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Near	the	resonance	behavior	of	a	periodicaly	forced	partially		
dissipative	three‐degrees‐of‐freedom	mechanical	system	

Abstract	
In	this	paper,	a	nonlinear	three‐degrees‐of‐freedom	dynamical	system	con‐
sisting	of	a	variable‐length	pendulum	mass	attached	by	a	massless	spring	to	
the	forced	slider	is	investigated.	Numerical	solution	is	preceded	by	applica‐
tion	 of	 Euler‐Lagrange	 equation.	 Various	 techniques	 like	 time	 histories,	
phase	planes,	Poincaré	maps	and	resonance	plots	are	used	to	observe	and	
identify	 the	 system	 responses.	 The	 results	 show	 that	 the	 variable‐length	
spring	pendulum	suspended	from	the	periodically	forced	slider	can	exhibit	
quasi‐periodic,	and	in	a	resonance	state,	even	chaotic	motions.	It	was	con‐
cluded	that	near	the	resonance	the	 influence	of	coupling	of	bodies	on	the	
system	dynamics	can	lead	to	unpredictable	dynamical	behavior.	

Keywords	
Euler‐Lagrange	 equation,	 time	 history,	 phase	 plane,	 Poincaré	 map,	 reso‐
nance	plot,	dynamical	analysis,	quasi‐periodic	motion,	chaos.	
	
	
	
	
	
	
	
	
	
	
	

1	INTRODUCTION	

The	existence	of	 the	resonance	phenomena	both	external	and	 internal	occurs	 in	vibrating	structures	as	an	
increased	amplitude	of	vibrations.	In	general,	from	the	engineering	point	of	view,	this	type	of	grazing	behavior	is	
usually	unwanted	also	in	solid	bodies.	Appearance	of	resonance	generate	greater	complexity	of	a	mechanical	sys‐
tem	behavior	 Nayfeh	and	Mook,	1979 .	In	this	paper,	the	study	is	performed	to	create	the	simulation	and	investi‐
gation	for	better	understating	of	resonance	phenomenon	of	a	periodically	forced	slider‐spring	pendulum	mechan‐
ical	system	of	three	degrees	of	freedom.	

The	first	and	the	most	important	question	to	answer	is	what	the	resonance	is	from	the	point	of	view	of	me‐
chanical	engineering.	It	is	a	phenomenon	describing	the	tendencies	of	a	mechanical	system	to	increase	its	amplitude	
when	the	external	excitation	force	acts	with	certain	fixed	frequency.	This	frequency	of	periodic	excitation	needs	to	
be	close	or	exactly	 the	same	as	 the	 internal	system’s	natural	 frequency	 such	 frequency	 is	called	the	resonance	
frequency .	Such	increased	vibration	amplitudes	will	only	appear	when	the	excitation	is	exactly	the	same	or	is	a	
multiple	of	one	of	the	natural	frequencies	of	the	system.	This	phenomenon	can	be	destructive	for	structures	and	
even	solid	bodies	in	its	effects	due	to	the	fact	that	in	certain	range	of	parameters	from	the	external	excitation,	the	
forces	acting	on	the	objects	highly	increase.	The	most	commonly	used	example	of	not	including	and	wrongly	treated	
resonance	phenomena	 is	 the	collapse	of	Tacoma	Narrows	Bridge	 in	1940.	The	periodic	vibration	and	rhythmic	
twisting	 leaded	 to	destruction	of	 the	construction,	not	only	due	 to	simple	mechanical	 resonance,	but	 to	a	more	
complicated	interaction	between	the	bridge	and	the	wind	passing	through	it	is	a	phenomenon	called	aeroelastic	
flutter	discovered	by	Robert	H.	Scanlan.	Flutter	is	a	dynamic	instability	of	an	elastic	structure	in	a	fluid	flow	caused	
by	positive	feedback	between	the	body's	deflection	and	the	force	exerted	by	the	fluid	flow.	Nevertheless,	resonance	
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should	not	be	treated	as	the	side	effect	phenomenon	in	each	case.	For	many	devices,	we	are	able	to	work	more	
efficiently	with	less	amount	of	input	power.	The	positive	side	of	resonance	is	generally	used	in	vibrating	tables	for	
increasing	their	amplitude	but	also	all	the	music	instruments	are	in	favor	of	acoustic	resonance.	

In	this	study	a	nonlinear	dynamical	system	of	three	degrees	of	freedom	with	a	spring	pendulum	 Zhang	et	al.,	
2015;	Plaksiy	and	Mikhlin,	2017 	and	a	vibrating	suspension	 Aduyenko	and	Amel’kin,	2015 	will	be	investigated,	
as	it	was	similarly	carried	out	in	 Sado,	2003 .	The	mechanical	systems	have	a	variety	of	applications	in	our	daily	
life	and	they	should	be	still	investigated.	

The	pendulum	may	be	suspended	to	the	flexible	element.	In	this	system	the	autoparametric	excitation	may	
occur	as	a	result	of	inertial	coupling.	Analogous	behavior	happens	when	the	mass	is	attached	to	the	pendulum	type	
elastic	oscillator,	and	then,	it	is	possible	to	observe	autoparametric	nonlinear	coupling	between	the	angle	of	the	
pendulum	and	elongation	of	the	spring.	All	of	such	cases	depend	on	the	set	of	parameters	for	the	investigated	sys‐
tem.	Examples	are	as	 follows:	dumping,	mass	ratio	of	components,	and	specification	of	external	excitation.	As	a	
result	of	system	specification,	the	resonance	phenomenon	transferring	the	energy	between	system	components	or	
their	mutual	excitation	can	appear	differently.	

According	to	Francis	C.	Moon,	chaotic	vibrations	is	a	kind	of	a	system	behavior	that	despite	the	fact	of	using	
fast	computers	there	is	no	infinite	predictability	in	the	observed	dynamics.	It	is	now	known	that	the	motion	of	very	
simple	dynamical	systems	cannot	always	be	predicted	far	into	the	future.	Such	motions	have	been	labelled	as	cha‐
otic	 Moon,	1987 .	

For	many	studies	of	the	three‐degrees‐of‐freedom	systems	and	chaotic	behavior	neither	for	the	parametric	or	
autoparametric	excitation	have	been	observed.	In	this	paper,	we	investigate	this	area	by	performing	both	analytical	
and	numerical	solutions	to	describe	the	external	and	internal	resonance	behavior	of	such	system.	

The	observations	brings	interesting	results,	summarizing	that	the	mechanical	system	with	partial	dissipation	
of	kinetic	 energy	of	motion	oscillates	mainly	periodically	 and	quasi‐periodically.	The	 system	dynamics	exhibits	
chaos	in	a	close	vicinity	of	resonance	peaks	of	maximum	amplitudes.	

2	PROBLEM	DESCRIPTION	

We	analyze	the	three‐degrees‐of‐freedom	dynamical	system	presented	in	Figure	1.	
Our	system	consists	of	an	elastic	pendulum	with	the	initial	length	l0,	the	stiffness	k	and	damping	c.	The	pendu‐

lum	is	attached	to	the	moving	slider	with	the	point‐focused	mass	M.	The	slider	moves	horizontally	along	the	x	axis.	
The	mass	m	hangs	down	from	the	end	of	 the	spring.	The	body	of	mass	M	 slider 	 is	subjected	 to	 the	harmonic	
vertical	excitation	force	F t 	 	F0	cosωt.	The	planar	mechanical	system	presented	above	has	three	degrees	of	free‐
dom	 Hatwal	et	al.,	1983;	Lynch,	2002;	Rossikhin	and	Shitikova,	2006;	Kartachov,	2016 .	The	generalized	coordi‐
nates	are	assumed	 for	 the	angle	θ	between	 the	pendulum	spring	and	 the	vertical	axis	z	 inclination	angle ,	 the	
incremental	elongation	of	the	spring	Δs	and	the	horizontal	displacement	x	of	the	body	of	mass	M.	

	

	
Figure	1:	A	variable‐length	forced	spring	pendulum	system	of	three	degrees	of	freedom	 a ,	and	the	dimensions	of	

loaded	 stretched	or	compressed 	and	unloaded	 free 	linear	spring	 b .	

	

Any	of	the	existing	phenomena	cannot	be	presented,	examined	and	transferred	to	mathematical	or	engineering	
problem	in	the	 infinitely	direct	way	 Olejnik	and	Awrejcewicz,	2018 .	According	to	this	 fact,	some	assumptions	
allowing	for	a	reduction	of	the	complexity	of	the	analyzed	problem	will	be	made.	To	weaken	the	system’s	complex‐
ity,	but	still	maintaining	its	basic	properties	we	assume	that:	
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- friction of the slider does not exist in the dynamical system; 
- energy dissipated by the frictional contact of the base and the slider vibrating on it can be compensated from an 
external source of energy, for instance, determined by a control system; 
- radial elongation of the spring pendulum exists; 
- the spring is considered as massless, and its force of reaction described by Hooke’s law appears when it is stretched 
or compressed from its free length; 
- the slider has a point mass focused at the rotationally constrained end (upper) of the spring; 
- excitation is caused by an external harmonic force, e.g., it can come from a magnetic field; 
- mass of the spring pendulum is focused in a point at the second (lower) end of the spring; 
- damping of motion is associated only with elongation of the spring of the pendulum. 
We	assume	the	almost	ideal	case	in	which	the	dissipation	of	energy	by	the	frictional	contact	could	be	partially	

compensated	by	an	external	source.	

3	MATHEMATICAL	MODELING	

For	the	mathematical	description	of	the	dynamical	system	with	a	time‐varying	parameter,	such	as	the	variable	
length	of	the	pendulum,	the	Hill	or	Mathieu	equations	are	often	used	 Nayfeh	and	Mook,	1979 .	Nevertheless,	in	
similar	studies	referring	to	the	analyzed	case,	the	Euler‐Lagrange	equation	can	be	used	 Srinivasan	and	Sankar,	
1974 .	

The	kinetic	energy	of	the	analyzed	three‐degrees‐of‐freedom	system	is	calculated	according	to	the	sum	of	ki‐
netic	energies	of	both	system	bodies	 see	Figure	1 :	
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The	potential	energy	of	the	analyzed	mechanical	system	is	a	sum	of	a 	the	energy	of	the	linear	spring,	that	is	
accumulated	after	the	incremental	elongation	Δs	and	the	static	elongation	Δlst	 static	stretching	or	compression	by	
a	hanging	pendulum	body	of	mass	m,	see	Figure	1 	measured	from	the	equilibrium	free	length	 0l 	of	the	spring	and	
b 	the	gravitational	potential	energy	of	the	body	of	mass	m	on	the	vertical	distance	 Δs	 	l cosθ	between	centres	of	
the	slider	and	the	pendulum	body,	i.e.,	
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At	independence	of	the	assumed	generalized	coordinates	yk,	the	Lagrangian	L	 	U	‒	V	satisfies	the	following	
Euler‐Lagrange	equation	as	follows:	
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where	Qk	is	understood	to	be	the	reminder	of	the	k‐th	generalized	force	when	viscous	damping	of	motion	of	the	
pendulum	body	in	s	direction	is	accounted	for	with	the	Rayleigh	dissipation	function:	
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After	applying	the	equations	 1 , 4 	and	 6 	to	the	Euler‐Lagrange	equation	 5 ,	for	each	generalized	coordi‐
nate	yk,	we	get	the	three	coupled	differential	equations	of	motion	for	each	degree	of	freedom.	
1. For the generalized coordinate θ (pendulum angle): 

2 cos sin 0.s s x gJ J J J+ + + =   	 7 	

2. For the generalized coordinate s (pendulum elongation): 

( ) ( )2
0sin cos 0.m s x s g cs k s lJ J J+ - - + + - =   	 8 	

3. For the generalized coordinate x (slider displacement): 

( ) ( ) ( )2 0cos 2 sin cos .M m x m s s m s s F tJ J J J J w+ + + + - =     	 9 	

Equations	 7 ‐ 9 	can	be	algebraically	decoupled	with	respect	to	the	second	derivative,	thus:	
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where	 ( )( )1 1
0 0sin cosM cs k s l F M tr J w- -= + - + expresses	acceleration	of	the	slider.	

The	system	 10 	of	three	second	order	ordinary	differential	equations	is	highly	non‐linear	due	to	multiplica‐
tion	of	state	variables	and	some	trigonometric	functions.	It	describes	the	continuous	system	dynamics	that	will	be	
subject	to	an	analysis	of	long	term	solutions	that	will	occur	far	and	near	its	resonance	zones.	Numerical	solution	of	
the	system	of	equations	has	to	be	preceded	by	its	transformation	to	a	system	of	six	first	order	differential	equations,	
assumption	of	some	initial	conditions	for	the	six‐element	state	vector	and	also	by	the	change	of	the	variable	s	 	Δs	
	Δlst	 	l0,	so	the	numerical	solution	referred	to	the	second	degree	of	freedom	 the	state	variable	s 	will	represent	

an	incremental	elongation	of	the	spring,	i.e.,	Δs,	about	its	equilibrium	length	l0.	The	system	dynamics	will	be	inves‐
tigated	in	the	next	section.	

4	RESULTS	

In	order	to	solve	numerically	the	system	of	ordinary	differential	equations	 10 ,	lsoda	from	the	FORTRAN	li‐
brary	odepack	is	used.	Computations	are	carried	out	for	the	following	set	of	system	parameters:	M	 	5	kg,	m	 	0.3	
kg,	k	 	50	N/m,	c	 	10	 the	case	of	strong	damping 	and	c	 	0.01	Ns/m	 the	case	of	weak	damping ,	l0	 	0.35	m,	F0	
	4	N.	In	Section	4.1,	ω	was	the	variable	varying	in	the	range	of	0‐11	rad/s	used	to	investigate	the	internal	and	

external	 resonance	 behavior	 of	 the	 system.	 Vector	 of	 state	 variables	 of	 the	 system	 is	

1 1 2 2 3 3[ , , , , , ] [ , , , , , ]y y y y y y y s s x xJ J= = D D     .	

4.1	Resonance	curves	for	the	dynamical	system	with	strong	and	weak	damping	effect	

Figures	2	and	3	present	the	resonance	curves	of	the	analyzed	system	that	is	damped	with	two	coefficients	of	
damping,	i.e.,	c	 	10	and	0.01	Ns/m,	respectively.	Zero	initial	conditions	with	the	high	and	low	damping	effect	and	
without	any	autoparametric	internal	resonance	have	been	imposed	on	all	state	variables.	In	fact,	zero	initial	condi‐
tion	imposed	on	the	Δs	state	means,	that	motion	of	the	pendulum	body	in	s	direction	begins	from	the	length	of	static	
elongation	of	the	spring,	Δlst	 	l0.	Moreover,	each	maximal	amplitude	of	the	system’s	displacements	and	rotation	
was	read	after	1000	seconds	of	observation.	Omitting	a	transitory	phase	of	motion	a	steady‐state	responses	were	
measured.	

In	Figure	2,	when	the	excitation	acts	horizontally	on	the	body	of	mass	M,	two	resonant	amplitudes	of	the	states	
y1	and	y2,	 corresponding	to	angular	 frequencies	ωr	 	4.56	and	4.57	rad/s	are	observed,	respectively.	The	 third	
component	of	the	system	state	vector,	i.e.,	the	displacement	x	of	the	slider	is	not	in	any	resonant	state	 there	not	
appears	any	peak	of	maximal	amplitude	also	in	Figure	3,	corresponding	to	almost	not	existing	damping	of	the	sys‐
tem ,	because	for	the	very	small	angular	frequency	of	excitation	 here,	it	is	the	minimum	on	the	vertical	axis ,	the	
mass	M	moves	quickly	to	the	right	until	the	sign	of	the	excitation	force	amplitude	will	be	changed	 in	this	point,	on	
the	third	plot	in	Figures	2	and	3	max|y3|	reaches	about	1.55	m	for	ω	 	1	rad/s .	
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In	Figure	3	more	peaks	is	observed	due	to	weak	dissipation	of	energy	accumulated	in	the	periodically	forced	
mechanical	system.	We	observe	a	proper	developing	of	the	resonance	curve,	since	its	first	resonance	peak	remains	
a	little	changed	while	the	new	ones	between	5.5‐6.5	appear.	It	is	very	interesting	that	the	slider	as	a	suspension	
point	of	 the	variable‐length	pendulum	does	not	 fall	 into	any	 resonance	 state	 see	 red	 line 	even	 in	 the	weakly	
damped	realization	of	the	mechanical	structure.	

	
Figure	2:	Resonance	curves	of	the	forced	spring	pendulum	system	corresponding	to	maximum	absolute	values	of	the	

state	variables	y1	 	θ,	y2	 	Δs	and	y3	 	x.	The	angular	frequency	range	ω	∈	 1,	11 	is	divided	by	1000	samples.	Damping	
of	the	pendulum	c	 	10	Ns/m.	Maximal	amplitude	frequencies	are	matched	by	ωr.	

	
Figure	3:	Resonance	curves	of	the	forced	variable‐length	spring	pendulum	corresponding	to	maximum	absolute	values	
of	the	state	variables	y1	 	θ,	y2	 	Δs	and	y3	 	x.	The	angular	frequency	range	ω	∈	 1,	11 	is	divided	by	1000	samples.	

Damping	of	the	pendulum	c	 	0.01	Ns/m.	Maximal	amplitude	frequencies	are	matched	by	ωr.	
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4.2	Time	histories	with	corresponding	power	spectral	densities	

Time	histories	of	the	slider‐pendulum	mechanical	system’s	responses	near,	and	for	a	relation,	exactly	at	peaks	
of	the	resonance	amplitudes	will	be	investigated.	Power	spectral	densities	of	the	time	histories	are	estimated	nu‐
merically	using	FFT.	The	strongly	damped	pendulum	is	analyzed	at	the	first	stage	of	the	investigations,	see	Figures	
4‐6,	while	the	dynamics	of	the	very	weakly	damped	pendulum	is	discussed	at	the	second	stage,	see	Figures	7‐9.	

	

	
Figure	4:	Time	histories	with	corresponding	power	spectral	densities	for	the	case	of	strongly	damped	spring	pendulum	
c	 	10	Ns/m .	The	beginning	of	observation	t0	 	969.408,	the	end	of	observation	tk	 	1077.12	s,	the	observation	time	
tob	 	107.712	s	corresponding	to	nT	 	30	periods	of	excitation	force,	the	slider	excitation	frequency	ω	 	1.75	rad/s.	
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In	Figure	4,	the	time	responses	of	the	pendulum	angle	 y1 	and	the	slider	displacement	 y3 	are	synchronized	
with	respect	to	the	first	dominant	frequency	f1	 	0.2785	Hz.	It	is	interesting	that,	in	parallel,	the	pendulum’s	angular	
oscillations	exhibit	also	a	second	dominant	frequency	at	f2	 	0.7984	Hz.	Elongation	Δs	of	the	elastic	pendulum	os‐
cillates	with	four	frequencies	between	0.5	and	1.6	Hz.	For	the	assumed	excitation	force’s	angular	frequency	ω	 	
1.75	rad/s,	the	system	response	is	far	from	the	resonance	peak	shown	in	Figure	2,	since	two	time	histories	exhibit	
some	irregular	motions.	It	is	observable	for	the	pendulum	states	y1 t ,	y2 t 	and	a	few	frequencies	of	oscillations	
reported	on	the	power	spectra	|Y1 f |	and	|Y2 f |.	As	a	result	of	such	configuration,	the	mechanical	system	forced	
with	the	angular	frequency	ω	 	4.56	rad/s	oscillates	in	a	purely	periodic	way,	as	it	is	confirmed	in	Figure	5d	by	the	
1‐point	Poincaré	maps	drawn	on	the	corresponding	phase	planes.	Each	of	the	maps	drawn	with	RGB	colours	con‐
sists	of	nT	overlapping	dots.	The	technique	of	common	visualization	of	Poincaré	maps	in	relation	to	their	phase	
planes	was	introduced	in	 Awrejcewicz	and	Olejnik,	2003 .	

Worth	noticing	is	the	fact	that	with	respect	to	the	excitation	force’s	angular	frequency	ω	 	4.56	rad/s,	being	
the	one	resonant	frequency	for	the	strongly	damped	slider‐pendulum	system,	the	maximal	amplitudes	of	angular	
oscillations	of	the	pendulum,	shown	in	Figure	5a,	are	nearly	nine	times	larger	in	comparison	to	the	maximal	ampli‐
tudes	of	oscillations	shown	in	Figure	4a	 ω	 	1.75	rad/s .	The	presence	of	resonance	in	the	strongly	damped	me‐
chanical	system	is	even	significant.	

	
Figure	5:	Time	histories	of	a	limit	cycles	with	corresponding	power	spectral	densities,	phase	planes	 gray	lines 	and	
Poincaré	maps	 red,	green	and	blue	dots 	for	the	case	of	strongly	damped	spring	pendulum	 c	 	10	Ns/m .	The	begin‐
ning	of	observation	t0	 	909.414,	the	end	of	observation	tk	 	950.751,	the	observation	time	tob	 	41.337	s,	correspond‐
ing	to	nT	 	30	periods	T	 	1.3779	s	of	excitation	force,	the	slider	excitation	frequency	ω	 	4.56	rad/s.	Figure	5:	 contin‐

ued .	

	

The	three‐degrees‐of‐freedom	mechanical	system’s	bodies	oscillating	with	two	and	more	dominant	frequen‐
cies,	that	in	addition,	can	be	mutually	separated	open	the	dynamical	system’s	phase	space	on	the	onset	of	multi‐
periodic	or	quasi‐periodic	behaviour.	Such	dynamics	is	observed	for	the	solutions	shown	in	Figure	6.	Observing	the	
time	trajectories	longer,	the	slider	will	still	exhibit	1‐periodic	motion	in	the	direction	y3,	and	the	Poincaré	maps	on	
the	 1 1,y y 	and	 2 2,y y 	planes	of	cross‐sections	of	phase	space	of	the	analysed	dynamical	system	will	create	two	

closed	curves	 see	Figure	6d ,	corresponding	to	amplitude	modulated	time	histories.	
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Figure	6:	Time	histories	with	amplitude	modulation	and	corresponding	power	spectral	densities,	phase	planes	 gray	
lines 	and	Poincaré	maps	 red,	green	and	blue	dots 	for	the	case	of	strongly	damped	variable‐length	spring	pendulum	
c	 	10	Ns/m .	Parameters:	t0	 	982.6215,	tk	 	1002.675,	tob	 	20.0535,	T	 	0.66845	s,	nT	 	30,	ω	 	9.4	rad/s.	Figure	

6:	 continued .	

	

A	steady‐state	quasi‐periodic	motion	of	the	strongly	damped	pendulum	body	and	a	1‐periodic	motion	of	the	
slider	is	achieved.	Comparing	the	power	spectra	in	Figure	6a	and	c,	the	frequency	of	motion	of	the	slider	is	synchro‐
nized	with	 the	second	dominant	 frequency	of	angular	oscillations	of	 the	pendulum.	Elongation	Δs	of	 the	elastic	
pendulum	oscillates	with	two	frequencies	higher	than	1.5	Hz.	

At	the	next	stage	of	our	study,	the	dynamics	of	the	very	weakly	damped	pendulum	is	discussed.	In	Figure	7,	we	
see	an	interesting	example	of	quasi‐periodic	oscillations	of	the	slider‐pendulum	system	in	each	degree	of	freedom.	
It	is	confirmed	in	Figure	7d	by	three	closed	color	curves	on	Poincaré	maps.	The	slider	oscillates	quasi‐periodically	
with	the	frequency	f2	 	0.9707	being	synchronized	with	the	same	frequency	of	angular	oscillations	of	the	pendulum.	
Additionally,	with	regard	to	the	weakly	damped	case	and	in	comparison	to	the	previous	case,	the	elongation	of	the	
spring	pendulum	is	much	greater	as	well	as	the	remaining	state	variables	take	higher	maximal	amplitudes	of	oscil‐
lations.	
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Figure	7:	Time	histories	with	amplitude	modulation	and	corresponding	power	spectral	densities,	phase	planes	 gray	
lines 	and	Poincaré	maps	 red,	green	and	blue	dots 	for	the	case	of	weakly	damped	variable‐length	spring	pendulum	 c	

	0.01	Ns/m .	Parameters:	t0	 	988.848,	tk	 	1030.05,	tob	 	30.9015,	T	 	1.03005	s,	nT	 	40,	ω	 	6.1	rad/s.	

	
Figure	8:	Time	histories	of	a	chaotic	solution	with	corresponding	power	spectral	densities,	phase	planes	 gray	lines 	

and	Poincaré	maps	 red,	green	and	blue	dots 	for	the	case	of	weakly	damped	variable‐length	spring	pendulum	 c	 	0.01	
Ns/m .	Simulation	parameters:	t0	 	9900.8,	tk	 	10281.6,	tob	 	380.8	s,	T	 	0.952	s,	nT	 	400,	ω	 	6.6	rad/s.	
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Figure	9:	Time	histories	of	a	chaotic	solution	with	corresponding	power	spectral	densities,	phase	planes	 gray	lines 	

and	Poincaré	maps	 red,	green	and	blue	dots 	for	the	case	of	weakly	damped	variable‐length	spring	pendulum	 c	 	0.01	
Ns/m .	Parameters:	t0	 	9826.44,	tk	 	10204.38,	tob	 	377.94,	T	 	0.94485	s,	nT	 	400,	ω	 	ωr	 	6.65	rad/s.	

	

Figures	8	and	9	present	a	chaotic	dynamics	observed	at	two	external	excitation	frequencies	of	which	the	first,	
ω1	 	6.6	rad/s,	is	located	in	a	close	neighborhood	of	the	resonance	peak	and	the	second	one	at	ω1	 	6.65	rad/s	
exactly	at	this	peak	 see	Figure	3 .	After	a	long	observation	time	t	 	9950	s	a	sudden	elongation	of	the	pendulum	
length	is	reported.	It	is	caused	by	the	long	lasting	resonance	state	of	the	whole	structure	at	the	excitation	frequency	
ωr	 see	Figure	3 ,	producing	many	resonance	frequencies	of	oscillations	shown	by	the	power	spectra	in	Figures	8	
and	9.	

Let	us	analyze	the	spectra	of	power	densities	for	the	weakly	damped	variable‐length	pendulum.	All	the	scatter	
graphs	are	rugged,	but	one	is	able	to	distinguish	a	 few	dominant	frequencies	of	oscillations	of	each	body	of	the	
mechanical	system	in:	a 	the	angular	displacement	θ	of	the	pendulum,	i.e.:	f11	 	0.7514,	f12	 	0.7594,	f13	 	0.7700,	
f14	 	0.8070;	b 	the	elongation	Δs	of	the	pendulum,	i.e.:	f21	 	2.1167,	f22	 	2.1961,	f23	 	2.2173;	c 	the	linear	dis‐
placement	x	of	the	slider,	i.e.:	f31	 	0.7514,	f32	 	1.0584.	The	angular	frequency	of	excitation	ωr	at	the	maximal	peak	
that	can	be	read	in	Figure	3	is	nearly	an	integer	multiple	of	the	frequencies	f14,	f21,	i.e.:	ωr/2π/f14	 	12.94	 	13	i	
ωr/2π/f21	 	4.93	 	5.	According	to	that,	the	frequencies	f14,	f21	are	the	resonance	frequencies	of	oscillations	of	the	
variable‐length	spring	pendulum	in	two	states:	θ	and	Δs,	respectively.	

The	assumed	set	of	parameters	of	the	oscillator	and	the	external	excitation	force	 see	introduction	to	Section	
4 	 is	rather	destructive	 for	 the	 investigated	mechanical	structure.	Damping	 is	here	very	small.	Therefore,	 there	
exists	a	minor	dissipation	of	kinetic	energy	of	oscillations	in	the	structure	which	is	transferred	all	the	observation	
time	between	its	component	bodies.	

A	qualitative	assessment	of	the	dynamical	behavior	both	near	and	exactly	at	the	resonance	frequencies	of	os‐
cillations	allows	us	to	draw	some	conclusions.	In	the	resonance	regime,	points	of	Poincaré	maps	are	irregularly	
distributed	on	the	assumed	phase	planes	 see	Figures	8d	and	9d ,	and	the	investigated	dynamical	system	can	un‐
predictably	switch	to	another	range	of	amplitudes	of	oscillations	in	each	degree	of	freedom.	One	could	secure	the	
periodically	forced	structure	from	the	dynamical	presence	in	any	reported	resonance	zone	by	a	selection	of	proper	
angular	frequencies	of	external	force	acting	on	it.	In	contrary	to	this	case,	if	the	periodic	excitation	is	imposed	by	
the	external	environment	and	the	mechanical	structure	cannot	avoid	it,	then	a	change	in	system	parameters	like	
masses	of	the	component	bodies	or	spring	stiffness	of	the	variable‐length	pendulum	can	be	done.	

4.3	Poincaré	maps	of	more	sophisticates	dynamical	responses	of	the	system	

Previous	sections	brought	us	a	wider	look	at	dynamical	properties	of	the	analyzed	mechanical	system.	In	this	
part	of	our	study	we	would	like	to	check	if	the	triple	oscillator	can	be	a	source	of	chaotic	attractors	exhibited	by	all	
or	even	not	all	system	states	while	the	other	will	last	on	a	periodic	orbits.	

Parameters	of	the	slider‐pendulum	system	remain	unchanged,	since	the	frequency	of	excitation	will	vary	in	
the	examined	range	taken	into	consideration	in	Figure	2	and	3	as	well	as	damping	of	the	pendulum	elongation	will	
switch	also	between	the	two	examined	values.	
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Figure	10a‐c	presents	portraits	of	a	two‐,	three‐	and	quasi‐periodic	motion.	It	is	the	basic	kind	of	behavior	of	
the	analyzed	system.	Figure	10b	and	c	shows	a	very	frequently	observed	quasi‐periodic	motion	of	the	pendulum,	
and	in	Figure	10d,	a	chaotic	response	of	the	system	oscillating	in	the	resonance	is	observed.	Figure	10c	and	d	con‐
firm	that	also	the	slider	can	oscillate	irregularly.	In	particular,	the	quasi‐periodicity	of	both	pendulum	states	shown	
in	Figure	10c	stands	for	the	internal	resonance	which	is	associated	with	the	transmission	of	energy	between	the	
two	modes	of	oscillations.	

	
Figure	10:	Poincaré	maps	on	the	background	of	phase	planes:	a 	c	 	10	Ns/m,	ω	 	1.68	rad/s,	t0	 	9350.0,	tk	 	11220.0,	
tob	 	1870.0,	T	 	3.74	s,	nT	 	500;	b 	c	 	10	Ns/m,	ω	 	1.24	rad/s,	t0	 	2538.6171,	tk	 	5077.2342,	tob	 	551.15,	T	 	

5.0671,	nT	 	501;	c 	c	 	0.01	Ns/m,	ω	 	5.7	rad/s,	t0	 	9920.7,	tk	 	10471.85,	tob	 	551.15,	T	 	1.1023,	nT	 	500;	d 	c	 	
0.01	Ns/m,	ω	 	ωr	 	6.52	rad/s,	t0	 	14455.5,	tk	 	15419.2,	tob	 	963.7,	T	 	0.9637	s,	nT	 	1000.	

	

4.4	Numerical	solution	

The	numerical	solution	of	the	continuous	system	does	not	require	any	special	methods.	It	has	been	obtained	
with	the	use	of	a	standard	integration	procedure.	The	system	of	ordinary	differential	equations	was	solved	using	
lsoda	from	the	FORTRAN	library	odepack	with	control	of	the	vector	of	local	errors	e	in	x,	according	to	the	inequality	
of	the	form:	max||e/ew||	 	1,	where	ew	 	rtol	|x|	 	atol	at	the	relative	and	absolute	tolerances	at	each	step	of	integra‐
tion	equal	to	1.49012e‐8.	The	integration	procedure	solves	the	initial	value	problem	for	stiff	and	non‐stiff	systems	
of	first	order	ODEs	as	follows:	

0 0( , ) at (0), 0 .
dx

f x t x x t
dt

= = = 	 11 	

Due	to	periodic	excitation	of	the	pendulum	suspension,	the	time	period	of	excitation	force	is	assumed	in	the	
numerical	integration	as	a	multiplicity	of	the	time	step	 here,	0.00005	s ,	and	then,	the	horizon	of	observation	tob	
included	in	t0	to	tk	is	assumed	as	multiplicity	of	the	period	of	excitation.	It	is	to	secure	proper	sampling	intervals	of	
the	Poincaré	maps	generated	during	the	simulation,	accuracy	of	solutions	of	the	long	term	observations	as	well	as	
most	possibly	exact	repeatability	of	the	periodic	forcing	of	the	pendulum	slider.	Solutions	presented	in	Section	4	
are	obtained	after	omitting	transition	states.	Finally,	the	obtained	series	of	data	is	stored	as	tables	in	files	which	are	
imported	by	a	plotting	program	to	draw	the	solutions.	

4	CONCLUSIONS	

A	mechanical	structure	consisting	of	a	variable‐length	pendulum	attached	to	an	oscillating	suspension	was	
subject	to	a	dynamical	analysis.	The	system	dynamics	was	investigated	based	on	the	derivation	of	mathematical	
model	and	the	resonance	plots	obtained	for	two	cases,	involving	a	strong	and	weak	damping	of	incremental	elon‐
gation	of	the	pendulum.	The	observations	brought	us	interesting	results,	summarizing	that	the	three‐degrees‐of‐
freedom	mechanical	system	with	partial	dissipation	of	kinetic	energy	of	motion	oscillates	mainly	periodically	and	
quasi‐periodically.	Nevertheless,	the	system	dynamics	exhibited	chaos	in	a	close	vicinity	of	resonance	peaks	of	max‐
imum	amplitudes.	The	damped	spring	pendulum	with	a	moving	point	of	its	attachment	has	two	modes	of	oscilla‐
tions,	the	pendulum	angle	of	rotation	mode	and	the	spring	incremental	elongation	mode.	It	has	been	shown,	that	
the	two	modes	are	coupled,	and	the	oscillations	energy	is	transmitted	between	the	two	modes.	It	is	interesting,	that	
in	some	cases,	the	energy	was	not	transferred	to	the	slider.	Figure	10b	stands	for	a	good	example	of	such	property	
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of	the	analyzed	mechanical	system.	The	internal	resonance	is	a	feature	that	can	make	the	damped	spring	pendulum	
with	a	slider	useful	for	vibration	control	of	unstable	structures.	
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