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Stress effects on the kinetics of hydride formation and  
growth in metals 

Abstract 
Although metal hydrides are considered promising candidates for solid-
state hydrogen storage, their use for practical applications remains a 
challenge due to the limitation imposed by the slow kinetics of hydrogen 
uptake and release, which has driven the interest in using metal 
nanoparticles as advanced materials of new hydrogen-storage systems 
since they display fast hydrogenation and dehydrogenation kinetics. 
Nevertheless, the understanding of the adsorption/release kinetics 
requires the investigation of the role played by the stress which appears to 
accommodate the misfit between the metal and hydride phases. In this 
paper, we present a continuum theory capable of assessing how the misfit 
stress affects the kinetics of hydride formation and growth in metallic 
nanoparticles. The theory is then applied to study the kinetics of 
adsorption/release in spherical particles. This work extends Duda  and 
Tomassetti (2015, 2016) by considering stress-dependent hydrogen 
mobility. 

Keywords 
diffusion-induced stress, configurational forces, hydrogen-storage systems, 
phase transformation 

 

 

1 INTRODUCTION 

When immersed in a hydrogen gas atmosphere, metals such as palladium and magnesium, can soak up 
hydrogen like a sponge by forming metal hydrides. In fact, as first reported by Graham (1866), ‘’at room 
temperature and atmospheric pressure, palladium can absorb up to 900 times its own volume of hydrogen. That 
means, if you were to pump hydrogen into a bottle, it would take enormous pressure to store the same amount 
easily absorbed in a palladium bed of the same volume” (Wolf  and Mansour, 1995). For this reason, metal 
hydrides are considered promising candidates for solid-state hydrogen storage, although their use for practical 
applications remains a challenge due to the limitation imposed by the slow kinetics of hydrogen absorption and 
desorption (Sakintuna et al., (2007), Jain et. al. (2010), Rusman and Dahari  (2016)). 

The kinetics of hydrogen absorption and desorption by a storage metallic material is the outcome of a 
sequence many steps. For instance, the steps involved in hydrogen absorption includes: surface adsorption and 
dissociation of hydrogen molecules, and surface penetration of hydrogen atoms; diffusion of hydrogen atoms 
within the host metal; phase transformation from a low-hydrogen-content phase ( -phase) at low H2 pressures 

to a high-hydrogen-content phase (hydride phase or  -phase). Hydrogen desorption occurs in the reverse order. 

Hence, the resulting kinetics can only be as fast as the slowest step, called the rate-determining step, the 
identification of which is crucial for understanding and improving the kinetics properties of metal hydrides. The 
latter has been achieved through several approaches such as catalyzing, compositing, and nanoscaling (Wang et 
al. (2016)). In particular, the use of metal nanoparticles as advanced materials of new hydrogen-storage systems 
has been considered as a good alternative since they display fast hydrogenation and dehydrogenation kinetics. 
However, there is a growing recognition that the performance of these systems can be affected significantly by the 
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strain and stress generated during the processes of hydrogen uptake and release (Baldi et al. (2014) and Narayan  
et al. (2016)). 

It is well known that hydrogen absorption/desorption is accompanied by the generation of stress. In fact, 

during hydride formation/decomposition, the   and   phases are separated by a sharp and coherent interface 

which results in the generation of stress to accommodate the strain mismatch between the phases. Further, stress 
is also generated to accommodate inhomogeneous hydrogen-induced lattice expansion during hydrogen diffusion 
in both phases. It is worth mentioning that the hydrogen-induced lattice expansion is also responsible for 
relaxation phenomenon known as the “Gorsky Effect” (e.g., Vӧlkl, 1972). 

In this paper, we present a continuum theory capable of assessing how the stress affects the kinetics of 

hydrogen uptake and release in metals under the assumption that the    transformation is the rate-

determining step. This assumption has been discussed in Drozdov et al. (2015a, 2015b), who indicate that the 
assumption of fast diffusion in both and phases are justifiable. The theory is suitable to describe the behavior of 

metal-hydrogen systems near the transition chemical potential at which the   and   phases would coexist in 

absence of stress. It is based on the constitutive hypothesis that -in each of the phases- the bulk hydrogen 
concentration is constant and given by corresponding value in at the transition chemical potential. As Gurtin and 
Voorhees (1993) observes, this assumption is discussed by Mullins and Sekerka (1963). This work extends the 
works of Duda  and Tomassetti (2015, 2016) by considering stress-dependent hydrogen mobility, an issue whose 
relevance has been addressed in the literature (e.g., Gronbeck and Zhdanov  (2011) and Zhdanov  (2010)). As in 
Gronbeck  and Zhdanov (2011), we assume that hydrogen mobility is an increasing function of the mean stress. 
For related developments, see also Gurtin  and Voorhees (1993), Fried  and Gurtin  (1999) and Feitosa  et al. 
(2015). As in the mentioned works, we restrict our attention to small-strain and isothermal conditions. The 
resulting quasistatic system of equations form a moving-boundary value problem for diffusion coupled with 
elasticity. The unknown fields are the displacement and chemical potential, both of which continuous across the 
moving interface. The resulting free boundary problem is analogous to the so-called quasi-static Stefan problem 
(e.g., Gurtin (1986)). 

The theory is applied to study the kinetics of adsorption/release of hydrogen in a spherical particle, a 
problem that is amenable to analytical treatment. In this case, the spherical particle is partitioned in the   and 

  phases, separated by a concentric sharp interface, with its inner core occupied by the   ( ) phase during the 

  to   (  to  ) transformation. Hydrogen diffusion takes place in the outer core only. We show that the 

system displays hysteresis and derive an equation expressing the ratio of the H2 pressures that trigger the    

and    transformations. This equation can be seen as a generalization of the one obtained in Schwarz and 

Khachaturyan (2006). We also show that in the course of the    (  ) transformation, hydrogen diffusion 

slows down (speed up) in the   ( ) phase because that phase is under compressive (tensile) mean stress. 

Hence, we predict that the presence of stress delays (accelerates) the   to   (   to ) transformation. Most 

importantly, we provide quantitative results that can be confronted with experimental results to assess the role 
played by stress on hydrogen uptake and release in single spherical particles. In the case of nanoparticles, these 
results can be obtained by using nanoplasmonics sensing (see, for instance, Langhammer  et. al. (2010) and 
Syrenova et. al. (2015)). This comparison, however, is outside the scope of this paper. 

The paper is organized as follows. In Section 2, we reprise and extend the theory presented in Duda  and 
Tomassetti (2015, 2016) for the problem of the solute-induced diffusion and phase transformation in elastic 

solids. In Section 3, the general theory is specialized to describe the kinetics of the    transition in spherical 

particles. Finally, in Section 4, an analytical study concerning the evolution of the    interface is presented. 

Throughout this paper, the standard notation of continuum mechanics is adopted (Gurtin  (1981)) and 
symbols are defined the first they appear. 

2 THE CONTINUUM MODEL 

Let ℬ be the reference domain for a solid solution composed of a host elastic solid and an interstitial solute. 
The domain ℬ is the stage of two interdependent processes taking place at two different scales, namely a 
macroscopic (mechanical) one due to the deformation of the host solid and a microscopic (chemical) one due to 
solute diffusion through the interstices of the host solid. 
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As Figure 1 indicates, ℬ is separated by the moving interface ( )t  into complementary time-dependent 

subdomains  ( )t  and  ( )t , occupied by the phases   and  , respectively. 

 
Figure 1: Two-phase metal-hydride system in a hydrogen gas environment. 

 

Here and henceforth, when writing f  for a given quantity, the index   equals  or   according whether 

the quantity is evaluated in subdomains   and  . 

The remaining of this section follows closely Gurtin and Voorhees (1993) and Duda  and Tomassetti  (2015, 
2016). See also Fried  and Gurtin (1999). 

2.1 Bulk equations 

We now introduce the field equations of the theory that hold in bulk, it means, away from the interface   
and the boundary   of ℬ. These equations, comprised by the force and solute content balances, are given by the 
local balance relations 

div T 0  and -div ch =  ,  (1) 

where div is the divergence operator, T  is the Cauchy stress tensor, h  is the solute flux vector, c  is the solute 
content density, and a superposed dot denotes differentiation with respect to time. Notice that body forces, inertia 
and solute supply have been neglected. 

In addition to the aforementioned balances, one should consider as basic an energy imbalance whose local 
version in bulk admits the representation 

c        T E h 0    (2) 

where is the grand canonical potential density, 1/ 2( )T  E u u  is the infinitesimal strain, given by the 

symmetric part of the displacement u ,  is the chemical potential and   its gradient. 

We refer the reader to Fried and Gurtin (1999) for a detailed derivation of the foregoing equations. 

2.2 Interface and boundary conditions 

We assume that the    interface is coherent, propagates without dissipation, and that the local chemical 

equilibrium prevails there. These conditions, together with the force and solute balances localized at the interface, 
yield the interface conditions of the theory presented in Duda and Tomassetti  (2015, 2016). 
• Continuity of the displacement and chemical potential 

u 0    , 0     ,  (3) 

where ( )A A A       denotes the jump in a field A  across the interface. 

• Force and solute content balances 

T m 0    , 0c    h m          ,  (4) 

where   is the velocity of the interface in the direction of the unit normal m , which is directed into the phase   

(see Figure 1). 
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• Maxwell relation 
To describe the motion of the sharp interface an extra condition should be added: the interface motion is 

dissipationless, this implies that 

( ) 0.    u m Tm      (5) 

giving the so-called Maxwell condition. 
We consider   immersed in a reservoir of hydrogen at pressurep . Under this assumption the gas pressure 

can be neglect from the mechanical point of view, and the chemical equilibrium prevails at the metal-gas interface. 
Thus, we have the mechanical boundary condition 


Tn 0

 ,  (6) 

where n is unit outward normal vector field on   (see Figure 1). The chemical boundary condition given by 

2R H
1
2

     with 
2 2

0
H H

0
lnB

pk T
p

     (7) 

where R is the solute chemical potential in the reservoir, and 
2

0
H is the chemical potential of the gaseous 

hydrogen at the reference pressure 0p . 

2.3 Constitutive equations 

Guided by the dissipation inequality (2), we introduce constitutive equations for  , T , c and h  in terms of 

E ,   and  . After using the Coleman-Noll procedure, it can be concluded that the conditions must hold (Fried 

and Gurtin (1999)): 

( , )   E
, 

( , )
c  




 


E
, 

( , ) 



E

T
E


, ( , , ) .      h M E


  (8) 

The response function M


is a positive semidefinite tensor-valued function. Therefore from the constitutive 

point of view, the theory is defined by the response functions 


 and M


, it means, four constitutive functions, 

two for phase  and two for phase  . 

We now present a constitutive specialization suitable for describing situations involving small deviations of 

the transition chemical potential eq  at which the phases  and   would coexist in a stress-free and stable 

equilibrium, with the corresponding solute content densities given by c andc , with c c   (see Figure 1). 

We assume the additive decomposition of the total strain E  into its elastic part eE and its stress-free part 

0E , at phase   

0e  E E E , 0 (c )ˆ  E I   (9) 

observes that 0E has a purely dilatational form. We also assume that 

0ˆ ( ) ( )c c c       and 0ˆ ( ) ( ) Tc c c e       ,  (10) 

where Te is the transformation strain associated with the possibility of structural transformation from the -

phase to the  -phase, 0c   is a reference value of the solute content in the  -phase for measuring the strain, 

 is a material parameter. We define the misfit strain between the   and   phases 

0 ˆ ˆ( ) ( )c c       .  (11) 
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The constitutive response for the grand canonical potential is assumed to have the form 

22( , ) c ( ) (tr )
2eq e eG 
       E E E ,  (12) 

where   and G  represent the Lame´ elastic moduli, assumed be the same for both phases. 

From (8)2,3,4, the response function M


 is allowed to depend on the stress T  and solute content c . 

Therefore, we consider the isotropic specialization given by 

(c , ) M c   M T I


 with ( )M m f      (13) 

where m  is the stress-free solute mobility, and ( ) 0f    accounts for the stress effect on the solute mobility 

M through the mean stress tr / 3  T , where trT  is the trace of the stress tensor T . For instance, if one 

accounts for the stress-dependency of the activation energy for diffusion, it can be shown that ( )f   can be 

written as (Gronbeck and Zhdanov, 2011). 

( )f e  
   ,  (14) 

where 0   describes the effect of the stress on the hydrogen mobility. For 0   notice that the hydrogen 

mobility increases with the mean stress  . 

From (8)2 and (12) we have 

 in  ( ),
 

 in  ( ),
c t

c
c t
 

 

 


   (15) 

thereupon the solute content density c  is a piecewise-homogeneous field, and hence 0c   in bulk. From (8)3 
and (12) the stress tensor T  is given by 

(tr 2e eG T E )I E ,  (16) 

with 

 
 

( in ( ),
( in )

ˆ
ˆ ( .e

c t
c t

  

  

 

)I
E E

)I






  (17) 

From (8)4 and (13) the solute flux h is given by 




( )c    in  ( ),
 

( )c    in  ( ).
m f t
m f t

   

   

 
 

   
h   (18) 

A final remark concerning the determination c , c  and eq  is in order. Indeed, classical thermodynamics 

arguments can be invoked to show that these quantities can be obtained by solving the set of equations 

'(c ) '(c )  
 

, 
(c ) (c )

'(c )
c c
 


 

 







 


, '(c )eq  


,  (19) 

where 


 is the free-energy response in absence of stress. The free-energy response can be obtained by using 

statistical mechanical methods. See, for instance, Ledovskikh et al. (2006) and references cited therein. Notice 
that the statistical mechanical treatment for metal-hydrogen systems undergoing phase transition was proposed 
by Lacher (1937). 
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2.4 Summary of the governing equations 

We now summarize the governing equations of the theory under consideration for the moving boundary-
initial value problem. The unknown quantities are: ( , )tu x , ( , )t x  and ( )t  

• Bulk equations 

div T 0 , (tr 2e eG T E )I E , (cˆ )e   E E I , ( )/2T  E = u u , div h 0 , m   h , 

( )cm m f   , (tr )/3  T ,  (20) 

with f  given by (14); 

• Interface conditions 

 

0,    ( ) ,
0,    0,

0,

c c v 




   
 
   

Tm m h m
u

u m Tm

         
         
   

  (21) 

with   given by (12); 
• Boundary conditions 

Tn 0 , R  . (22) 

Notice that the problem described by equations (20) - (22) is a “Stefan Problem” (e.g. Vuik (1993)) due to 
the presence of a phase boundary that can move with time. In this case, the so-called Stefan condition is provided 
by (21)3. 

3 SPHERICAL GEOMETRY 

In this section, we specialize and solve the equations for spherical particles. In this case, it is worth 
mentioning that the equations describing the lattice strain in the core-shell particle were earlier derived by other 
authors. See, e.g., a brief review in the Supporting Information for and Syrenova  et. al. (2015). 

Let us now consider that  is a solid sphere of radius R , divided into two phases   and  , by a concentric 

sharp interface ( )t  of radius ( )t . The inner region is occupied by the  -phase, while the outer region is 

occupied by the  -phase 

 { :| }R x x | ,  { : 0 | (t)}   x x | ,  { : (t) | }R   x x | .  (23) 

The concentric sharp interface and the normal velocity are 

( ) { :| ( )}t t x x | , (t) v  .  (24) 

The stress, strain and chemical potential fields are obtained from the knowledge of the current position of 
the interface as will be discussed below. Thanks to spherical symmetry of the problem 

( ) (r)uu x e , 
| |

 xe
x

, ( ) (r) x , | |r  x   (25) 

and 

' ( )uu
r

    E e e I e e , ( )r      T e e I e e ,  (26) 

where 'a  denotes /da dr . 

According to the equations (16), (17) and (26), the stress components are then given by 
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2 (r)(r) '(r) 2 '(r) (3 2G) (c ),

2 (r) (r)(r) '(r) 2 (3 2G) (c ),

(r)tr ( ) (r) 2 (r) (3 2G) '(r) 2 (c ) .

ˆ

ˆ

ˆ

r

r

uu Gu
r
u uu G
r r

ur u
r

  

   

     

  

  

  

         
         

          
T







  (27) 

Taking (27) into account, the force balance described in (1)1 can be rewritten as 

2
2

1 ( (r)) 0d d r u
dr drr

      
,  (28) 

which general solution is given by 

1

2
1 2

  for  0 ,
(r)

  for  .

C r r
u C

C r r R
r










      

  (29) 

From conditions (3)1, (4)1 and (6), we have 

3

1

3

1

3

2

0

0

0

(c ) 3 4 ,ˆ

ˆ

3(2G )

4
(c ) ,

3(2G )

.
(2G )

C G
R

G
C

R

C


 


 









 


              
        

 










  (30) 

where 3 2G 3   is the bulk modulus. 
We now consider the determination of the chemical potential. From (27)3 and (29), it follows that trT  is 

piecewise homogeneous. Hence, after using (20), it follows that  is harmonic in bulk. This implies that ( )r  

satisfies the equation 

2 ( ) 0d dr r
dr dr


     

,  (31) 

the general solution of which is given by 

1

2
1

  for  0 ,
( )

  for  .

D r
r D

D r r R
r











      

  (32) 

From conditions (3)2, (7)1 and (5), we have 

1D


 , 1 ( )R RD
R




  


        
, 2 ( )R

RD
R




  


       
  (33) 

where 

3

0( ) 2 1eq R
    

             
, 0

2

0

6
(2G )(c c )

G

 







 


.  (34) 

Notice that (32) and (33) imply that 
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2

0  for  0 ,
'( )

  for  .R

r
r R r R

R r



   



           

  (35) 

4 THE EVOLUTION EQUATION OF THE INTERFACE 

We now obtain the evolution equation of the interface. From (4)2, (18) and (34) we have 

( )c
(t)

c c
Rm f R
R

  

 

 


 

          
   (36) 

with 0  and   given by (34). The equation (36) has been obtained by assuming that  -phase occupies the 

inner core of the sphere. Otherwise, when the  -phase occupies the inner core, c ( c ) must be replaced by c  

(c ), and m f   bym f  . 

After using (14), (27)3, (29), and (30), we rewrite equation (36) as 

 3 3(1 ) exp( ) (2 1) 1y yy Ay B y       (37) 

where 

=y
R


, 
2c c

c ( )eq R

R
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 

 


 

        
, 04

2
G

A
G 






      


, 0 
R eq

B


 



,  (38) 

with 0  defined in (34). Notice that   is a characteristic time. 

We are looking for solutions of (37) such that 1(0) =y and 0y  . This situation describes the beginning of 

the process which the sphere is in the  -phase. The  -phase nucleates at the boundary and the interface moves 

toward the interior of the sphere. We refer to this process as the    transformation, or process of 

absorption. 
When the specimen is saturated at the beginning of the process, i.e., 0(0) =y , that means all the sphere is in 

the  -phase. If the process continues, i.e., 0y  , the  -phase nucleates at the boundary. We denote this process 

as the    transformation, or process of desorption. 

We now use equation (37) to determine two salient features of the   (  ) transformation, 

namely the necessary condition for its occurrence and the time needed for its completion. We begin by noticing 
that if the solid sphere is initially in the single  -phase: 
• It remains in the single  -phase if 

0:R R eq
         (39) 

• The   transformation initiates when 

0:R R eq
         (40) 

On the other hand, if the solid sphere is initially in the single  -phase: 

• It remains in the single  -phase if 

0:R R eq
       ,  (41) 

• The    transformation triggered when 
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0:R R eq
       .  (42) 

Therefore, the absorption/desorption cycle displays a hysteresis, with loop amplitude given by 

22
00

0

412
2

(2 )(

(1 )

) (1 )( )R R

GG
G c c c c

   

   


  

 
    

 


 


,  (43) 

where / ( 2 )G     is the Poisson’s ratio. Taking (7) into account, this expression can be written as the 

following ratio of the gas pressures p   and p  needed to trigger the    and    transformations 

2
0

0

(1 )8
ln 4

(1 )( )b

G

c c
pk T
p

 

 
 








   


    



  (44) 

It is worth noticing that for situations in which :     , 0 0 0c c   , and 0Te  , the foregoing equation 

simplifies to 

28 ( )
ln

(1 )

(1 )
b

pk
G c c

T
p

 
 

 

 






     


  
  (45) 

which is identical to the equation obtained by Schwarz and Khachaturyan (2006). Notice that these authors 
measure solute content in number of solute atoms per interstitial sites, whereas here we use solute number 
density. 

We now derive expressions for the times    and    required for the    and    

transformations to occur. After defining 

3 3

(1 )( )
exp( )( (2 1) 1)

x xf x
Ax B x


 

   (46) 

and using (37), it follows that    and    are given by 


1

0
( ) | ( ) | and ( ) | ( ) |

y

y
y f x x y f xd dx            (47) 

Figure 2 depicts the time dependence of the volume fraction of hydride phase 

3

3 3

(1 )

(1 )

c

c

y

y y c






 
  (48) 

during the   to   transformation for / 4.c c    and different values of A and B . When the mobility is not 

affected by stress ( 0A  ), one can see that stress accelerates the   to   transformation. Then, the 

transformation time is shorter when the role played by stress is accounted for. However, when a stress-

dependent mobility is considered, the   to   transformation slows down and the corresponding transformation 

time longer when compared to the case in which the mobility is not affected by stress. Therefore, according to the 

simple model presented in this paper, stress affect the kinetics of the   to  transformation in two opposite 

ways, speeding up and slowing down the phase transformation. These results are presented for illustrative 
purposes only. 
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Figure 2: Time evolution of the hydride volume fraction for / 4.c c    and distinct values of A and B. 

 

5 CONCLUSIONS 

A continuum theory aimed at describing stress effects on the kinetics of hydrogen uptake and release in 
metals was presented in this paper. The theory was built upon on the following simplifying assumptions: the 

/  ( /  ) transformation is the rate-determining step in the absorption (desorption) of hydrogen; the 

deviation of the hydrogen chemical potential from the transition chemical potential at which the   and   

phases would coexist in absence of stress is small; in each of the phases, the bulk hydrogen concentration is 
constant and given by the corresponding value in at the transition chemical potential. As an application of the 
theory, an analytical treatment was provided to study the kinetics of adsorption/release of hydrogen in a 
spherical particle. It was shown that the system displays hysteresis and an equation expressing the ratio of the 

2H pressures that trigger the /   and /   transformations was derived. Further, it was show that in the 

course of the /  ( /  ) transformation, hydrogen diffusion slows down (speed up) in the  ( ) phase 

because that phase is under compressive (tensile) mean stress. Hence, it was predicted that the presence of stress 

delays (accelerates) the   to   (   to  ) transformation. To deal with more general geometries and 

conditions, we believe that a phase-field model of the Cahn-Hilliard type would provide an interesting avenue for 
exploration. Such a model could be calibrated with the analytical model presented here. 
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