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A direct technique for the homogenization of periodic beam-like struc-
tures by transfer matrix eigen-analysis 

Abstract 
To homogenize lattice beam-like structures, a direct approach based on the 
matrix eigen- and principal vectors of the state transfer matrix is proposed 
and discussed. The Timoshenko couple-stress beam is the equivalent con-
tinuum medium adopted in the homogenization process. The girders unit 
cell transmits two kinds of bending moments: the first is generated by the 
couple of the axial forces acting on the section nodes, the other one is due to 
the moments directly applied at the node sections by the adjacent cells. This 
latter moment is modelled as the resultant of couple-stress. The main ad-
vantage of the method consists in to operate directly on the sub-partitions 
of the unit cell stiffness matrix. Closed form solutions for the transmission 
principal vectors of the Pratt and X-braced girders are also attained and em-
ployed to calculate the stiffnesses of the related equivalent beams. Unit cells 
having more complex geometries are analysed numerically. As a result, the 
principal vector problem is always reduced to the inversion of a well-condi-

tioned (3 3)  matrix employing the direct approach. Hence, no ill-condi-

tioning problems, affecting all the known transfer methods, are present in 
the proposed method. Finally, comparing the predictions of the homoge-
nized models with the finite element (f.e.) results of a series of girder, a val-
idation of the homogenization method is performed. 

Keywords 
Pratt, X-braced and Warren girders – Beam like lattice – Timoshenko couple-
stress beam – Homogenization. 

Notations 

Latin letters: 

A  stiffness matrix of the inner constrained unit cell 

A  reduced stiffness matrix of the inner constrained unit cell 

,c dA A  chord and diagonal cross section areas 

, ,c t dI I I  chords, battens and diagonals second order central moment 

id  dof’s vector of the girder section i  

if  vector of the alternative static quantities on the section i 

G  state transfer matrix 

th l  girder height 

K  unit cell stiffness matrices 

, ,c d tl l l  length of the unit cell chords, diagonal and battens 

L girder span 

iM  bending moment generated by the anti-symmetric axial forces on the girder section i  
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ˆ ,i im m  resultant of the nodal bending moments and difference between the top and bottom nodal bending 

moment on the section i 

în  axial force on the girder section i  

,li ip p  forces vector of the node li  and of the section i  

R radius of curvature 

is  state vector of the section i 

îu  axial displacement of the section i  

,u v  axial and transversal displacements of the equivalent beam cross section 

,l l
i iu v  horizontal and vertical displacements of the node li  

iV  shear force on the girder section i 

Greek letters: 

c d   axial stiffness parameters of chords and diagonals 

b  equivalent bending stiffness 

p  couple stress bending 

,p a   coefficient matrix determinants 

δ δ,li i  displacements vector of the node li  and of the section i  

,   dummy variables 

c d t    bending stiffness parameters of chords, diagonals and battens 

d  slope angle of the girder diagonals 

a  equivalent axial stiffness 

V  equivalent shear stiffness 

 rotation of the equivalent beam cross section 

l
i  rotation of the node li  

ˆ ,i i   the symmetric and anti-symmetric parts of the nodal rotations of the girder section i  

i  rotation of the section i  

Subscripts: 
a, b, v axial, bending and coupled shear-bending force or displacement components 

1 INTRODUCTION 

In the last decades, a growing attention on periodic beam-like structures has been given by researchers and 
technicians operating in several engineering areas. In fact, this type of structures constitutes an optimal trade-off 
between strength and stiffness, on one side, and lightness, economy and manufacturing times, on the other. By these 
features they are frequently adopted in civil and industrial buildings, naval, aerospace and bridge constructions, 
material design and bio-mechanics (Salmon et al. (2008), Cao et al. (2007), Salehian et al. (2006), Cheng et al. 
(2013), Tej and Tejová (2014), Fillep et al. (2014), Zhang et al. (2016), El Khoury et al. (2011), Syerko et al. (2013), 
Ju et al. (2008)). In addition, the main component of the railway infrastructure, namely the track, has a periodic 
character and is often designed against the thermal buckling phenomenon assuming that rails, sleepers and fasten-
ings are part of an infinitely long Vierendeel girder constrained to the ground by springs representative of the bal-
last actions. The importance of this topic is underlined by the fact that several publications have focused the issue, 
e.g. (Kerr and Zarembski (1981), Pucillo (2016), De Iorio et al. (2014a, 2014b, 2014c, 2017). 
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The response of these types of structures to the service loads is usually analysed in a CAE environment. A f.e. 
discrete system models the girder-like structures and one of the solution methods for the structural framework 
problems is then applied to find the unknowns mechanical parameters. 

If a considerable number of bays or unit cells composes the girder beam, to avoiding strong calculations 
charges especially during the preliminary design phase, it may be convenient to approximate its mechanical behav-
iour by a continuum 1-D model, whose properties come from those of the unit cell by a suitable homogenization 
method. Frequently, this kind of approach also offers the additional advantage of providing analytical closed form 
solutions for the problem at hand. Moreover, the continuous approximation may be employed as a means of tran-
sition to a coarser discrete system with a lower and more tractable set of kinematic and static unknowns. 

To analyse correctly the in plane bending of periodic lattice structures, the classical continuum theory does 
not provide an acceptable approximation. In fact, several micropolar equivalent models have been reported for the 
analysis of planar lattices (Noor (1988), Bazant and Christensen (1972), Kumar and McDowell (2004), Bakhvalov 
and Panasenko (1989), Segerstad et al. (2009), Wang and Strong (1999), Warren and Byskov (2002), Onck (2002), 
Martinsson and Babuška (2007), Liu and Su (2009), Dos Reis and Ganghoffer (2012), Trovalusci et al. (2015), 
Bacigalupo and Gambarotta (2014), Hasanyan and Waas (2016)). While, the studies on the micro-polar models for 
analysing beam like lattices have not yet achieved the same advances. As far as the authors are aware, only few 
papers have specifically addressed this topic. In Noor and Nemeth (1980), Salehian and Inman (2010), a rational 
approach is presented where stiffness parameters of the effective continuum model were obtained using energy 
equivalence concepts. Nodal displacements of the unit cell were got in an approximated way by a Taylor expansion 
of the kinematical model of the substitute continuum. Then, the equivalent stiffnesses were derived by equating the 
potential and kinetic energies of a unit cell of the lattice beam to those of the equivalent continuum. This approach 
leads to two questionable stiffness couplings between the symmetric and anti-symmetric components of the shear 
stresses and between the bending and couple stress moments, making difficult the solution of the equilibrium equa-
tions of the equivalent beam, also for the simplest loading and constraint conditions. In Romanoff and Reddy (2014) 
the modified couple stress Timoshenko beam theory (Ma et al. (2008, Reddy (2011) is used to analyse the trans-
versal bending of web-core sandwich panels. The equivalent polar bending stiffness was determined by invoking 
the spring analogy criterion. According to this rule, along the substitute beam, the ratio of the couple stress moment 
to the total bending moment is given by the ratio of the chords bending moment to the moment of the couple of 
axial forces acting in the panels faces. As it is shown in Gesualdo et al (2017b), this assumption unfortunately leads 
to an overestimation of the polar bending stiffness. 

In this paper, the state transfer matrix eigen-analysis method is applied to evaluate the properties of the mi-
cropolar medium substituting a periodic beam-like structure. So far, the transfer matrix methods have been applied 
mostly for the dynamic analysis of repetitive or periodic structures (Mead (1970), Meirowitz and Engels (1977), 
Yong and Lin (1989), Langley (1996), i.e.). Just recently, it has also been used for the elasto-static analysis of pris-
matic, curved and pre-twisted repetitive beam like lattices made of pin-jointed bars (Stephen and Zhang (2004, 
2006, Stephen and Ghosh, 2005). The main advantage of this method consists in evaluating both the Saint-Venant 
decay rates and the load transmission modes by carrying out an eigen-analysis of the unit cell transmission matrix 
G . Although conceptually simple, its practical implementation is problematic, since the G  matrix is defective and 

ill-conditioned. Consequently, the Jordan block structure of G  is very difficult to be determined numerically. 

Ill-conditioning, as noted in Zhong and Williams (1995), arises because the construction of the of the G  ma-
trix, a (12 12)  matrix for the simplest cases, requires the inversion of a partition of the stiffness matrix of the unit 

cell. Several alternative formulations have been proposed to avoid ill-conditioning in dynamic analysis (see ref. 
Stephen and Wang (2000) for a synthetic review). For the static problems, Stephen et al, instead, presented two 
related approaches, the force and displacement transfer methods, that achieve a better conditioning by analyzing 
the behavior of a lattice of n identical cells and lead to transfer matrices of reduced size, Stephen and Wang (2000). 

The present paper introduces a direct technique approach for the homogenization of periodic beam-like lattice 
structures by the state transfer matrix eigen-analysis. The main advantage of the proposed method is that it oper-
ates directly on the sub-partitions of the unit cell stiffness matrix and, for this reason, all the drawbacks of the 
transfer methods till now proposed are avoided, see also Penta et al. (2017, 2018). For the simpler girder geome-
tries, namely the Pratt and X-braced girders, closed form solutions for the unit cell force transmission modes are 
obtained and used to determine the stiffnesses of the equivalent beam. Doing so, neither approximations for the 
kinematical quantities nor subjective phenomenological assumptions on the inner moments are needed. The polar 
nature of the substitute beam, which is a Timoshenko couple-stress beam, is a direct consequence of the pure bend-
ing transmission mode components, since through the unit cell of the analysed girders two kinds of bending mo-
ments are transferred: one given by the axial forces, the other one stemmed by nodal moments. 
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The method can be easily extended also to more complex unit cell geometries composed of two or more bays. 

In these cases, eigen and principal vectors of G  must be determined numerically solving a linear algebraic system 
for the five kinematical quantities defining the deformed shape of the cell nodal sections. However, since the cell 
elastic responses are invariant for rigid translations, all the unit eigen-/principal vectors are defined up to the axial 

and transversal displacement components û and v . Hence, the eigen/principal vector problem is always reduced 
to the inversion of a (3 3)  matrix that is well conditioned and allows an accurate evaluation of the force transmis-

sion modes. 
The real capability of the resulting equivalent beams in reproducing the behaviour of real discrete beam-like 

lattice structures is finally assessed performing some sensitivity analyses by a set of f.e. models. As a consequence, 
the accuracy of the results associate to the homogenized beams in a wide range of lattice parameters variation, 
satisfactorily validates the suggested direct technique. 

2. EIGEN-ANALYSIS OF THE TRANSFER STATE MATRIX 

To depict in a clear and concise manner the homogenization method we propose, some examples of immediate 
technical and engineering interest are examined in this section. Specifically, the Pratt girder problem is analysed in 
detail while the main results related to the X-braced girder are synthetically shown. The Vierendeel girder scheme, 
equally significative as the previous ones, is not explicitly considered since its solution can be obtained from those 
of the Pratt and X-braced girder by simply neglecting the stiffnesses of the diagonal rods. Finally, the problem of 
the Warren girder is also considered and the peculiar features of the method, making it more convenient when unit 
cell eigen and principal vectors can only be determined numerically, are highlighted. 
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Figure 1: Beam-like lattices and their unit-cells: Pratt girder (a), X-braced girder (b) and Warren girder (c).  

 

2.1 Pratt and X-braced girders 

The unit cell of a Pratt girder is schematically represented in Figure 1. It is made up of two straight parallel 
chords rigidly connected both to the webs and to the diagonal. All the cell members are Bernoulli-Euler beams. The 

top and bottom chords have the same section whose area and second order central moment are denoted cA  and 

cI , respectively. To simplify the analysis, we assume, that the girder transverse webs are axially inextensible. This 

is equivalent to supposing that transverse elongation among the chords is negligible during girder deformation. 

The cross-sectional area and the second order moment of the diagonal members are dA  and dI . The second order 



Antonio Gesualdo et al. 

A direct technique for the homogenization of periodic beam-like structures by transfer matrix eigen-analysis 

Latin American Journal of Solids and Structures, 2018, 15(5), e40 5/30 

central moment of the transverse webs is indicated with wI . However, to account for girder periodicity, the two 

vertical beams of the unit cell will have second order moment equal to the half part of wI . 

To identify any static or kinematical quantity related to the nodal section i of the girder, the sub-script i will be 
adopted, see Figure 2. To distinguish between the joints or nodes of the same section, the superscripts t or b are 
used, depending on whether the top or bottom chord is involved. Finally, in a coherent manner, top and bottom 

nodes of the section i are labelled ti  or bi . 

In what follows, we denote: 

δ δ[ , , ] and [ , , ]t t t t T b b b b T
i i i i i i i iu v u v    (1) 

the displacement vectors of the joints ti  and bi , where 
(.) (.) and i iu v  are the displacement components of the joint 

(.)i  and ( . )
i  is the rotation. Therefore, the displacement vector of the nodal section i is: 

δ δ δ, .
TT Tt b

i i i
     

 

Similarly, the nodal forces applied on the joints 
ti  and 

bi  of the cell are: 

, , and , ,
T T

t t t t b b b b
i i x i y i i i x i y iF F m F F m          
p p  (2) 

where (.) (.) and i x i yF F  are respectively the axial and transversal force components and 
(.)
im  the couple on the joint 

(.)i . Thus, the vector of the nodal forces acting on the section i of the girder is: , .
Tt T b T

i i i
     

p p p  
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Figure 2: Unit cell nodes numbering with girder nodal inner forces and displacements 

 

In what follows we assume that the positive components of ip  are those acting according the reference axis 

on the right side of the cell (see Figure 2). Thus, the cell i, bounded by the sections i-1 and i respectively on the left 

and right sides will be loaded by the nodal force vectors 1ip  and ip . 

The Pratt cell stiffness matrix K  can be computed following the standard method adopted in the f.e. analysis, 
that is by additively assembling the stiffnesses of the beam components through the Boolean topological matrices. 
For our purposes, it is however more convenient to adopt alternative static and kinematic quantities to the standard 
ones of Figure 2 and eq. (1) and (2). More precisely, to identify the deformed configuration of a nodal section, we 

use the mean axial displacement ˆ
2

t b
i i

i
u u

u


 , the section rotation 
b t
i i

i
t

u u
l




  being tl  the web length, the trans-

verse displacement v and, finally, the symmetric and anti-symmetric parts of the nodal rotations of the section given 
respectively by: 
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ˆ
2

t b
i i

i
 




  and .
2

t b
i i

i
 




  

The static quantities conjugates of the previous kinematic variables are: the axial force ,
2

b t
i i

i
F F

n


  the 

bending moment  b t
i i i tM F F l   generated by the anti-symmetric axial forces, the shear force t b

i i y i yS F F  , 

the resultant of the section bending moments ˆ t b
i i im m m   and, finally, the difference between the same moments 

t b
i i im m m  . 

The standard kinematic quantities δi can be expressed as functions of the new ones ˆ ˆi i i i i iu v      d   

through the matrix equation: δ ,i ihd  

being: 

11 0 0 0
2

0 0 1 0 0
0 0 0 1 1

11 0 0 0
2

0 0 1 0 0
0 0 0 1 1

t

t

l

l

    
      
       

h . 

Denoting by ˆ ˆi i i i i in M S m m    f   the vector of the alternative static quantities given by ,T
i if h p  the 

unit cell stiffness equation in terms of the variables d and f  can be written, in a partitioned form, as: 

Ξ Ξ

Ξ Ξ
1 1 ,i ll lr i

i rl rr i

 
               
          

f d
f d

 (3) 

where subscript l  and r  are used to denote the left and right side of the unit cell and: Ξ T H KH  

is the cell stiffness matrix, H  being the (10 12)  diagonal block matrix having as principal elements the 

(5 6)  h matrices. 

The state vector s  of a nodal cross section of the girder consists of the displacements and forces vectors d and 

f . Hence, the state vectors of the end sections of the i cell are 11 1[ , ]T T T
i ii    d fs  and [ , ]T T T

i ii  d fs . They are 

related by the transfer matrix G : 

1 ,i i Gs s  (4) 

or equivalently: 

1

1

i idd df

fd ff i i





                        

d dG G
G G f f

 (5) 

In the simplest problems, where a nodal section contains only two nodes, the transfer matrix has size 
(12 12) . 

As a first important consideration we can assert that the force transmission modes of the unit cell are given by 

the unit principal vectors of the G  matrix. 
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A state vector is transmitted unchanged or decays through the cell depending on whether its force components 
constitute a cross-sectional force or are self-equilibrating. This is equivalent to a scalar multiplication of the state 
vector, which leads immediately to an eigen-value problem. Indeed, by setting: 

1,i i  ss  

 

from eq. (4) the following eigen-value problem is derived: 

 Ι 1i  G s 0  (6) 

The decay eigen-values occur as three reciprocal pairs depending on whether decay is from left to right, or 
vice-versa. The transmission eigen-value has unit value and a multiplicity of six, three of which pertain to the rigid 
body displacements, while the other three are related to the stress resultants of axial and shear forces and bending 
moment. Expanding the stiffness equation and rearranging the result according to eq. (5) we have:  

 

 

Since the sub-partitions of G  on the leading diagonal are independent of the Young modulus E while the 

blocks dfG  and fdG  are proportional to E, G  is ill-conditioned Zhong and Williams (1995). 

Ill conditioning can be avoided either solving the eigenvectors problem in closed form or recasting this prob-
lem in an alternative form that is non-pathological from a numerical point of view. Ill conditioning is automatically 

avoided on adopting the direct approach. Indeed, unit eigen- and principal vectors of the transfer matrix G  can be 

determined more simply operating directly on the unit cell stiffness matrix. If es  is a unit eigen-vector, its displace-

ment and force sub vectors ed  and ef  are linked through the sub-partitions Ξij  of the stiffness matrix by virtue of 

the equations: 

Ξ Ξ

Ξ Ξ
.e ll lr e

e rl rr e

               
          

f d
f d

 (7) 

These latter relations follow from the stiffness equation, eq. (5), by imposing the conditions: 

1 1;i i e i i e     d d d f f f . 

Taking the second equation within eq. (3) and adding it to the first one, the vector ef  is eliminated, since it 

results: 

,e Ad 0  (8) 

where the A  matrix is obtained by adding the four sub-matrices ijΞ . For the Pratt girder case, by using the 

expressions of the sub matrix Ξij  given in Appendix 1, eq. (8) takes the form: 

2 4 2

2

4

0 0 0 0 0 ˆ 0
0 0 0 0

ˆ0

20

cos 12 sin 24 12 sin 24

12 sin 24 24 1
0 0 0 0 0

ˆ 00 0 0
0

2
0 0

24
40 8

d d d d t d d t

d d

e

t c d t

d

e

e

e

c t e

u

v
       

     




 



                                                      

   

   

 


 (9) 

Ξ Ξ Ξ

Ξ Ξ Ξ Ξ Ξ Ξ

1 1

1 1
lr ll lrdd df

fd ff rl rr lr ll rr lr

 

 

                 

G G
G

G G
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in which the subscript e is adopted for the unknowns since they are eigenvector displacement components. By 

inspection of eq. (9), it is immediately recognized that the unit eigenvectors of G  are such that eu  and ev  are 

independent and indeterminate while ˆ 0.e e e      In other words, they correspond to rigid translations of 

the unit cell along the axial and transversal directions and, for this reason, their force sub-vectors ef  are the null 

vectors. 

The principal vector ps  of the G  matrix, generated by the state vector vs  corresponding to a rigid transversal 

translation v , is defined by the condition: .p p v Gs s s  

Equivalently, denoting by [0 0 0 0]Tv vd  the displacement sub-vector of vs , the displacement and 

force sub-vectors pd  and pf  of ps  can be evaluated also solving the algebraic equations: 

Ξ Ξ

Ξ Ξ
ll lrp p

p p vrl rr

                      

f d
f d d

 (10) 

attained by substituting the conditions: 

1i i p f f f  

1i p d d  and i p v d d d  

in the stiffness matrix equation, eq. (3). By adding term by term the two equations in (10), the successive condition 

for the displacement vector pd  is deducted: 

p v 0 Ad Bd  (11) 

where the matrix Ξ Ξlr rr B  is given by: 
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Thus, for the known term vBd  in eq. (11) it results: 
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B d  (12) 

Considering also the components of the A  matrix given in eq. (9), it can be inferred that the displacement vector 

pd  is defined up to arbitrary rigid translations along the axial and transversal directions and that the antisymmetric 

rotation component p  of pd  is equal to zero. Moreover, the symmetric rotation component ˆp  and the section 

rotation component p  are coupled by the second and fourth equations of eq. (11). They are quickly derived by 

using the following change of variables: 

ˆ ˆ,p p p p         . (13) 

Bearing in mind that  4 2 2 2 2 2sin sin 1 cos sin sin cosd d d d d d         , one gets from eq. (11), (12) and (9) 

the result: 
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Since in both the previous equations the coefficients of the unknown   are proportional to the known terms, 

for their solution it must be 0   and 
c

v
l

  . Thus, from eq. (13) it follows that 
1

ˆ
2p p

c

v

l
   , that is the principal 

state vector ps  represents a rigid rotation of the cell cross section and its force sub-vector is the null vector. In the 

next, the state vector representing a rigid rotation is denoted by s  and its displacement sub-vector is 

[0 0 0]T  d . 

The principal vector [ ]T T T
b b bs d f  generated by a rotation s  is defined by the equation .b b  Gs s s  Its 

sub-vectors are evaluated by a procedure altogether similar to the one followed for .s  The known term in equation 

(11) now becomes: 
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and also in this case, the displacement sub-vector is defined up to independent rigid translations along the 
axial and transversal directions. The anti-symmetric part of the nodal rotations is given by: 

1 ,
2p   with 
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Instead, the sectional and nodal rotation components p  and ˆp  are obtained employing the change of varia-

ble (13), achieving: 

1ˆ
2p p     . 

When the displacement sub-vector 
1 1 10 0
2 2 2

T

b   
 
    

d  and the vector b d d  are applied respectively 

to the left and right cell sections, the typical cell deformed shape due to cell bending is obtained, see Figure 3. 

Indeed, on substituting bd  and b d d  in place of 1id  and id  in the first equation of eq. (3), the force sub-

vector is derived: 

 
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2 1
0

c

b

c d
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f  (14) 

Shear force transfer properties of the Pratt unit cell are given by the G  principal vector ,
TT T

V V V
    s d f  as-

sociated to the bending state vector bs . 

The shear displacement Vd  can be evaluated in the same way as bd , namely adding the first and the second 

equation of eq. (3) after substitution of the positions: 

1 1          
    .
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The algebraic system generated, whose coefficient matrix is still the A  matrix and the known terms vector, 
is: 
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Figure 3: Bending principal vector force components (a) and unit cell deformed shape (b). 

 

The anti-symmetric part of the nodal rotations V  is immediately obtained, being uncoupled from the other 

components of bd  (see eq. (9)): 

 6 2 1 ;
4(2 2 ) 2
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  

The translational components Vu  and Vv  of Vd  are indeterminate. The rotational components V  and V̂  are 

given by the second and fourth equations of the algebraic system. These are solved by inverting the (2 2)  sub-

matrix of the non-zero coefficients of these equations and right-multiplying the result for the column vector formed 

by the second and fourth row of Xf . 

By this way, the expressions of V  and ˆ
V  are derived: 
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where 

    22 4 2cos 12 sin 24 24 12 24 12 sin 24d d d d t c d dp t d t                  

is the determinant of the coefficients matrix. 

The algebraic manipulations to determine the force sub-vector vf  are cumbersome and time-consuming and, 

for brevity, they are omitted here. Besides, they are not necessary, since the transmitted shear force can be directly 
evaluated by analyzing the unit cell equilibrium. 

The transmission mode of the axial force is finally given by the principal vector ,
TT T

a a a
    s d f  corresponding 

to the axial translation unit eigenvalue. Its displacement sub-vector ad  is defined by an equation analogous to eq. 



Antonio Gesualdo et al. 

A direct technique for the homogenization of periodic beam-like structures by transfer matrix eigen-analysis 

Latin American Journal of Solids and Structures, 2018, 15(5), e40 12/30 

(11) where in place of vd  the axial displacement vector 0 0 0 0
T

u u    d  appears, while the force sub-vector 

af  is obtained by substituting ad  and ud  in eq. (3) in place of 1id  and id . The components of ad  and af  are: • 
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where the symbol # is adopted to denote indeterminate quantities. More details on the algebraic manipulations 

carried out to deduce eq. (14) and (15) are given in Appendix 2. § 

Also for the X-braced girder, the eigen- and principal vectors analysis of the transmission matrix G  can be 
carried out in closed form. The sub-partitions of the base cell stiffness matrix are given in the Appendix 3. Adopting 
the same symbolism as the Pratt girder, only the main results that will be used for the girder homogenization are 
here reported: 

- bending transmission mode: 
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- sectional rotational component of the shear transmission mode: 
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; 

- axial force transmission mode: 
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The analysis of the components of the bf  vectors given in eq. (14) and (17) reveals that two bending moments 

are transferred through the unit cell of the Pratt and X-braced girders. The first one is generated by the axial forces 
acting on the nodal cross sections, the other one is due to the moments applied at the joints of the unit-cell and is 
induced by the bending of chords and webs. In addition, in the case of the Pratt girder unit cell, when the diagonal 

is eliminated or equivalently 0d d   , it results 0  . Therefore 0p  , and the top and bottom nodes of 

the cell rotate under bending exactly of the same angle of the cross section they belong to. In other words when 

0d d   , the cell transfers the bending moments without deformation of the transverse webs, a result already 

observed in Gesualdo et al (2017b) by numerical experimentation on Vierendeel unit cells. 
In both kind of examined girders, axial force is transmitted together with anti-symmetric self-equilibrated mo-

ments applied at the nodes of each cell end-section. In addition, the unit cell of the Pratt girder deforms also with 
sectional and symmetric nodal rotations. These rotations are instead totally prevented in the X-braced girder due 
to symmetry of the unit cell. 

2.2 Warren girder 

The present approach can be also effectively adopted to analyse unit cells made up by more than one bay. To 
give an example we consider in this section the case of the Warren girder, whose unit cell is sketched in Figure 1c. 
To identify nodes and sections of the girder, we adopt a convention very similar to the one of the Pratt girder. The 
only difference is that here the sub-script c labels the kinematical and static quantities of the central or inner nodal 
section of the cell. Thus, the force and displacement vectors are respectively: 

1 1,
T TT T T T T T

i c i i c i 
          d d d d f f f f  

As the Warren unit cell can be obtained by reflecting a Pratt unit cell, the stiffness matrix can be constructed 
starting from the one reported in Appendix 1 for the Pratt case. Furthermore, being the inner nodal section of the 
cell free of external load, the cell stiffness equation is: 
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The second of previous equations allows expressing cd  as function of id  and 1id  in the form: 
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When previous result is substituted in the first and third equation of eq. (18), the cd  vector is eliminated and the 

stiffness equation can be written as: 
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 (19) 

The reduced stiffness matrix of eq. (19) has some properties that make very simple the numerical searching 

of the principal vectors of the G  matrix. To highlight them, preliminary we observe that rigid translations of the 
cell do not produce any force and moment on the cross sections. This implies that the algebraic sums respectively 
of the first and the sixth columns and of the third and the height columns of the reduced stiffness matrix must give 
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the null vectors. Being the matrix symmetric, also the sum of its first and sixth rows and third and eight rows will 

give the null vectors. Therefore, the A  matrix of the principal vector problem, being extracted by adding the four 
contiguous (5 5)  sub-partitions of the condensed stiffness matrix in eq. (19), will systematically have the first and 

third columns and the first and third rows zero-filled. This is true also when the cell has only one bay, as the Pratt 

and X-braced girders of previous section. Furthermore, the A  matrix can be viewed as the stiffness matrix of the 
plane elastic system obtained from the unit cell by introducing the inner constraint conditions: 

1i i d d d  

and, for this reason, it is semi-positive definite. It exhibits always the following symmetric structure: 
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When also the dof’s corresponding to the cell rigid longitudinal and transversal translations are constrained, the 
cell elastic behaviour will be totally defined by the stiffness matrix: 

ˆ

ˆ ˆ ˆ ˆ

ˆ

a a a
a a a
a a a

  

  

  

  
    
  

A




   

 

which is positive definite and thus invertible. 
In the case of the Pratt and X-braced unit cells, the algebraic sums of the indirect stiffnesses involving an anti-

symmetric nodal rotation (i.e. the out-diagonal components in the last column of A ) are also zero, for symmetry 
reasons. When this happens, the antisymmetric rotation component can be determined straightforwardly being un-

coupled from the other components of pd . To evaluate these latter components the (2 2)  sub-matrix: 

ˆ

ˆ ˆ ˆ

ˆ a a
a a
 

 

 
   
  

A  

must be inverted and this can be performed in closed form, hence avoiding altogether any ill-conditioning 
problem. 

To compare the direct method with the classical one based on the G  matrix eigen-analysis and with those 
proposed in Stephen and Wang (2000), a Warren unit cell with the following properties is considered: 

3 2 7 4 6 4 3 23.5 10 1.0 10 5.0 10 2.5 10 .c c t d dA mm I mm I I mm A mm      

The corresponding A  matrix is: 

11 9 9

9 9 9

9 9 10

3.4576 10 9.2485 10 4.113
.

2 10
9.2485 10 4.0989 10 4.4293 10
4.1132 10 4.4293 10 3.6657 10

 







 
 

  
 
 

 

A  

Since the stiffness components of this matrix differ at most for two orders of magnitude, its condition number 
should be of order 10-2. In fact, the MATLAB rcond() command, giving an estimate of the reciprocal condition num-

ber, for A  returns the value 9.0275E-02. The same command when executed on the G  matrix of the same cell 
gives the value 1.3865E-24. 

In Table 1 the rcond() outputs obtained for the displacement and force transfer matrices S and M  of Stephen 
and Wang (2000) for a series of girders composed of a number n of cell ranging between 5 and 10000 are listed. 
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From these results, it is clear that when the proposed method is adopted, the force transmission modes of the 
unit cell are determined by inversion of a matrix of reduced size that is well-conditioned and allows achieving the 
solutions with greater accuracy. 

 

Table 1 – Warren girder force and displacement transfer matrices: reciprocals of the conditioning numbers 

n rcond(M) rcond(S)    
5 2.4912E-07 2.2011E-07 

10 2.4912E-07 1.7593E-07 

100 2.4912E-07 1.4352E-07 

1000 2.4912E-07 1.4083E-07 

10000 2.4090E-07 1.4057E-07 
   

 

3. THE EQUIVALENT CONTINUUM 

As equivalent continuum, the modified polar Timoshenko beam is adopted (Ma et al. (2008), Reddy (2011)). 
The displacements ( , )U V  of a point ( , )P x y  of the beam (see Figure 4) are given by: 

( ) ( ),
( ),

U u x y x
V v x

  
  

where ( )u x  and ( )v x  denote respectively the longitudinal and transversal displacements of the beam axis and ( )x  

is the rotation of the cross section. The only not zero strains at P are the normal strain in the x direction: 

,x
du dy
dx dx

    

the shear strain associated with the directions x and y: 

( ),xy
dv x
dx

    

and the curvature: 

2

2
1 1 ,
2 4xy
d d d v
dx dx dx
 

        
 

where  1 2 dv dx     is the rotation of an elementary neighbourhood of P in the x-y plane. 

Denoting by ( )   the cinematically admissible variations of the strain components and by x , xy  and xym  

respectively the normal, tangential and the couple stress acting on the beam cross section, the virtual strain energy 
or internal work can be expressed as: 

 
2

2

2

1 ,
2

x x xy xy xy xy
l A

x x x xy

l

U m dAdx

d u d d v d d vN M Q P dx
dx dx dx dx d x

     

    

   

                     





 

where l is the beam length and A is the area of its cross section, 
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, ,x x x xy
A A

N dA Q dA      (20) 

are the beam axial and shear forces, while: 

and .x x xy xy
A A

M ydA P m dA     (21) 

are the Navier and polar bending moments, respectively. It is worth nothing that the dual shear deformation 

of xQ  is: 

.xy
dv
dx

       (22) 

v'



v'
v(x)

u(x)y

S

S'

xO

 
Figure 4: Kinematics of the Timoshenko beam 

 

Under the assumption of homogeneous and isotropic linear elastic material, the stress-strain relationships are: 

2,   ,    2 ,x x xy xy xy xyE G m G         

with E  Young modulus, G  tangential elasticity modulus and  material length scale parameter. Substituting the 
previous constitutive relations in the expressions of the stress resultants, eq. (1) and (2), gives: 

, ,
1, ,
2

x xx x x Q

x xx xy xy xy

N A Q D
dM D P S
dX

 
 

 

 
 (23) 

where xxA  and QD  are respectively the axial and shear beam stiffnesses, xxD EI  is the bending stiffness, with I  

second order central moment of the beam cross section, and 24xyS G A   the couple stress bending stiffness. 

The beam equilibrium equations can be derived equating the virtual internal work U  to the virtual work of 
the external loads, integrating by parts and taking into account the beam boundary conditions. For the simpler 
loading and constraint conditions, approximate solutions for these equations can be obtained by the Fourier series 
method (see ref. Reddy (2011) for more details). 

4. EQUIVALENT STIFFNESSES 

The homogenized beam stiffnesses can be determined by averaging over the unit cell length the cell responses 
under the load conditions defined by the force transmission principal vectors found in sec. 2. Thus, the equivalent 
axial stiffness of the homogenized beam is: 
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ˆ ˆ
ˆ

a a
a

a

n n
u u

  


 (24) 

where ân  is the axial component of the force sub-vector af  while ˆau u   is the corresponding mean axial 

elongation of the unit cell. 

The equivalent Navier bending stiffness b  is calculated as the ratio of the bending moment bM  to the mean 

curvature 1/R  of the cell. This latter is given by the relative rotations b    of the cell end sections under 

bending divided by the cell length cl  (see Figure 3). Therefore, we have 

.b c
b b

M l
M R


     (25) 

Polar bending stiffness p  can be instead evaluated observing that, when the shear force is zero, from eq. (22) 

and (23) it follows: 

2

2
.d d v

dX dX
   

Hence, the polar and Navier moment of the homogenized beam make work by the same generalized strain, 

namely the beam curvature 
d
dX


. For this reason, we can evaluate the polar bending stiffness as the ratio of the 

symmetric moment component of bf  and the mean cell curvature: 

ˆ
ˆ .b c

p b

m l
m R


    (26) 

The shear principal vector Vs  is coupled with the pure bending one. The shear force component Vis given by 

the subsequent condition: 

ˆ 0c b bV l M m     

which defines the in plane rotation equilibrium of the cell as reported in Figure 5. We recall that the displace-

ment sub-vector Vd  is defined up to axial and transversal translations û and v . The unit cell deformed shape due 

to shear and bending is also sketched in Figure 5 assuming that these latter quantities are equal to zero. In this case, 
the shear angle  is equal to the average nodal section rotation  of the cell. 

V/2

V/2

V/2

V/2

Mb /h

mb

 Mb /h

 mV

 mV

mb  mV

 mV

 
V  

V 
 
 

MV Mb


mV  mb

 lc

ˆ ˜

ˆ ˜

˜

˜

ˆ ˜

 lc

h 
=

 l
t
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Figure 5: Coupled shear and bending principal vector force component and unit cell deformed shape 

 

Bearing in mind the components of the displacement vector Vd  and V bd d  defining the deformed configura-

tions of the left and right sections of the cell under shear and bending, the following expression of  is easily de-

ducted: 

1
2v b    . 

Hence, the equivalent shear stiffness will be: 

 
ˆ

2
2
b b

V
c v b

M mV
l


  


 


 (27) 

Axial and bending stiffnesses of the Pratt and X-braced girders, obtained by eq. (24), (26) and (26) and the 
results of sub-section 2.1, are reported in Table 2. 

By inspection of these results it is deduced that Navier bending stiffnesses depend only on the chords axial 
stiffnesses and that, since bending of the X-braced unit cell occurs without deformation of the transvers webs, the 

equivalent polar bending stiffness of this girder is independent of t . 

In addition, axial elongation of the Pratt unit cell is accompanied by rotations both of its joints and end sections. 
Consequently, its equivalent axial stiffness is dependent also on the bending stiffness of the chords and battens. 

 
 
 
 
 
 
 
 

Table 2: Equivalent stiffnesses for Pratt and X braced girders 

Bending stiffness: 

21 1
2 2b c c c c tl E A l    

s

2 2

2cos X-braced girder
6 tan 2

cos Pratt girder
6 tan 2

with

=
in

p c c d d c c d d

d

c c d t t
d

d d c c d t td

l l E I E I

E I E I
E I E I E I

   







 






   
 

Axial stiffness: 

1 2 1 22 2 2

3

1 3

2

2

2 ,

2 cos X-braced girder

288 2 cos Pratt girder

24 cos sin    X-braced girder

6912

2

where

=

=

c d d d d
a c c d d

dt t d

d

t t d d c c
d

a d c

t

c

t

d d

t t c

a

E I
E A E A

ll l l

E I E I E I
l l

E I E I
l

l

l

  
    






 


    

    



   
  


2sin    Pratt co ds gir erc
d

c
dl
 


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The eqs. (24) - (27) completely define the elastic behaviour of the equivalent Timoshenko beam. The range of 

validity of these homogenized equations is analysed in the succeeding section on the basis of the numerical results 
of a sensitivity analysis. 

5. VALIDATION STUDY 

The equivalent beam model defined in Section 3, has been validated against a data set including information 
on the effects of the main geometrical parameters influencing the girder response. This set has been generated by 
f.e. solution of cantilevered and simply supported girders engendered by assembling Bernoulli-Euler beams and 
subjected to a unit vertical load applied respectively at the free end and at the midpoint. 

The accuracy of the theoretical predictions has been quantified by the next non-dimensional measure of the 
homogenization error: 

% 100 ,
FE

e



v

v
 

where FEv  is the vector of the vertical displacements of the girder nodal sections derived through the f.e. analysis, 

v  is the vector of the variations hom FEv v , being homv  the vector of the vertical displacements of the corresponding 

homogenised beam evaluated at the nodal sections of the girders. 
 

 
Figure 6: Deflections of Pratt (a), X-braced (b) and Warren (c) girders. 

 

Furthermore, to have an additional measure of accuracy and to get also direct indications about the influence 
exerted on the model equilibrium shapes by the couple-stress bending stiffness, for each examined girder geometry 

the maximum displacement f  of the equivalent model is compared with that FEf  of the corresponding f.e. model 

and the one f̂  of the Timoshenko (Cauchy) beam having the same bending and shear stiffness as the couple-stress 

equivalent beam. 
Since, as a first approximation, the main parameter influencing the relative importance of the two bending 

moments acting on the girder cross section is the height h of the girder, in the first set of f.e. analysis the effects of 
the changes of this parameter have been considered. Under the assumption that both chords and webs have the 
same cross section, specifically HEA100, cantilever girder f.e. models having height h=lt=300, 600 and 1200 mm, 

cell aspect ratios 0.5, 1 and 2t cl l   and girder aspect ratio 6, 12, 24 and 48tL l  , being L the girder 

span, have been examined. Previous values of h,   and  as well the cross sections properties were chosen to obtain 

girders geometries similar to those encountered in the practice of structural design. 
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In Figure 6, as an example, the deformed shapes of f.e. girders having cell-aspect ratio 0.5  are compared 
with those of the corresponding equivalent beams. In Tables 3, 4 and 5 for all the considered geometries respec-
tively of Pratt, X-braced and Warren girders, the homogenization errors, the equivalent stiffnesses and the deflec-
tions ˆ,   and  F Ef f f  are listed. 

From these results, it can be concluded that for the whole range of considered girder heights, to have accurate 
estimates of the girder displacements, it is necessary to take into account the bending stiffnesses of chords and 
webs by means of the couple stress stiffness of the equivalent beam. Furthermore, since small values of the homog-
enization error have been obtained for all the examined values of the cell shape ratio ,  it is also clear that the 

homogenized model is able to offer insight into the effects of this parameter on the bending response of the girders. 
A second series of girder models has been prepared to analyse the effects of the changes of diagonal cross-

sectional area on the equivalent model accuracy, since the girder shear stiffness is strongly influenced by this geo-
metric parameter. For these analysis, more stout girders under three points bending have been considered in order 
to highlight the shear properties effects in the girder response. For the chords of these models the standard HEA120 
section has been chosen. Several back to back angles sections have been considered for the diagonals, while for the 
battens only the 80 x 8 back to back angle has been used. 

 
 
 
 
 
 
 
 
 

Table 3: Pratt girders equivalent stiffnesses, deflections and homogenization errors as function of girder height and unit 

cell shape ratio. 

  α b  p  V  FEf  f  f̂  e % 

  [-] [Nmm] [Nmm] [Nmm-1] [mm] [mm] [mm] [-] 
          

h=300 mm 0.5 1.969E+13 1.740E+12 3.851E+08 5.840E-3 
5.823E-

03 
6.356E-3 0.214 

β=24
 

1 “ 1.901E+12 2.334E+08 5.810E-3 
5.791E-

03 
6.381E-3 0.261 

  
2 “ 2.017E+12 1.092E+08 5.820E-3 

5.791E-
03 

6.451E-3 0.335 
                    

h=600 mm 0.5 7.876E+13 1.740E+12 2.113E+08 1.610E-3 
1.579E-

03 
1.648E-3 0.261 

β=12
 

1 “ 1.901E+12 1.737E+08 1.610E-3 
1.583E-

03 
1.663E-3 0.620 

  
2 “ 2.017E+12 8.580E+07 1.650E-3 

1.621E-
03 

1.748E-3 1.455 
                    

h=1200 mm 0.5 3.150E+14 1.740E+12 1.701E+08 4.680E-4 
4.344E-

04 
4.796E-4 0.700 

β=6
 

1 “ 1.901E+12 1.594E+08 4.640E-4 
4.370E-

04 
4.853E-4 1.723 

  
2 “ 2.017E+12 8.014E+07 5.170E-4 

4.805E-
03 

5.746E-4 5.003 
                    

 

Table 4: X braced girders equivalent stiffnesses, deflections and homogenization errors as function of girder height and 

unit cell shape ratio. 

  α b  p  V  FEf  f  f̂  e % 

  [-] [Nmm] [Nmm] [Nmm-1] [mm] [mm] [mm] [-] 
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h=300 mm 0.5 1.969E+13 2.082E+12 5.940E+08 
5.557E-

03 
5.725E-

03 
6.343E-

03 
0.193 

β=24
 

1 “ 2.456E+12 4.033E+08 
5.643E-

03 
5.634E-

03 
6.355E-

03 
0.212 

  
2 “ 2.726E+12 1.974E+08 

5.586E-
03 

5.582E-
03 

6.392E-
03 

0.091 
                    

h=600 mm 0.5 7.876E+13 2.082E+12 3.805E+08 
1.574E-

03 
1.557E-

03 
1.618E-

03 
1.050 

β=12
 

1 “ 2.456E+12 3.322E+08 
1.554E-

03 
1.553E-

03 
1.623E-

03 
0.157 

  
2 “ 2.726E+12 1.665E+08 

1.563E-
03 

1.568E-
03 

1.666E-
03 

0.458 
                    

h=1200 mm 0,5 3.150E+14 2.082E+12 3.298E+08 
4.150E-

04 
4.138E-

04 
4.386E-

04 
0.118 

β=6
 

1 “ 2.456E+12 3.150E+08 
4.140E-

04 
4.143E-

04 
4.406E-

04 
0.408 

  
2 “ 2.726E+12 1.590E+08 

4.280E-
04 

4.359E-
04 

4.855E-
04 

2.350 
                    

 
The f.e. results and the predictions of the homogenised model are compared in the diagrams of Figure 7, while 

in Table 6 the homogenization errors and the equivalent stiffnesses are reported. In all the examined cases the 
model predictions have resulted to be very close to the f.e. outcomes. Thus, the homogenized model is also able to 
predict the shear dominated girders responses with sufficient accuracy for practical applications. 

 

Table 5: Warren girders equivalent stiffnesses, deflections and homogenization errors as function of girder height and 

unit cell shape ratio. 

  α b  p  V  FEf  f  f̂  e % 

  [-] [Nmm] [Nmm] [Nmm-1] [mm] [mm] [mm] [%] 
          
h=300 mm 0.5 1.9689E+13 1.7604E+12 3.2517E+08 

4.652E-
02 

4.6443E-2 
5.0640E-

2 
0.177 

β=24
 

1  1.9474E+12 1.7087E+08 
4.614E-

02 
4.6078E-2 

5.0720E-
2 

0.152 

  
2  2.0821E+12 6.4477E+07 

4.594E-
02 

4.5917E02 
5.1000E-

2 
0.056 

                    

h=600 mm 0.5 7.8758E+13 1.7604E+12 1.8875E+08 
1.251E-

02 
1.2435E-2 

1.2790E-
2 

0.565 

β=12
 

1  1.9474E+12 1.2840E+08 
1.245E-

02 
1.2441E-2 

1.2860E-
2 

0.059 

  
2  2.0821E+12 5.0387E+07 

1.254E-
02 

1.2588E-2 
1.3210E-

2 
0.478 

                    

h=1200 mm 0.5 3.1503E+14 1.7604E+12 1.5493E+08 
3.240E-

03 
3.2335E-3 

3.3450E-
3 

0.170 

β=6
 

1  1.9474E+12 1.1781E+08 
3.250E-

03 
3.2604E-3 

3.4040E-
3 

0.497 

  
2  2.0821E+12 4.6818E+07 

3.360E-
03 

3.4410E-3 
3.7750E-

3 
2.431 

          
          

 

Table 6: Equivalent stiffnesses, deflections and homogenization errors as function of the diagonal geometry. 

 diag-
onal b  p  V  FEf  f  f̂  %e  

 [-] [Nmm] [Nmm] [Nmm-1] [mm] [mm] [mm] [%]          
Pratt girder 80 x 8 9.396E+13 2.702E+12 1.937E+08 -9.100E-

5 
-8.932E-5 1.013E-

04 
1.751 
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L=7200 mm 70 x 7 “ 2.619E+12 1.500E+08 -9.400E-
5 

-9.197E05 1.068E-
04 

2.112 

β=12 55 x 6 “ 2.548E+12 1.035E+08 -9.900E-
5 

-9.714E05 1.176E-
04 

1.571 

 30 x 6 “ 2.505E+12 5.787E+07 -1.130E-
4 

-1.100E04 1.450E-
04 

2.021 
                  

X-braced girder 80 x 8 9.396E+13 2.918E+12 3.787E+08 -8.500E-
5 

-8.481E05 9.226E-
05 

0.763 

L=7200 mm 
70 x 7 “ 2.744E+12 2.910E+08 

-8.600E-
5 

-8.633E05 
9.513E-

05 0.669 

β=12 
55 x 6 “ 2.598E+12 1.979E+08 

-8.900E-
5 

-8.923E05 
1.009E-

04 0.668 

 
30 x 6 “ 2.512E+12 1.067E+08 

-9.700E-
5 

-9.668E05 
1.165E-

04 0.424 
                  

Warren girder 
80 x 8 9.396E+13 2.708E+12 1.441E+08 

-6.660E-
4 

-6.675E04 
7.120E-

04 0.243 

L=14400 mm 
70 x 7 “ 2.621E+12 1.187E+08 

-6.720E-
4 

-6.732E04 
7.227E-

04 0.193 

β=12 
55 x 6 “ 2.548E+12 8.792E+07 

-6.830E-
4 

-6.839E04 
7.439E-

04 0.211 

 
30 x 6 “ 2.505E+12 5.298E+07 

-7.110E-
4 

-7.100E04 
7.979E-

04 0.105 
  

 
 
 

      

 
Figure 7: Deflections of Pratt (a), X-braced (b) and Warren (c) girders 

6. CONCLUSION 

A new procedure for homogenizing large repetitive beam-like structures is presented. Such a method is based 
on the analysis of the eigen- and principal vectors of the transfer state matrix of the unit cell. As a substitute medium, 
a Timoshenko polar beam is adopted. Differently from the approaches until now proposed, the polar character of 
the equivalent beam is not deduced by kinematical conjectures nor inspired by the micro-structure: it is a direct 
consequence of the pattern of the inner forces acting in the lattice when the pure bending mode of the cell is active. 

The main advantage of the presented method is that it allows to operate directly on the sub-partitions of the 
unit cell stiffness matrix. For the simpler unit cells, as those of the Pratt and X braced girders, the method leads to 
closed form solutions for force transmission modes, that are then used to determine the stiffnesses of the corre-
sponding equivalent beam. When the unit cell instead has a complex geometry and its transmission modes can be 
determined only numerically, it is shown that the method we propose has a very low computational cost, since the 
search of the transmission modes, reduces to the inversion of a (3 3)  stiffness matrix, and has a higher accuracy, 

being this (3 3)  matrix well-conditioned. 

The results of a series of finite element simulations are presented for the deformed shapes of some simply 
supported and cantilever girders. In all the examined cases the predictions obtained with the homogenized models 
are in close agreement with the numerical f.e.m. outcomes. 

The proposed homogenization technique is applicable in several field of structure or mechanical engineering 
interest. More specifically, it appears to be a serious candidate to analyse the buckling and post-buckling response 
of periodic beams infinitely long such as the railway track under thermal load (Pucillo (2016)) or to analyse the 
dynamic isolation of fragile goods in tall buildings (i.e. art objects, see Monaco et al. (2014); Gesualdo et al. (2014, 
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2017a). Its range of validity is bounded by the hypothesis of linear elasticity. Further research will thus be needed 
to extend the proposed method also in the elasto-plastic range whereas the response of the unit cell has to be ana-
lysed by approximated methods as those reported in Fraldi et al. (2010, 2014) and Cennamo et al. (2017). 
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Appendix 1 - Pratt girder: stiffness sub-matrices 
The (5x5) blocks forming the leading diagonal of the Pratt unit cell stiffness matrix are given by: 
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Appendix 2 - Pratt girder axial transmission mode components 

The system of algebraic equations a uAd Bd  giving the rotational components ,  and a Sa Ea    of the 

displacement sub-vector ad , in explicit form becomes: 
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cell are obtained by substituting ad  and u ad d  in place of ld  and rd  in the first equation of eq. (3): 
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From the last equation in (28), it follows immediately that 0E a  . Furthermore, when the second and fourth 

equations of the system (28) are substituted respectively in the expressions of b aM  and b am , it is recognized that 

both these moments are equal to zero. Therefore, due to equilibrium, also the shear force component aV  must be 

null. 

To get simpler expressions for the axial force aN  and for the rotations a  and S a , we make the change of 

variable: 
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a

X
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in eq. (28), deriving: 
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Solutions of eq. (29) are: 
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where 

    22 4 2cos 12 sin 24 24 12 24 12 sin 24a d d d d t c d t d d t                  . 

When the change of variable (29) is carried out in the first and last equations of (28) and previous solutions are 

then substituted, the following expressions of the axial force aN  and the self-equilibrated moment Eam : 
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are finally obtained. 
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Appendix 3 - X-braced girder: sub-partitions of the stiffness matrix 
With the same notations as the Pratt girder of Appendix 1, the stiffness matrix sub-partitions of the X-braced 

girder are: 
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