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Buckling Analysis of Laminated Anisotropic Kirchhoff’s Plates via The 
Boundary Element Method 

Abstract 
A new fundamental solution for laminated anisotropic Kirchhoff’s plates 
with out-of-plane and in-plane compressive loads is derived here. The 
multicompressed solution for both isotropic and anisotropic cases is 
obtained via the Radon Transform. Some fundamental kernels of the integral 
equations are described in detail. BEM results of displacements and critical 
buckling loads of several plates with different boundary conditions and 
geometries are presented. Comparisons with available analytical solutions 
and some published numerical results confirm the reliability and accuracy 
of the proposed formulation. 
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1 INTRODUCTION 

Plates are important structural elements used in many engineering fields. For modern applications, such as in 
the aeronautical and automobile industries, there has been an increasing use of laminated anisotropic plates. Their 
usage in structural projects is highly advantageous since they are lighter and stronger than traditional materials 
like metals and metal alloys. 

Many problems in anisotropic media cannot be solved analytically and so numerical methods are of paramount 
importance. The Boundary Element Method (BEM) is a well established alternative to the Finite Element Method 
(FEM). BEM discretizes the problem only on its boundary, which allows a reduction of the problem's dimension. 
When compared with FEM, BEM presents high precision on field variables. 

Although BEM is highly efficient compared with FEM, it presents some difficulties such as the derivation of 
fundamental solutions and treatment of the domain integrals which appear e.g. when dealing with plate bending 
problems. On the other hand, unlike FEM, BEM does not suffer from numerical problems such as the shear locking 
when using the Shear Deformation Theory (SDT) of plates. Also BEM does not suffer from locking phenomenon due 
to high stiffness in preferred directions in anisotropic elasticity like FEM. 

The bending problem of thin plates can be modelled by the Classical Plate Theory (CPT) (or Kirchhoff-Love 
theory) when the out-of-plane displacement is small and shear deformations are negligible. The first works using 
BEM to analyze the bending of thin plates with Kirchhoff-love's theory were presented in the 1970s. Some of those 
works can be found in Bézine (1978), Altiero and Sikarskie (1978), and Stern (1979). More recently, Dirgantara 
and Aliabadi (1999, 2006) investigated the bending and the large deflection of shells. Albuquerque et al. (2006) 
studied the bending of laminated composite Kirchhoff plates. Katsikadelis and Babouskos (2009) used BEM with 
the analog equation method to study bending and vibration of thick plates. 

When there are compressive forces acting on the plate's midplane, an instability known as buckling may take 
place. Buckling may cause catastrophic failures to structures like plates. It is a highly non-linear phenomenon which 
is assessed with non-linear theories like the well known von Karman theory of plates. However, linearized theories 
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are often used as means of obtaining critical loads for the pre-buckling stage. Such critical loads are extremely 
important as failure criteria for engineering applications. One of the first works applying BEM to plate buckling is 
Shi and Bézine (1990). Shi (1990) also studied the vibrational and buckling problem of thin plates with the direct 
boundary element method. Other works treating the buckling of plates and shells via the BEM can be seen in 
Syngellakis and Elzein (1994), and Baiz and Aliabadi (2007). Other numerical methods have been employed in the 
past for obtaining critical loads for plates within the realm of the linearized theory. For multi-compressed isotropic 
and/or anisotropic polygonal plates we may cite Liew and Wang (1995), Ferreira et al. (2011), and Shojaee et al. 
(2012). 

In this work we present numerical results for the problem of anisotropic Kirchhoff plates with the action of 
compressive and shear in-plane forces combined with an out-of-plane perturbation. The critical loads for several 
isotropic/anisotropic plates are obtained using a concentrated out-of-plane force. Hence, we avoid the use of 
domain integrals using a pure Boundary Element Method. For multi-compressed isotropic and anisotropic plates, 
new fundamental solutions are derived here via the Radon Transform. The results are compared with existing 
analytical or FEM results, showing an excellent agreement. 

2 Governing equations 

According to Kirchhoff's theory the transverse displacement w  of multicompressed thin plates (Figure 1) can 
be described by the following differential equation (see Lekhnitskii (1968) and Timoshenko and Woinowsky-
Krieger (1959)) 
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Figure 1: Compressed plate. 

 

With ijD  denoting the flexural rigidities. Since we shall focus on symmetric laminated anisotropic plates, the 

final flexural rigidities can be obtained by adding the sequence of flexural rigidities of each rotated orthotropic ply. 

3 3
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With kz  representing the distance from the middle plane to the ply's surfaces, k and k-1 (see Figure 2). ( )ij kQ  

is the reduced rotated matrix in the plane stress state with the elastic constants of each ply (Eq. (3)). In Eq. (2) 
, 1, 2,6i j   and l is the number of plies. Notice that membrane forces are decoupled from bending forces when the 

laminate is symmetric around the midplane, allowing the use of Eq. (1) (see Christensen (1979)). 
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Figure 2: A symmetric laminated composite with N plies. 
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  (3) 

With  lE representing the elastic modulus along the direction of the fiber,  tE representing the elastic modulus 

in the transversal direction to the fiber axis, lt  representing the Poisson ratio,  ltG representing the shear modulus 

and θk being the angle ply orientation. Eq. (3) was obtained based on Christensen (1979) and Herakovich (1998). 
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3 Boundary Integral Equation 

Using the weighted residual method in Eq. (1), we obtain the singular Boundary Integral Equation (BIE) for 
compressed anisotropic Kirchhoff's plates (see Albuquerque et al. (2006)), 
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With Γ and Ω representing the plate's boundary and domain, respectively; , ix x  represent the field and source 

point, respectively; ci is a free term depending on the smoothness of the plate’s boundary; nM  represents the 

resultant moment (see Eq. (5)). 
jcR  is the corner reaction, described as jc ns nsR M M   ; n sM   are the twisting 

moments after (+) and before (-) the corner (see Eq. (6)); 
jcw is the corner displacement and Nc is the total number 

of corners. nV  represents here the resultant shear force for polygonal plates, which considers the effect of the out-

of-plane and in-plane forces (see Eq. (8)). The starred terms are the known fundamental Kernels, which are 
obtained deriving the fundamental solution. *
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With xn  and yn  denoting the direction cosines. 
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∂/∂n and ∂/∂s are the derivatives in the normal and tangential directions, respectively, given by 
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It is well known that due to the number of variables ( nM , nV , w , /w n  ) a second equation is needed to fully 

solve the problem of plates. The other equation is obtained by deriving Eq. (4) in the direction of the outward 
vector, in , normal to the boundary surface at the source point. This is a hypersingular BIE since there are kernels, 
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which present (1/r2) singularities. The latter require special analytical or numerical treatment since they are 
hypersingular in the sense of Hadamard. 
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We used Eq. (12) for the isotropic case and hence we will present on following the detailed derivation of each 
Kernel for the singular and hypersingular BIEs. For the anisotropic case, due to the high complexity of the numerical 
integrations, we used the strategy of outside points of the boundary plate as in Paiva and Venturini (1992), hence 
using only the singular BIE. Moreover, for a concentrated out of plane load (Dirac's Delta load) the domain 
integrations disappear. It is then only necessary to evaluate the fundamental solution at the point of application as 

* ( , )i iw x x x . 

4 Fundamental solution 

4.1 Isotropic media 

In this work, two fundamental solutions for isotropic plates are considered. One for the case with compressive 
forces only in one direction (unidirectionally compressed) and another for the case with the combined action of 
compressive forces in both direction with shear in-plane forces (multidirectionally compressed). 

4.1.1 Unidirectionally compressed plates 

For this case, the governing equation is 
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Jahanshahi and Dundurs (1964) constructed a solution for the problem of plates compressed in one direction 
and a moving out-of-plane load. Adapting their solution to the case of a fixed out-of-plane load, we have 
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With 
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we may express the third order derivatives as 
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Substituting the derivatives of Eq. (15) and Eq. (17) in Eqs. (5)-(11) we obtain the fundamental kernels of Eq. 
(4) and Eq. (12). For the sake of brevity we shall present here only one of the kernels, * /n iV n  which has been 

derived, to the author's best knowledge, here for the first time. 
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Expressions for D1 to D5 can be found in Appendix A. The other kernels are presented in Monteiro Jr. and Daros 
(2017) and Monteiro Jr. (2017). For the sake of conciseness, we will only show here results for multidirectionally 
compressed plates. 

4.1.2 Multidirectionally compressed plates 

The governing equation in this case is 

2 2 2
4

2 2
2 .x xy y

w w w
D w N N N q

x yx y

  
    

  
  (19) 

We shall present here a new fundamental solution for this equation via the Radon Transform. The latter has 
been successfully used for several partial differential equations. For a complete review of the Radon Transform the 
reader is referred to Ludwig (1966) and Helgason (1980) where a thorough description of the Transform 
properties are given. The Radon Transform is defined as 

ˆ( ) ( , ) ( ) ( ) ( ) .
s

f f s f dS f s d
 

     x m
m x x x m x   (20) 

Where s  x m is the transform hyperplane and m is the unit radius of the circle (Figure 3). Using the Radon 
Transform we find 
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 ( , ) ( ),

ˆ( ( ) ( )) ( ) ( , ).
k

k

s

f f s
s

   


 



x ξ m ξ

x x m m



  
  (21) 

 
Figure 3: Radon circle. 

 

With ξ denoting the source point and ℒ represents here a linear partial differential operator. Applying the 

Radon Transform to Eq. (19), we find 

2 2 * 1
( ) w (s, ) (s ),d s d s

D
       m m ξ   (22) 

With 

2 2
1 1 2 2m 2 m m m .xy yx N NN

D D D
      (23) 

With 1 cos( )m   and 2 sin( )m  . Based on Manolis et al. (2003), we propose, for 0  , Eq. (24) as a solution 

for Eq. (22), 

* i |s |1 i
w (s, ) | s | e .

2D


 
       
m ξm m ξ   (24) 

The inverse Radon transform is defined via the equation 

1
2

| | 1

1 ( , )ˆ( ) ( ( , )) .
4

s

f p
f f s d d

s
 






   

 
     

 
m m x

m
x m m   (25) 

Applying the Inverse Radon Transform in Eq. (24), we find 

 

        

1
2

| | 1

i |s |
1

2
| | 1

1
(| s |) 2log(| s |) ,

4

ie 1 1
i cos | s |

2 24

2 ci | s | cos | s | si | s | sin | s | ,
s

s

k

d

k
k

k k k k d






 


 



 




    

 
    

 

        





m x

m x
m

m ξ

m

m ξ m ξ m

m ξ

m ξ m ξ m ξ m ξ m



   (26) 

With k  , si is the sine integral function and ci  is the cosine integral function, defined in Eqs. (27.1) and 

(27.2). 

         

0 0

cos 1 sin
ci log , si .

x x
t t

x x dt x dt
t t




       (27) 

With   representing the gamma-Euler constant. Applying Eq. (26) on Eq. (24), we have 



José I. L. Monteiro et al. 

Buckling Analysis of Laminated Anisotropic Kirchhoff’s Plates via The Boundary Element Method 

Latin American Journal of Solids and Structures, 2018, 15(10 Thematic Section), e79 8/23 

            
2

*
2 2

0

1 1 1
( , ) log(z) i cos 2 ci cos si sin ,

24
w kz kz kz kz kz d

D k



 


   x ξ   (28) 

With | |z s  m ξ . However, fundamental solutions of elliptic operators are not unique and we may try other 

solutions. As in Rangelov et al. (2005), we try a solution with only the real part of Eq. (28). Removing the complex 
term of Eq. (28), thus 

         
2

*
2 2

0

1 1
( , ) log(z) ci cos si sin .

4
w x kz kz kz kz d

D k



 


     (29) 

Substituting Eq. (29) in Eq. (19), we find 

 

2 2 2
4

2 2 2 2
1

1 1
2 .

4
x xy y

w w w
D w N N N d

x yx y  

  
    

   
m

m
m ( )x -

  (30) 

Which is the integral representation of Dirac's Delta generalized function (see Rangelov et al. (2005)). 
A great advantage of using the Radon Transform is that the derivatives are straightforward. We present on 

following some of the kernels obtained for the singular and hypersingular BIEs. 

           
2*

1 , 2 , 1 22
0

1 1
ci sin si cos sign .

4
x y x y

w
kz kz kz kz m r m r m n m n d

kD







   

 n
  (31) 

        
2

*
2

0

1
ci cos si sin ,

4
nM a kz kz kz kz d






     (32) 

     2 2 2 2 2 2
1 2 1 2 2 12 1 .x x y ya n m m n n m m n m m          (33) 

The resultant moment is a singular kernel in z, so it must be divided in two parts: one regular and other 
singular. Using the singularity subtraction method, the regular part is given by 

           
2

*
2

0

1
log ci cos si sin .

4
R
nM a z kz kz kz kz d






       (34) 

Since 1 , 2 ,log( ) log( ) log(| |)x yz r m r m r   , the singular part can be rewritten as 

   

1 2

2 2
*

1 , 2 ,2 2
0 0

log 1
log ,

4 4
S
n x y

I I

r
M ad a m r m r d

 

 
 

    
 

  (35) 

The integral 1I  can be analytically evaluated and is given by 1 (1 ) log( ) / (4 )I r    . Integral 2I  can also be 

obtained in a closed form as 

        2
2

1
1 2 1 1 log 4 .

8
I  


        r n   (36) 

So after treating the singularity, the resultant moment can be expressed as 

           

            

2
*

2
0

2

1
log ci cos si sin

4

11
1 2 1 1 log 4 log .

8 4

nM a z kz kz kz kz d

r







 

 

      

        



r n

  (37) 

Likewise, the total shear force is given as 
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 
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


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

   

         


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  (38) 

With 2d c k b   and 

     
     

2 3 2 2 2
1 1 2

2 2 2 2 3
1 2 2

1 1 1 2 1 1

1 2 1 1 1 1 ,

x y y x y

x y x y x

b n n m n n n m m

n n n m m n n m

  

  
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  (39) 

       3 2 2 3 3 2 2 3
1 2 .xy xyx x

x x y x y y x x y x y y

N NN N
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D D D D

   
          
   

  (40) 

The kernel representing the corner forces are given as 

        
2

*
2

0

1
ci cos si sin ,

4jcR f kz kz kz kz d





     (41) 

With 

        2 2 2 2 2 2
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Doing a similar approach to the resultant moment, we obtain 
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R f z kz kz kz kz d

n n n n r r n n n n r r









       

    


        


  (43) 

The other Kernels for the hypersingular BIE can be concisely expressed as 
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With  

 2 2
1 1 2 2 .

i i i ix x y x x y y yg n n m n n n n m m n n m      (45) 
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  (46) 
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  (48) 

Notice that Eq. (47) is hypersingular in r for straight boundary elements and must be treated in the sense of 
Hadamard. 

4.2 Anisotropic media 

Using a similar approach as in the isotropic case, we obtain Eq. (49) as a fundamental solution for the problem 
of multidirectionally compressed anisotropic plates 
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Where 
k= / 

 and 
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Some of the other kernels associated with the fundamental solution are given on following, 
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Like before 
2d c k b  , now b and c  are described as 
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The other kernels can be found in Monteiro Jr. (2017). 

5 Numerical Implementation 

We used here quadratic isoparametric discontinuous elements with additional nodes on the corners. The 
matrix system is formed by the discretization of the plate's boundary in NE elements, given by 

,Hu = Gq + p   (57) 

with H representing the influence functions of the plate's forces, *
nV , *

nM , 
*
jcR , * /n iV n , * /n iM n , and 

* /
jc iR n ; G 

represents the influence functions of the plate's displacements, *w , * /w n , 
*
jcw , * / iw n , 2 * / iw  n n  and 

* /
jc iw n ; u is the vector representing the nodes’ displacements ( w , /w n , 

jc
w ) along the boundary; q is the 

vector representing the nodes’ forces ( nV , nM , 
jc

R ,) along the boundary and p is the vector with the domain 

integrals terms of Eqs. (4) and (12). 
The integral influence functions have been numerically integrated using a simple Gauss quadrature formula. 

Some of the influence functions associated with the fundamental solution present singularities. We have all types 
of singularities in the BIEs, weak (log(r)), strong (1/r) and hypersingular (1/r2). For the case of unidirectionally 
and multicompressed isotropic plates we were able to obtain analytical expression for the singular boundary 
elements. For the anisotropic case, singular boundary elements have been treated using special logarithmic Gauss 
quadrature and strong singular Gaussian quadrature formulae described in Kutt (1975a) and Kutt (1975b). The 
equations were implemented in a Matlab© code. 

6 Numerical Results 

In this section, some examples of polygonal plates with different boundary conditions and dimensions are 
presented. The validation of the proposed formulation was carried out with available analytical solutions and 
numerical results found in the literature. 

The displacements and load factors have been defined as dimensionless quantities as 2/ ( )ndw wD qa  and 
2 / (4 )ndN Na D  . The boundary conditions are arranged as Figure 4. For example, a SCFC plate means that edge 1 

is simply supported, edges 2 and 4 are clamped, and edge 3 is free. 

 
Figure 4: Plate’s boundary conditions 



José I. L. Monteiro et al. 

Buckling Analysis of Laminated Anisotropic Kirchhoff’s Plates via The Boundary Element Method 

Latin American Journal of Solids and Structures, 2018, 15(10 Thematic Section), e79 12/23 

Two types of meshes used within this work are illustrated in Figure 5. The first one has 12 elements (3 
elements per side), Figure 5a and the second has 20 elements (5 elements per side), Figure 5b. 

 
Figure 5: Boundary Element Mesh 

 

6.1 Isotropic simply supported multicompressed plate 

The first problem analyzed was a simply supported square plate of side a = 1m and thickness h = 0.01m. The 
material properties are E = 200GPa and ν = 0.3. In order to verify the precision of the solution, the displacement of 
the plate’s center point has been compared with the analytical solution given by Timoshenko and Woinowsky-

Krieger (1959). Applying y crN N  and  0.9x crN N , the displacement using a 20 elements mesh is 

51.1488797 10w   m, while the analytical is 
51.1295666 10w    m which represents an error of 1.71%. If a 28 

elements mesh is used, the displacement is 
51.1365988 10w   m with an error of 0.62%. It can be seen that a 

good agreement is obtained with a 20 elements mesh and the error is reduced as the number of elements increase. 

Figure 6 shows the displacement of the same plate with two meshes and a variable xN . The asymptoptic 

behaviour of the plate’s displacement at the critical load can be clearly seen in Figure 6. Near the critical load the 
proposed solution has a poor performance with only 3 elements per side (12 elements mesh), but is in good 
agreement with the series solution of Timoshenko and Woinowsky-Krieger (1959) with the 20 elements mesh. 

 
Figure 6: Critical load of a simply supported square plate y crN N  and xN  variable. 
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6.2 Isotropic multicompressed plate – other boundary conditions 

Liew and Wang (1995) used the Rayleigh-Ritz method to analyze the buckling of some multicompressed plates. 
They presented results for several cases of polygonal plates with constant linear distributed load perpendicular to 
the plate’s edges (see Figure 7). For the case of square plates, x yN N N  . 

 
Figure 7: Square plate compressed in x and y direction. 

 

Table 1 presents the load factors obtained with the proposed solution with different boundary conditions. The 
following material properties are E = 200GPa, and ν = 0.3. The results are compared with the load factors of Liew 
and Wang (1995). With the 12 elements mesh most cases present a difference lower than 1%. The critical load in 
the formulation presented is calculated using the displacement. The case with only one edge clamped is the one 
that presents the most difficult convergence, but refining the mesh the difference decreases. Applying a 20 elements 
mesh the difference is approximately 2.29% and with a 28 elements mesh the difference is around 1.66%. 

Table 1: Comparisons of buckling load factor 

Boundary 
Condition 

BEM Solution 
12 

elements 
Difference [%] 

CCCC 13.088 0.10 
CCSS 8.0106 0.2 
FFFC 0.6089 3 
FFCC 1.4368 0.65 

6.3 Geometry influence on the critical buckling load on isotropic plates 

A simply supported square plate has been bevelled to assess the influence of the geometry on the critical 
buckling load. The cases analyzed are illustrated in Figure 8. 

 
Figure 8: Beveled plates 
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To analyze these cases we assume, 0y xyN N   and xN  varying from 50% to 150% of the critical buckling 

load. The material properties are the same as in the previous examples and a mesh with 3 elements per edge was 
used herein. 

The effect of the bevels in the critical buckling load can be seen in Figure 9. As expected, the critical buckling 
load is increasing with the reduction of the square plate’s area when compared with the analytical solution of a 
simply supported square plate. 

 
Figure 9: Critical buckling loads of the beveled isotropic plates 

 

The critical load increase for case I is around 3.8%, which is less than the reduction of the area that is of 4.5%. 
Whilst cases II and III have the same area, both present different critical loads. Case II rises the critical load in 
approximately 6.4% and case III has an increase of approximately 8%, which is almost the reduced area for both 
cases, 9%. This difference is probably due to the symmetries present in case III. Case IV, similar to case I, presents 
an increase of approximately 12.6%, less than the area reduction (13.5%). The increase in the critical buckling load 
for case V (approximately 17.6%) is close to the area reduction (18%). 

Refining the mesh, the critical load presents values of approximately 3.4% for case I (Figure 10) and 8% for 
case III (Figure 11), with a 7 elements mesh per side for both cases. 

 
Figure 10: Convergence Study Case I 
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Figure 11: Convergence Study Case III 

 

6.4 Compressive in-plane forces combined with shear in-plane forces for isotropic plates 

In order to assess the effect of the shear in-plane forces applied together with compressive forces a clamped 
square plate has been analyzed. In this case y crN N , xy crN N  and xN  variable, with crN  representing the 

critical buckling load of the bicompressed case. The plate’s dimension are a = b = 1 m, h = 0.01m and the material 

properties are E = 200GPa and 0.3  . 
Figure 12 and Figure 13 show the effects of the shear in-plane force on the plate’s displacement field with 

0,0.3,0.5,0.8   and a 12 elements mesh. The plate’s deflection is increased with the presence of xyN  and the 

displacement field is distorted (a rotated ellipsis). Figure 14 shows the effect in the critical buckling load. As 
expected, the critical load is reduced with the increase of xyN . With 0.3  , the reduction was approximately 3% 

and with 0.5   the critical load was reduced by approximately 8%. 

 
Figure 12: Displacement isocurves of a clamped square plate. 
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Figure 13: Displacement fields of a clamped square plate. 

 
Figure 14: Critical buckling load of a clamped square plate with combined compressive and shear in-plane forces. 

 

6.5 Orthotropic plates 

Displacement curves for the case where there are in-plane forces and out-plane forces acting on the plate are 
not available in the literature. Lekhnitskii (1968) developed a series solution for the case of orthotropic plates with 
a constant distributed out-of-plane force. 

A simply supported square orthotropic plate of 1m dimension, thickness, h = 0.01m, material properties 

200lE  GPa, 100tE  GPa, 48ltG  GPa, 0.25lt  , and 1q  N\m2 has been considered. The series solution at 

the center of the plate gives a displacement of 
073.2624 10 m and the proposed BEM solution using a 20 elements 

mesh gives a displacement of 
073.2736 10 m, which represents an error of 0.34%. 



José I. L. Monteiro et al. 

Buckling Analysis of Laminated Anisotropic Kirchhoff’s Plates via The Boundary Element Method 

Latin American Journal of Solids and Structures, 2018, 15(10 Thematic Section), e79 17/23 

Lekhnitskii (1968) also developed solutions for the critical buckling load of some unidirectionally and 
bidirectionally compressed plates. Parameters for the three problems are the following: SSSS unidirectionally 
compressed and bicompressed. Figure 15 illustrates numerical BEM results for the buckling loads for three 
problems that have been analytically studied by Lekhnitskii. Using the 12 elements mesh for a square plate with 

1m dimension, h = 0.01m, 20lE  GPa, 100tE  GPa, 38, 46ltG  GPa, 0.3lt   and a perturbation in the form 

of a concentrated force of 1q  N. 

 
Figure 15: Critical buckling loads for orthotropic plates 

 

6.6 Symmetric laminated plates 

Shojaee et al. (2012) applied the FEM to analyze several symmetric laminates compressed in the x direction. 

The material properties and geometry are: a = b =10m, h = 0.06m, El/Et = 2.45, Glt/Et = 0.48, 0.23lt  . The 

buckling load factor is defined as 
2 2

0,1/ ( )Nb D  , with 0 ,1D  defined as the flexural rigidity along the fiber 

direction of a plate with a 0° angle ply. Table 2 shows the buckling load factors with a 12 BEM elements mesh for 
different configurations of ply orientation angles. The BEM proposed solution shows good agreement with FEM 
results. 

Table 2: Buckling load factor of laminates 

Laminated Method 
Boundary Conditions 

SSSS CCCC CSCS SCCS 

[0°,0°,0°] 
Shojaee et al. 

(2012) 
2.36 6.71 4.27 3.93 

BEM 2.36 6.727 4.27 3.93 

[15°,-
15°,15°] 

Shojaee et al. 
(2012) 

2.43 6.57 4.41 3.96 

BEM 2.426 6.57 4.399 3.94 

[30°,-
30°,30°] 

Shojaee et al. 
(2012) 

2.59 6.29 4.79 4.00 

BEM 2.577 6.258 4.742 3.98 

[45°,-
45°,45°] 

Shojaee et al. 
(2012) 

2.66 6.10 4.78 4.01 

BEM 2.646 6.10 4.828 3.989 

[90°,0°,90°] 
Shojaee et al. 

(2012) 
2.36 6.70 4.36 3.93 

BEM 2.36 6.70 4.36 3.93 
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6.7 Influence of the angle ply on the critical load of an orthotropic plate 

Figure 16 illustrates the critical load of a simply supported square plate with 1x1m, h = 0.01m, El = 200GPa, 
Et = 100GPa, Glt = 20GPa, νlt = 0.25 for different angle plies. The greatest increase in the critical load has been found 
for a 45° angle ply in the present example, around 35% increase. We see that the fibers' angle ply has an important 
effect on the critical load. This effect is highlighted in Figure 17, which illustrates the displacement behavior of the 
plate with a 0° ply-orientation angle compared to the plates with 30° and 60° ply-orientation angles. The here 
developed fundamental solution can be used as a tool for optimizing the stability project of laminated polygonal 
plates. 

 
Figure 16: Critical buckling load of a simply supported square plate with different angle plies. 

 
Figure 17: Critical buckling load of a simply supported square plate with ply-orientation angles of 0°, 30° and 60°. 
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6.8 Geometry influence on the critical buckling load of orthotropic plates 

The same geometries of the isotropic case were studied for an orthotropic plate. The properties for this case 

are 200lE  . GPa, 20tE  GPa, 7.69ltG  GPa 0.3lt  . Figure 18 illustrates the plate’s displacement. The same 

effect of the isotropic case is observed in the orthotropic case. However, the increase in the critical buckling load 
for the orthotropic plate are greater than for the isotropic case. The orthotropic critical buckling loads have been 
increased approximately by 5%, 15%, 16%, 20%, and 31% for each case respectively with 3 elements per edge. 
This difference is probably due to the differences between the elastic modulus along the fiber and the elastic 
modulus transversal to the fiber. Refining the mesh, case I tends to decrease the critical load by approximately 3.5% 
(Figure 19) whilst case III decrease to approximately 15% (Figure 20). 

 
Figure 18: Critical buckling load for beveled orthotropic plates 

 
Figure 19: Case I convergence 
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Figure 20: Case III convergence 

7 Conclusions 

We have developed new fundamental solutions using the Radon transform to solve the buckling problem for 
isotropic and anisotropic plates under the combined action of in-plane compressive forces/shear forces and out-
of-plane loads. Several numerical examples were shown for isotropic, orthotropic, symmetric laminated and 
monoclinic materials with different boundary conditions and geometries. The results obtained were compared with 
available analytical solutions and numerical results in the literature. The present formulation can be used without 
domain integrals for the case of concentrated loads. As long as 0  , this BEM solution can be used with the 

combined action of compressive and shear in-plane forces. Another interesting feature of the present formulation 
is the numerical evaluation of the actual displacement plate’s field ( , )w x y  near the critical load. With the true 

displacement field it is possible to observe the numerical behavior of the plate’s displacement surface versus 
analytical expressions of ( , )w x y , which are obtained with a great number of elements in a sum series. Hence, we can 

assess BEM’s numerical precision for the whole plate’s displacement surface ( , )w x y . The formulation presented 

here is general, hence the plate’s displacement behavior can be observed for various kinds of loads, not just the 
point force used in this work. The obtained BEM numerical results show excellent agreement when compared with 
both analytical and previously published FEM results. The new fundamental solutions can be used for optimizing 
the stability project of polygonal, laminated anisotropic plates. 
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Appendix A – D Expressions. 
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