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Abstract 

 

Bidirectional-loading tests are carried out to examine the behavior of 

thin-walled circular and rectangular steel elements and a tridimen-

sional framed structure. The experimental results were used to con-

firm the validity of the lumped damage mechanical approach to model 

the post-local buckling structural behavior. In this approach, local 

buckling is lumped at plastic hinges. The degree of local buckling is 

represented by a vectorial damage variable. The implementation of 

the model in a finite element program is also described. 
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1 INTRODUCTION 

Design codes incorporate new concepts related to limit values of damage and residual deformations 

in steel structures. Thus, comprehensive experimental studies as well as efficient and accurate mod-

els for this kind of structures are important; specifically for the post local-buckling phase. 

 So far, most experimental analyses are limited to the case of unidirectional loading, however real 

cases involve complex and multidirectional actions. Only a limited number of studies deal with gen-

eral bidirectional loading; amongst them Watanabe et al. [1], Goto et al. [2] and Guerrero et al. [3]. 

In those papers, rectangular and circular columns were subjected to complex two-dimensional load-

ing paths. In Goto et al. [2] it is indicated that the coupling of the two horizontal components has 

an unfavorable effect on the ultimate behavior of columns. 

 The number of studies on steel framed structures is also limited; most of them deal only with 

planar frames (Fahnestock et al. [4], Qu et al. [5], Annan et al. [6]) or trusses (Wood and Dawe [7]). 

Nakashima et al. [8] report a test on a tridimensional steel structure with reinforced concrete floor 

slab, however only unidirectional loading was considered. 
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 The numerical analysis of local-buckling can be carried out using nonlinear shell theory (see for 

instance, Goto et al. [2], Salem et al. [9], Nowzartash and Mohareb [10]). However, this approach is 

limited to the case of parts of the structure and not to the entire tridimensional frame. A second 

possibility is the use of fiber or beam theories (Bebiano et al. [11], Degee et al.[12]). Although this is 

a more accessible approach, the analysis of complex tridimensional frames is still out of its reach. A 

convenient approach that combines simplicity with a good enough description for engineering pur-

poses is lumped damage mechanics (Inglessis et al. [13], Febres et al. [14]). However, in those papers 

the model was limited to planar frames. Guerrero et al. [3] generalized the model to the case of hol-

low steel elements subjected to bidirectional loading. 

 The present paper reports an experimental study on thin-walled elements as well as a tridimen-

sional steel frame with reinforced concrete floor slab subjected to complex bidirectional loadings. 

These tests were simulated using the aforementioned biaxial model in order to appreciate the ad-

vantages and limitations of the lumped damage mechanics approach. 

 

2 NUMERICAL ANALYSIS OF LOCAL BUCKLING 

2.1 Kinematics and statics of 3D frames  

Consider a tridimensional frame with m elements connected by n nodes as shown in Fig. 1. A set of 

global orthogonal coordinate axis X, Y and Z is introduced in order to describe the movement of 

the structure in the time interval [0,T]. The matrix of generalized displacements, or degrees of free-

dom, of a node i of the frame is given by ( , , , , , )t
i i i i i i iu v wu , where t means “transpose”, ui, vi 

and wi represent displacements in, respectively, the X, Y and Z directions while ,  ,  i i i  are the 

rotations around the same axes. The matrix of generalized displacements of the frame is given by 

1 2( , ,......, )n
tU u u u . The matrix of external forces conjugated to the generalized displacement is 

denoted by F. 

 

 

         

Fig. 1. (a) Tridimensional framed structure. (b) Lumped plasticity model 

 

Consider an element e of the frame between nodes i and j. A system of local orthogonal coordinates 

axis x, y and z is introduced as shown in Fig. 2b. The generalized stress matrix is given by 

σt
e ( , , , , , )iy iz jy jz xm m n m m m  and the generalized strain matrix of the element is given by 

(a) (b) 
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ε ( , , , , , )t
e iy iz jy jz x  where the meaning of the symbols in the σ  and ε  matrices are shown, 

respectively in Figs. 2a and 2b.  

 

 

 

 

 

 

 

Fig. 2. (a) Generalized deformations of the frame member. (b) Generalized stresses of the frame member 

 

The terms generalized stress and deformations are used as an extension of the conventional concepts 

of Cauchy stress tensor and strain tensor since the former variables have the same role of the later 

in the constitutive law of a frame element (see next section). 

Notice that shear forces should not be included as independent variables in the generalized stress 

matrix since they are determined from the flexural moments via equilibrium equations of the frame 

element; for instance in the case of nil distributed forces on the element, the shear forces are 

iz jz
iy jy

m m
V V

L
 and 

iy jy
iz jz

m m
V V

L
, where L is the element length. 

A relationship between generalized strains and generalized displacements can be obtained from ge-

ometrical considerations as: 

 

ε e(U) Ue B  (1) 

 

 Where B(U)e is called transformation matrix of the element e. The dot over a variable means 

time derivative. The transformation matrix is given by: 

 

(a) 

(b) 
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 where mi, ni and ti are the components of unit vectors in the x, y, and z directions with respect 

to the global system of reference. The principle of virtual power states that: 

 

ε σ* *

1

( ) ( )
m

t t
e e

e

U F  (3) 

 

 where stars represent virtual quantities.  

 Substituting the kinematic equation (1) into Eq. (3) and taking into account that this relation-

ship is valid for any virtual displacement; the following static equilibrium equation is obtained 

 

σ
1

( ( ) )
m

t
e e

e

UB F  (4) 

 

2.2 A simplified model of local buckling 

Constitutive law for a frame element that includes local bucking has been proposed in [3]. The 

model is based on the lumped plasticity assumption; thus an element between nodes i and j is con-

sidered as the assemblage of an elastic beam-column and two inelastic hinges as it is shown in Fig. 

1. Two sets of internal variables are now introduced. The first one is the generalized plastic strain

ε( ) ( , , , , , )p t p p p p p p
e iy iz jy jz x , where p

iy  is the rotation of the plastic hinge i in the plane x-z, p
iz  

is the rotation of the plastic hinge i in the plane x-y, p is the permanent elongation of the element 

and p
x  is the torsional rotation of the element. Local bucking is assumed to be lumped at the plas-

tic hinges as well. Therefore a local bucking damage variable is introduced: ( ) ( , , , )t
e iy iz jy jzd d d dd . 

The meaning of the components is shown in Fig. 3. Damage parameters can take values between 

zero and one, where zero represents the absence of local bucking. The state law is given by: 

 

σ ε ε( )( )pe e e e eS d  (5) 

 

 where Se is the stiffness matrix of the element e and it is given by: 
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(6

) 

 

 The terms 0
ijS  represent the conventional elastic stiffness parameters as they can be found in 

structural mechanics textbooks. It can be noticed that in Eq. (6) damage due to torsion and axial 

forces are neglected. 

 

  

Fig. 3. Characterization of local buckling damage parameters. 

 

 Plastic deformation evolution is obtained via the conventional normality law: 

 

p i
iy i

iy

f

m
; p i
iz i

iz

f

m
; 

jp i
i j

ff

n n
; 

jp
jy j

jy

f

m
; 

jp
jz j

jz

f

m
; 

jp i
x i j

x x

ff

m m
 

 

(7) 

 

 where σi if   f ( , ) 0e ed  and σj jf   f ( , ) 0e ed  are the yield functions of, respectively, 

plastic hinges i and j. The plastic multipliers i  and j  are computed via the usual consistency 

condition: 

 

i i

i i

0   if    f 0    or    f 0

0   if    f 0    and  f 0
i

i

 (8) 
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 In order to define the damage evolution law, the following set of local buckling driving forces is 

defined: ( ) ( , , , )t
e iy iz jy jzp p p pp  where p

iy iyp  and so on. It can be seen that p is a matrix of 

cumulated plastic strains. 

 The damage evolution law is obtained with the help of two damage functions, 

( ; ) 0i i e eg g p d  and ( ; ) 0j j e eg g p d : 

 

i
iy i

iy

g
d

p
  i

iz i
iy

g
d

p
 

j
jy j

jy

g
d

p
;  

j
jz j

jy

g
d

p
; 

(9) 

 

 where i  and j  are damage multipliers that are computed as: 

 

i i

i i

0   if    g 0    or    g 0

0   if    g 0    and  g 0
i

i

 (10) 

 

2.3. A finite element for local buckling analysis 

In order to carry out the analysis, the time interval [0,T] must be discretized into a set of instants 

(0, t1, t2,…,T). The frame is analyzed only for these times by using a conventional step-by-step 

method. After discretization, the kinematic equation becomes: 

 

ε e(U) Ue B  (11) 

 

 where U  represents the difference between the values of the variable U in two consecutive 

time instants ( 1( ) ( )i iU U t U t ) and so on. The internal variables evolution laws can be writ-

ten as: 

 

p i
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f
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(12) 

 

i

i

0   if    f 0

0   if    f 0
i

i

 (13) 
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i

i

0   if    g 0

0   if    g 0
i

i

 (15) 

 

 The discretized kinematic equation (11), state law (5) and discretized internal variable evolution 

laws (12-15) define a relationship between generalized displacements U and generalized stresses σ  

at the end of each step: σ σ ( )e e U . Thus, these set of equations define a finite element with local 

bucking that can be implemented in any nonlinear structural analysis program. Introducing this 

relationship into the equilibrium equation (4), it is obtained the following expression: 

 

σ
1

( ) ( ) 0
m

t
e e

e

L U B U F  (16) 

 

 Eq. (16) must be solved at each step using any of the conventional algorithms, for instance the 

Newton-Raphson method. 

 The relationship σ σ ( )e e U  represents a set of nonlinear equations that can also be solved by 

the Newton-Raphson method. The local buckling model described in the previous section is a multi-

criteria plastic-damage model. Algorithms for the numerical computation of stresses in such a case 

can be found in [15, 16]. 

 

3 EXPERIMENTAL ANALYSIS AND NUMERICAL SIMULATION OF LOCAL BUCKLING 

The model of local buckling composed by the kinematics equation (11), the state law (5), the equi-

librium equation (16), the plastic deformation evolution law (12-13) and the damage evolution law 

(14-15) was implemented as a new finite element in a commercial structural analysis program [17]. 

In order to validate the local buckling model, an experimental program was carried out at the 

Structural Mechanics Laboratory of the Lisandro Alvarado University [18]. The specimens consisted 

in steel hollow structural elements with circular and rectangular cross-section built in as a cantilever 

into a heavily reinforced foundation (fig. 4a). The tridimensional structure shown in Fig. 4b was 

also tested. All the specimens were subjected to bidirectional loading paths. Two servo-controlled 50 

Ton-capacity hydraulic actuators applied the desired transverse displacement histories.  
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Fig. 4. (a) Setup of the cantilever specimen test. (b) Setup of the tridimensional frame test. 

 

3.1 Elements of circular hollow section 

3.1.1 Yield and damage functions 

For circular hollow cross-section elements the yield functions for the hinges i and j are [3, 18]: 

 
22 2

1
(1 ) (1 )
iy iz

i
u u iy u iz

M MN
f

N M d M d
; 

2 22

1
(1 ) (1 )
jy jz

j
u u jy u jz

M MN
f

N M d M d
 

(17) 

 

 where Nu is the axial yield load and Mu is the plastic moment of the section. The damage func-

tions are given by [3, 18]: 

 
2 2

1iy iz
i

iy iz
crcr

p p
g

d d
PP

cc

;       

2 2

1jy jz
j

jy jz
cr cr

p p
g

d d
P P

c c

 

 

(18) 

 The parameters Pcr and c correspond, respectively; to the value of the plastic rotation that initi-

ates the local buckling and the growth rate of the local buckling domain.  

 
3.1.2 Identification test. 

In order to obtain the values of the evolution law parameters, a circular element with 127 mm di-

ameter cross-section, 3 mm thickness and a free length of 1.28 m was built as a cantilever as is 

shown in Fig. 5a and tested applying the displacement-controlled lateral actions shown in Fig. 5b. 

This test was called CM. Fig. 5d shows the experimental results. The procedure for the identifica-

(a) (b) 
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tion of parameters Mu, c and Pcr in the moment – rotation curve is shown in Fig 5c. It is assumed 

that local buckling begins with the softening phase.  

 The experimental results are shown in Fig. 5d and the corresponding numerical simulation in Fig 

5e. The geometry was represented by only one finite element that was fixed (nil displacements) at 

one of the extremes while the other one was subjected to the imposed displacements. The local 

buckling at the end of the test can be appreciated in Fig. 6a. 

 

 

 

      

   

    

Fig. 5. (a) Element tested (b) Loading path of the test CM. (c) Identification of parameters Mu, c and Pcr. (d) Ex-

perimental force vs. displacement curve. (e) Numerical simulation. 
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Fig. 6. Local buckling aspect at the end of the test. (a) In the specimen CM (b) In the specimen CT. 

 
3.1.3 Beams subjected to complex loading  

In order to calibrate the model, additional tests were performed. Similar specimens were subjected 

to more complex loading paths. The results of the tests and the corresponding numerical simula-

tions are shown in the present section. 

 

Test and simulation CL 

The first one corresponds to a specimen subjected to uniaxial displacements in pairs of linearly in-

creasing amplitude applied alternately in the two orthogonal directions as it is shown in Fig. 7a. 

Fig. 7b shows the experimental Force z-Force y curve and Fig. 7c the curve obtained with the nu-

merical simulation. Figs. 7d and 7f show the experimental Force-Displacement curves in both or-

thogonal directions and in Figs. 7e and 7g the corresponding numerical simulations. The values of 

the damage computed at the end of the test are indicated in the same figures.  
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Fig. 7. Test and simulation CL: a) Imposed transverse displacements path. b) Experimental Force z-Force y curve. c) 

Numerical simulation. d) Experimental Force-Displacements curve in z direction. e) Numerical simulation. f) Exper-

imental Force-Displacements curve in y direction. g) Numerical simulation. 

 

Test and simulation CT 

In this test, the specimen was subjected to the triangular-shaped displacements shown in Fig. 8a. 

To obtain the loading path, displacements of the same magnitude were sequentially applied in the 

two orthogonal directions and then, the specimen was unloaded simultaneously to zero force. Fig. 

8b shows the experimental Force z – Force y curve and Fig. 8c the corresponding numerical simula-

tion. The experimental Force-Displacement curves are indicated in Figs. 8d and 8f and the corre-

sponding numerical simulations in Figs. 8e and 8g. The aspect of the local buckling at the end of 

the test is presented in Fig. 6b. 

 

Test and simulation CS 

In this test, the specimen was subjected to the square-shaped displacements shown in Fig. 9a. To 

obtain the loading path, displacements of the same magnitude were sequentially applied in the two 

orthogonal directions and then, the specimen was unloaded to zero force in the same sequence. In 

Fig. 9b it is shown the experimental Force z – Force y curve and in Fig. 9c the corresponding nu-

merical simulation. The experimental Force-Displacement curves are indicated in Figs. 9d and 9f 

and the corresponding numerical simulations in Figs. 9e and 9g. 
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Fig. 8. Test and simulation CT a) Imposed transverse displacements path. b) Experimental Force z-Force y curve. c) 

Numerical simulation. d) Experimental Force-Displacement curve in z direction. 

 

e) Numerical simulation. f) Experimental Force-Displacement curve in y direction. g) Numerical 

simulation. 
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Fig. 9. Test and simulation CS a) Imposed transverse displacements path. b) Experimental Force z-Force y curve. c) 

Numerical simulation. d) Experimental Force-Displacement curve in z direction. e) Numerical simulation. f) Experi-

mental Force-Displacement curve in y direction. g) Numerical simulation. 
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In the case of elements with rectangular hollow section the yield functions for the hinges i and j are 

can be written as [3,18]: 
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(19) 

 

 and the damage functions as [3,18]: 
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 It can be observed that in this case there are different parameters for both orthogonal directions.  

 

3.2.2 Identification tests  

In this case, because of the asymmetry of the cross-section, two monotonic tests were performed, 

one for each orthogonal direction, in order to identify the parameters Muy, Muz, Pcry,  Pcry, cy and cz. 

The specimens consisted in rectangular elements with 120 x 60 mm cross-section, 2.5 mm thickness 

and a free length of 1.28 m built as cantilever and tested applying a monotonic displacement as it is 

shown in Fig. 10a and 10b. These tests were called respectively, RM-Y and RM-Z, where Z is the 

axis that corresponds to the stronger resistance. Figs. 10c and 10e show the experimental results 

and the values of the parameters. In Figs. 10d and 10f the corresponding numerical simulations are 

presented. 

 In Fig. 11a it is shown the local buckling aspect at the end of the RM-Y test and in Fig. 11b the 

corresponding to RM-Z. 
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Fig. 10. (a) Displacement history of the test RM-Y. (b) Displacement history of the test RM-Z (c) Experimental 

Moment vs Rotation curve of the test RM-Y. (d) Numerical simulation of the test RM-Y. (e) Experimental Moment 

vs Rotation curve of the test RM-Z. (f) Numerical simulation of the test RM-Z. 

 

 
Fig. 11. Local buckling aspect at the end of the test. (a) In the specimen RM-Y; (b) In the specimen RM-Z; (c) In 

the specimen RT. 

 

3.2.3 Beams subjected to complex loadings 

Continuing with the calibration of the model, similar loading paths to those used for the circular 

specimens were applied in the case of the rectangular ones. The numerical and experimental results 

are shown below.  
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In this test it was applied a triangle loading path shown in Fig. 12a. In Fig. 12b the experimental 

Force z – Force y curve is presented and in Fig. 12c the corresponding numerical simulation. The 

experimental Force-Displacement curves are indicated in Figs. 12d and 12f and the corresponding 

numerical simulations in Figs. 12e and 12g. In these figures the values of the damage computed at 

the end of some elastic unloadings are presented. In Fig. 11c it is shown the local buckling aspect at 

the end of the test.  
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Fig. 12. Test and simulation RT a) Imposed transverse displacements path. b) Experimental Force z-Force y curve. 

c) Numerical simulation. d) Experimental Force-Displacement curve in z direction. e) Numerical simulation. f) Ex-

perimental Force-Displacement curve in y direction. g) Numerical simulation. 

 

Test and simulation RS 

In this test, the specimen was subjected to the square-shaped displacements shown in Fig. 13a. In 

Fig. 13b it is shown the experimental Force z – Force y curve and in Fig. 13c the corresponding 

numerical simulation. The experimental Force-Displacement curves are indicated in Figs. 13d and 

13f and the corresponding numerical simulations in Figs. 13e and 13g. 
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Fig. 13. Test and simulation RS. a) Imposed transverse displacements path. b) Experimental Force z-Force y curve. 

c) Numerical simulation. d) Experimental Force-Displacement curve in z direction. e) Numerical simulation. f) Ex-

perimental Force-Displacement curve in y direction. g) Numerical simulation. 

 

3.3 Tridimensional frame structure 

The last example corresponds to the tridimensional frame shown in Fig. 4b. The model parameters 

used in the numerical simulation are: Mu = 34,33 KN-m, Pcr / L = 0,016 m-1 and c / L = 3,63 m-1. 

These values were obtained experimentally. 

 
3.3.1. Experimental results and analysis 

The frame was built with steel hollow elements of 120 mm square cross-section and 4 mm thickness. 

The geometry of the structure is shown in Fig. 14. As it can be observed in this figure, in the upper 

side of the frame it was built a very rigid structure where the loading path shown in Fig. 15a was 

applied. The displacements were imposed in the middle of this structure through a steel device spe-

cially designed for this purpose (see Fig. 4b). The response was obtained in the displacement appli-

cation point. The tridimensional frame was fixed to the laboratory’s slab through two heavy foun-

dations as it is shown in Fig. 4b. 

 

 
Fig. 14. Geometry of the frame tested 
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 For the numerical simulation of the test, beams and columns of the structure were represented 

by the finite element described in this paper, one element for each frame member (a total of eight 

elements). The slab was represented by multiple elastic elements with high stiffness to asses a uni-

form distribution of the displacements in the tridimensional frame. 

 In Fig. 15b it is shown the experimental Force Z – Force Y curve and in Fig. 15c the correspond-

ing numerical simulation. The experimental Force-Displacement curves are indicated in Figs. 15d 

and 15f and the corresponding numerical simulations in Figs. 15e and 15g. 
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Fig. 15. Tridimensional frame structure: test and simulation. a) Imposed transverse displacements path. b) Experi-

mental Force Z-Force Y curve. c) Numerical simulation. d) Experimental Force-Displacement curve in Z direction. e) 

Numerical simulation. f) Experimental Force-Displacement curve in Y direction. g) Numerical simulation. 

 

 The damage values and the local buckling aspect in the most damaged column at the end of the 

test are shown in Fig. 16.  

 

 
Fig. 16. Damage values and local buckling aspect at the end of the test 

 

 

4 FINAL REMARKS AND CONCLUSIONS 

This paper presents the results of an experimental study that contributes to enrich the limited data 

base on the post-buckling behavior of hollow steel elements. In particular, it should be noticed the 

experimental test on the tridimensional structure subjected to bidirectional complex loadings. 

It has been shown that lumped damage mechanics is a promising approach for the representation of 

a complex phenomenon in a simple way. The model gives a good enough description for engineering 

purposes of the post-buckling behavior of tubular elements and structures. This approach allows the 

analysis of this behavior of very large structures. This is probably the only way to take into account 

the interactions of the simultaneous development of local buckling in different parts of a tridimen-

sional structure. 

 It can be appreciated the good agreement between experimental and numerical results in the 

examples presented in the paper. 

The availability of damage variables that represent in a very simple, quantitative and objective way 

the local buckling degree is an important advantage taking into account the tendency of the codes 

to include limits values for damage and residual deformation. 

 The model can be incorporated in the library of finite elements of any nonlinear structural anal-

ysis program. 

 The model considers a limited numbers of member dependent constants. They have a straight-

forward physical interpretation and can be experimentally identified in a simple monotonic test. 
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Taking into account that the tubular structural elements come in a limited number of sizes and 

shapes it is possible to develop a catalog for them. Alternatively, these parameters could be com-

puted by numerical tests using shell theory. This is a multi-scale procedure that combines shell 

theory at the local level and lumped damaged mechanics at the global one. 

It can be noticed that the model is a modification of a perfect plasticity constitutive equation. The 

absence of hardening variables gives a schematic representation of the plastic phase of the behavior. 

As a result the structural behavior is better represented at the final part of the force-displacement 

curves than at the beginning. The model can be improved by including plastic hardening terms but 

this increases its mathematical complexity. 

 The accuracy of the model diminishes if there are important variations of the axial loads. The 

cyclic loading case is not well represented by this simple model because the presence of the counter-

buckling effect that consists in the “ironing” of the buckling “wrinkles” when moments change sign. 

This is still an open subject although some clues can be found in [14]. 
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