensile metal specimens containing random and regular arrays of voids to provide a physical basis
for understanding void linking during ductile microvoid fracture. In addition, Dubensky and
Koss [30] performed experiments to study the sensitivity of ductile microvoid fracture processes
on the size and distribution of voids, and Melander and Stahlberg [66] also analyzed the ductility
of materials with different void distributions. Furthermore, Needleman and Kushner [72] and
Benson [8] studied numerically the effect of various void distributions on the overall aggregate
stress-strain response of initially porous inelastic solids. They found that characterization of a
distribution of voids by the continuous void volume fraction f is a reasonable approximation for
porous metals. Leblond and Perrin [50] considered several distributions of initial void volume

fraction with the same mean value
o
f= 0.0268 and different standard deviations. Their self-

consistent approach based on a model problem with hydrostatic load applied at infinity has
shown a decrease of the critical void volume fraction fc as the standard deviation of the initial
void distribution increases. This means that porosity inhomogeneities favor coalescence. For
example, the void distribution with the standard deviation of 0.006, which corresponds to actual
measurement performed for engineering materials, leads to the critical void volume fraction
fc = 0.0708 . This result is in good agreement with the critical porosity predicted by Eq. (77)
and, therefore, the effect of random nature of experimentally observed void distributions on the
critical void volume fraction is also included in the present phenomenological theory. Hence,
when the current void volume fraction reaches the critical value f = fc (Eq. 77), the onset of
coalescence of voids is predicted and the damage induced anisotropy caused by the changes in
shape of the initially spherical microvoids is assumed to be important and has to be implemented
into the present model.

Moreover, Jain et al. [39] compared different criteria to predict the fracture limits of alu-
minum sheets for a variety of strain ratios. Their numerically predicted forming limit curves
have shown that shear-type criteria lead to good agreement with experimental results for differ-
ent strain paths. Microstructural observations of facture surfaces and through-thickness fracture
characteristics confirm a shear-type microvoid coalescence mechanism and subsequent fracture
in aluminum sheets. Their qualitative observations show void growth and coalescence as well as
the activation of shearing instabilities in the matrix material between the voids in direction of
pure shear. Further experiments indicated that a combination of these two damage processes
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then leads to final fracture. In addition, Tvergaard and Needleman [88] reported on events dur-
ing tension of a cylindrical bar. They observed remarkable shear deformation with associated
coalescence of voids leading to a microcrack which further grows in a zig-zag fashion. In addi-
tion, Le Roy et al. [59] discussed that nucleation and growth of voids were not separable and
sequential processes. Voids nucleate continuously during straining and new voids are appearing
while older ones are growing. As a result, nucleation and growth should be considered at the
same time to be able to realistically describe the evolution of damage with increasing strains.
They also have shown that in ductile materials a high deformation value is required to nucleate
a significant number of voids and that void nucleation and growth mainly depend on the hy-
drostatic stress state. Experiments performed by Brownrigg et al. [14] also indicated that the
rate of damage was reduced by superimposed hydrostatic pressure whereas later coalescence of
voids to oriented microcracks, however, does not depend on hydrostatic stress. Based on these
results anisotropic damage behavior of ductile metals is assumed to be adequately described by
the damage criterion

fda(I1, J2, σ̃) = I1 + β̃

√
J̃2 − σ̃ = 0 (78)

which is also a function of the anisotropic stress measure J̃2 = 1
2devT̃ · P devT̃ where the

anisotropic nature of the problem is characterized by the directional dependence of the projection
tensor P. The damage criterion (78) is able to take into account the hydrostatic and deviatoric
stress effects caused by the shape and orientation of microdefects, and σ̃ denotes the material
toughness to microcrack propagation. As long as uniaxial tension tests are used to determine
the evolution equation for the equivalent aggregate stress measures σ and σ̃ appearing in the
damage conditions (72) and (78) the relation σ̃ = (1+β̃/

√
3)σ holds where σ denotes the uniaxial

tension stress. In addition, in Eq. (78) the material property β̃ describes the influence of the
deviatoric stress state on the damage condition.

Furthermore, the credibility of a damage model is based on how well it correlates with
experimental results. For example, it is observed in uniaxial tension tests that microcracks
develop perpendicular to the loading direction or the damage is in the direction of loading. Thus,
in uniaxial tension damage evolves in the direction of tensile stress. Conversely, in an unconfined
uniaxial compressive stress state microcracks develop in the direction parallel to the loading
axis. This then corresponds to damage perpendicular to the direction of loading. No stresses
are present in this off-axis direction in uniaxial compression but there are tensile deviatoric
stresses in the off-axis direction. Based on these observations it appears reasonable to postulate
that anisotropic damage evolves in the direction of tensile deviatoric stresses. Therefore, to be
able to compute damage strain rates, the damage potential function

gda(T̃) = αI1 + β

√
J̃2 (79)

is also formulated in the terms of the stress tensor T̃ discussed above. In Eq. (79) α and β

denote kinematically based damage parameters. Taking into account Eq. (71) this leads to the
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nonassociated damage rule

Ḣda = µ̇α1 + µ̇β
1

2
√

J2
P devT̃ . (80)

The first term in Eq. (80) represents the rate of inelastic volumetric deformations caused by the
isotropic growth of microvoids whereas the second term is an explicit function of the deviatoric
part of its work-conjugate stress tensor to be able to take into account the significant dependence
of the evolution of size, shape and orientation of microdefects on the direction of the current
stress state.

4 Numerical analyses

4.1 Finite element implementation

In displacement-based finite element procedures usually iterative techniques are employed to
solve the discretized nonlinear equilibrium equations for each incremental load or time step.
The results of each iteration then correspond to estimates of the incremental displacements
from which the current stress and strain states as well as further field variables are computed
at the integration points of each finite element. The problem is then to integrate the evolution
equations of the respective strain rate tensors over the time increment in order to be able to
calculate the current stresses and strains. This is done in the present continuum damage model
by the inelastic predictor method presented by Brünig [20] which has been shown to be a stable,
accurate and efficient integration algorithm well suited for finite element analyses involving large
inelastic deformations.

The finite element procedure is based on the principle of virtual work
∫

B0

δH·T dv0 −
∫

∂B0

δu·t0 da0 = 0 (81)

where B0 and ∂B0 denote the volume and surface of the body in the initial configuration and
δH = 1

2Q
−1 δQ. The first integral in Eq. (81) represents the variation of the current stored

energy density while the second accounts for the contribution of the prescribed surface tractions
t0.

Using a consistent linearization procedure, choosing suitable shape functions for the unknown
displacements, carrying out the integrations and, finally, assembling the individual element
stiffness matrices and load vectors, one arrives at a set of linearized algebraic equations for the
nodal displacement increments, which may be written in the familiar abbreviated form

KT ∆V = ∆P . (82)

In Eq. (82), KT denotes the global tangent stiffness matrix, ∆P corresponds to the residual
unbalanced force vector, and ∆V represents the vector of unknown incremental displacements.
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4.2 Material characterization

Identification of continuum models consists in the quantitative evaluation of the chosen mate-
rial coefficients characteristic of each material. The determination of material parameters of
the damaged aggregate needs a measurement of damage variables which, however, is somewhat
difficult due to the fact that damage does not remarkably affect any measurable quantity far
from the rupture condition. Therefore, Spitzig et al. [82] performed a large number of system-
atic experiments on iron compacts of different initial porosities to provide data that could be
used to critically evaluate theoretical models of elastic-plastic behavior of porous ductile solids.
They experimentally investigated mechanical properties of iron compacts as well as the effect of
deformation on the evolution of void growth characteristics. These experimental data are used
to determine the material parameters of the proposed anisotropic continuum damage model.

In particular, taking into account the effective elastic constitutive equation (52) the elastic
constants of the iron matrix material are chosen to be the shear modulus G =81300 MPa and
the bulk modulus K =166300 MPa. In addition, the effective plastic parameters are estimated
using experimental true stress-logarithmic plastic strain curves of fully dense tensile specimens.
The nonlinear increase of the current strength coefficient c appearing in the yield condition (54)
is numerically characterized by the power law

c = c0

(
H0 γ

n c0
+ 1

)n

(83)

to give the best fit to the experimental values. As can be seen from Fig. 3 the numerical
simulation based on the initial yield strength c0 = 57.74 MPa, the initial hardening parameter
H0 = 5500 MPa, and the hardening exponent n = 0.296 leads to good agreement with the
experimental curve. In addition, based on the experiments reported by Spitzig and Richmond
[81] on the effect of superimposed hydrostatic pressure on the flow characteristics of metals the
specific hydrostatic stress coefficient in Eq. (54) is chosen to be a/c = 23 TPa−1.

Furthermore, Spitzig et al. [82] measured the current elastic moduli of iron compacts with
different porosities. These experimental results are used to determine the material parameters
η1, ..., η4 in Eq. (69) which describe the deteriorating influence of increasing damage on the
elastic properties. As has been shown by Brünig [19] the respective parameters

η1 = −117500 MPa ; η2 = −95000 MPa ;

η3 = −190000 MPa ; η4 = −255000 MPa (84)

give the best fit to the experimental data. For example, Fig. 4 shows the decrease in Young’s
modulus, Ed, with increasing void volume fraction. At a current porosity f = 0.111, Ed is
predicted to attain about 75 % of its initial value, E, and these numerical results agree quite
well with the experimental data given in [82]. Similar results may be obtained for the damaged
shear modulus, bulk modulus and Poisson’s ratio [19]. It should be noted that the decrease
in the Poisson’s ratio can not be described by standard isotropic as well as a large number of
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Figure 3: Equivalent matrix stress-equivalent plastic strain curve.

anisotropic damage models [40] whereas the proposed damage approach is even able to simulate
this experimentally observed effect [35], [51], [82].

Furthermore, progressive damage often results in strain softening of the aggregate and the
corresponding stress-strain curve exhibits a negative slope. Numerical analyses presented by
Tvergaard and Needleman [88], for example, suggested that during the increasing damage pro-
cess the aggregate stress falls slowly until the void volume fraction reaches the critical value
f = fc and, then, the aggregate stress drops abruptly with a remarkable loss of stress carrying
capacity. Motivated by these results the equivalent aggregate stress-equivalent damage strain
curve is approximated by a bilinear curve where the respective slopes Hda = dσ

df are chosen to
be

Hda
1 = −50 MPa for f < fc (85)

and
Hda

2 = −4000 MPa for f ≥ fc , (86)

where the critical void volume fraction, fc, is given by Eq. (77).
The constitutive parameters β and β̃ characterizing the portion of anisotropic behavior

appearing in the damage rule (80) and the damage condition (78) are chosen to be β = β̃ =
0.5. The effect of different β and β̃ on the prediction of deformations of damaged solids has
been studied in detail by Brünig [20]. In addition, since no experimental observations on the
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Figure 4: Effect of porosity on Young’s modulus.

anisotropic evolution of damage strains are available the principal components of the projection
tensor in Eqs. (78) and (80) are taken to be one.

4.3 Tension tests under plane strain conditions

These numerical analyses deal with the finite deformation behavior of uniaxially loaded rectan-
gular specimens with the ratio initial length to initial height of 4. The ends of the bars are taken
to be shear free and the specimen has an initial geometric imperfection in shape of a full cosine
wave with an amplitude of 1 % of the initial height. Numerical calculations are carried out using
displacement-based crossed-triangle elements. They take into account plane strain conditions
and employ the elastic-plastic-damage model with the constitutive parameters discussed above.
The corresponding load-deflection curves are shown in Fig. 5 based on an elastic-plastic mate-
rial model without damage, on an elastic-plastic constitutive model including isotropic damage
as well as on an elastic-plastic material model including anisotropic damage discussed in this
paper. In particular, Fig. 5 shows a remarkable increase in load with increasing deformations
due to the initial elastic behavior and the subsequent plastic work-hardening characteristics of
the initially undamaged material. The load has a maximum at the elongation u/l = 0.151 and
subsequently a small decrease in load with increasing deformation is observed due to the de-
crease in the current specimen’s area. In the elastic-plastic case without damage the decrease in
load at final elongation u/l = 0.175 is only of about 2 %. In addition, Fig. 5 clearly shows that
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Figure 5: Load-deflection curve.

the numerical calculations based on the proposed damage model predict the onset of damage
at the elongation u/l = 0.162. The subsequent isotropic damage growth leads to remarkable
further decrease in load which at final elongation u/l = 0.175 is of about 67 %. Furthermore, the
onset of anisotropic damage behavior is predicted at u/l = 0.167 and this numerical calculation
shows further rapid loss in load carrying capacity with increasing elongation of the specimen.
For example, at u/l = 0.175 the decrease in load is of about 93 %.

Moreover, Fig. 6 shows the evolution of the void volume fraction f with increasing equivalent
plastic strain γ. The numerical calculations predict the onset of isotropic damage at γ = 0.50
and the isotropic damage model shows an increase in void volume fraction with increasing plastic
strain. For example, at γ = 0.70 the current void volume fraction is f = 0.15 . The numerical
calculation based on the anisotropic damage model, however, predict the onset of anisotropic
damage behavior at γ = 0.63 and shows larger increase in void volume fraction. At γ = 0.70
the current void volume fraction is of about f = 0.21.

Corresponding deformation modes are shown in Fig. 7. The elastic-plastic numerical calcu-
lation without damage leads to remarkable necking and large longitudinal strains in the center
of the specimen. The numerical calculation based on the isotropic damage model, on the other
hand, shows smaller necking behavior and a volume increase in the largely strained elements
caused by the isotropic growth of void. This means that in this region the formation of a macro-
crack will be initiated which agrees quite well with experimental observations [88]. Similar
deformation modes with remarkable volume increases of the center elements are predicted when
anisotropic damage behavior is taken into account.
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Figure 6: Void volume fraction versus equivalent plastic strain.

5 Conclusions

An anisotropic continuum damage model for ductile metals undergoing progressive plastic de-
formation induced material deterioration has been discussed. A characteristic feature of the
present continuum approach is the kinematic description of anisotropic damage which employs
the consideration of damaged as well as fictitious undamaged configurations related via metric
transformations which allow for the interpretation of damage tensors. Respective Helmholtz
free energy functions of the fictitious undamaged configuration and of the current damaged con-
figuration are introduced separately which allow the formulation of elastic constitutive laws for
both the matrix material and the damaged aggregate. Thus, the model does not need strain
equivalence, stress equivalence or strain energy equivalence approaches often used in continuum
damage theories to be able to connect matrix material and aggregate variables. In contrast
to fracture mechanics which considers the process of initiation and growth of microcracks as a
discontinuous phenomenon, the proposed continuum damage model uses a continuous variable
which is related to the density of the defects in order to describe the deterioration of the mate-
rial before the initiation of macrocracks. The damage variable is here represented by the void
volume fraction and characterizes average material degradation which reflects the various types
of damage at the microscale level like nucleation and growth of voids, cavities, microcracks and
other microscopic defects.

The applicability of the proposed continuum damage theory is demonstrated by the numer-
ical analyses of the deformation behavior of iron specimens. The phenomenological model is
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Figure 7: Deformed configurations.

acertained to properly describe the results of the relevant tests. For example, the present ap-
proach accurately depicts the deteriorating effect of increasing porosity on elastic moduli and
realistically predicts the anisotropic damage evolution of tension specimens. It realistically fol-
lows the inception of plastic deformations through the initiation and isotropic growth of voids to
void coalescence and the linking up of these voids in microcracks which corresponds to a sudden
and remarkable decrease in load carrying capacity of tension specimens. Hence, the present
approach deals with the whole damage accumulation process till final fracture. In addition,
the proposed continuum damage model may be seen as a powerful basic framework to develop
structural models which allow a wide range of practical engineering applications.
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