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Wave propagation in cellular locally resonant metamaterials 

Abstract 
Locally resonant acoustic metamaterials have recently attracted a great in-
terest due to their dynamic behaviour, characterized by a band gap at rela-
tively low frequencies. This paper provides a numerical study, by means of 
finite element modal analyses, of the dynamic properties of 1D mass-in-
mass and 2D cellular locally resonant metamaterials. The 2D metamaterial 
is constituted by a cellular metallic lattice, filled by a soft light material with 
heavy inclusions or resonators. The influence of material parameters and 
cell geometry on the band gap width and frequency level are explored. In 
addition to the usual square lattice we also consider a hexagonal one, which 
proves to be more efficient for wave filtering.  
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1 INTRODUCTION 

Metamaterials are artificial composite man-made materials that, thanks to a special microstructure, exhibit 
peculiar acoustic, optical or mechanical properties. Metamaterials gain their properties from a rigorous design of 
low dimensional inhomogeneity, often periodically distributed, rather than from the chemical composition of their 
components, as found in traditional materials. 

Within this broad class, locally resonant acoustic metamaterials (LRAM) exhibit unusual dynamic behavior, 
with band gaps, i.e. regions where wave propagation is inhibited. Band gaps are also present in some biological 
structures as in the frustule of diatoms that use this property to provide an efficient light trapping mechanism, 
Romann et al. (2015). In artificial LRAM the limit frequencies of the band gap essentially depend on the frequency 
of the resonators and hence they can provide an effective attenuation of harmonic waves of relatively low fre-
quency, e.g. in the range of some kHz, without requiring very large dimensions as it happens for phononic crystals 
(Wu et al., 2007; Croënne et al., 2011; Hussein et al., 2014; Miniaci et al., 2015; Ma and Sheng, 2016; D'Alessandro 
et al., 2016). This property can be exploited in different contexts ranging from seismic insulation (Miniaci et al., 
2016) to impact absorbers in small cars (Comi and Driemeier, 2017). Usually LRAMs are composed of a matrix with 
a periodic arrangement of small resonators wrapped in a soft coating. When the frequency is close to the local 
resonance frequency of the resonating mass, they absorb and store the kinetic energy, creating a damping mecha-
nism, even without any material dissipation. Figure 1 illustrates a unit cell of a 2D lattice of a LRAM and the one 
dimensional idealization under the hypothesis that the phase speed of the set core and coating is significantly lower 
than that of the matrix material. 

Many researchers have investigated the behavior of these materials. While part of the literature focuses on 
simple numerical simulations of lumped mass-lumped stiffness models, constructed as series of properly arranged 
rigid bodies and linear springs (Huang and Sun, 2009, Wang, 2014, Tan et al., 2014), a number of works have been 
devoted to continuum models of LRAMs with their optimization in 2D (Bacigalupo et al., 2016; Krushynska et al., 
2014), and 3D (Krushynska et al., 2017). 
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Figure 1: Sketch of metamaterials with local resonators. (a) 2D unit cell lattice: heavy core (resonator) with soft coating 

inside a stiff matrix; (b) idealized 1D lattice with internal resonator. 

 

In this work we study, by means of finite element modal analysis, the attenuation properties of different 
LRAMs. First the effect of non-homogeneous resonators distribution in lumped mass-lumped stiffness models on 
the energy absorption is studied. Then we analyze the band structures of special continuum three-component cel-
lular metamaterials. The geometries consist of square and hexagonal cells, filled by a soft-light material in which 
cylindrical heavy particles are inserted. Cellular materials are already widely employed in impact absorbers (Ivanez 
et al., 2017, Meran and Muğan, 2014), but their use as a matrix for locally resonant acoustic metamaterials seems 
to be new and promising to mitigate the effect of impacts. The effect of including particles of different size within 
the same cell is also explored. The new configurations here proposed, with different resonators non-symmetrically 
distributed in the cell, allow to open several bandgaps. 

2 ONE DIMENSIONAL WAVE ATTENUATION IN LOCALLY RESONANT METAMATERIALS 

2.1 Dispersion equation and related bandgap 

To underline the properties of wave attenuation of LRAMs, let us consider first, as in Huang and Sun (2009), 
the one dimensional lattice system of Figure 2, composed by N cells of the type shown in Figure 1b, spaced by a. 

 

 
Figure 2: One-dimensional lattice with mass-in-mass units. 

 

The equations of motion for the j th  unit cell are given by: 
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If a wave solution is admitted, the displacements of the masses, of a chosen cell (j), have the form: 



Claudia Comi et al. 

Wave propagation in cellular locally resonant metamaterials 

Latin American Journal of Solids and Structures, 2018, 15(4), e38 3/15 

   

   
1 1

2 2

j i qx t

j i qx t

u U e

u U e












 (2) 

where 1U  and 2U  are the complex wave amplitudes, x  is the spatial coordinate,   is the angular frequency, q  

is the wavenumber. The wave propagation constant is qa  . According to Bloch-Floquet's conditions the 

displacements in any other cell, at distance na  is given by: 
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Substituting eqs. (2) and (3) into eq. (1), after some numerical manipulations, one obtains the eigenvalue 
problem: 
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The eigenvalues are hence found from the so called dispersion equation: 
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where 2 1/m m , 2 1/k k   and 2 2 2/k m  . 

 
Figure 3: Wave dispersion curves for 3  , 0.3   (blue curves) and 1  , 1   (orange curves). The bandgap 

between acoustic and optical modes is shaded. 

 

For each wave propagation constant qa , the solution of eq. (5) gives the two vibration frequencies for optical 

and acoustic waves. Figure 3 shows these frequencies for two different couples of   and  . Note that there is a 
gap, i.e. an interval of frequencies where no real solutions exist for any qa . Rearranging eq. (5) in the form of eq. 

(6): 
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one can show that real solutions qa , without wave attenuation, do not exists for: 

2
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 (7) 

The above condition defines the band gap: the amplitude of waves with frequency inside this band decays as 

they travel along the lattice. The width of the band gap increases with  , as shown in Figure 3. For high values of 
𝜃 𝛿⁄ , the lower limit of the bandgap tends to 1 and condition (7) coincides with the one given in Huang and Sun 
(2009) and interpreted as the region where the effective mass of an equivalent single mass lattice is negative. The 
negative effective mass can explain the unusual dynamic behaviour of structures similar to that of Figure 2, as 
shown in the following. 

2.2. Dynamic response of different mass-in-mass lattices 

The attenuation properties of mass-in-mass lattices are here evidenced numerically. Since the band-gap de-

pends on the eigenfrequency of the resonating mass 2m , see eq. (7), a specific lattice with a given resonator effec-
tively attenuates waves of frequency close to. Including in a one-dimensional bar different resonators one can in 
principle attenuate waves of different frequencies. In the present work we consider different lattices with the same 

matrix of masses 1 0.1 m  kg and stiffness 1 120000k   N/m and different resonators A, B and C with the proper-
ties listed in Table 1. 

 

Table 1: Properties of the considered resonators. 

Property Resonator A Resonator B Resonator C 

2  [rad/s] 200 500 1000 

2K  [N/m] 12000 75000 300000 

2m  [Kg] 0.3 0.3 0.3 

  3.0 3.0 3.0 

  0.100 0.625 2.500 

2  [rad/s] 200 500 1000 

Single resonator lattice 

 

We first analyze through the code LS Dyna the dynamic response of a uniform lattice composed of 2500 iden-

tical unit cells, with lattice length 
810a   mm, subject to an applied displacement   0 sinu t u t , with 0 1 u 

mm and 21.01  . The properties of resonator A are chosen for this simulation, see Table 1. 

Figure 4a and b show the evolution in time of the displacements of the first two nodes and of a node near the 
end of the bar, for resonator and matrix masses, respectively. From Figure 4a, one can easily see that the first reso-
nator (top plot) absorbed a big amount of the total energy injected in the system, the second one (middle plot) 
vibrates at amplitudes considerably smaller and the resonator near the end of the bar (bottom plot) is at rest. The 
resonators oscillate out of phase with respect to the matrix, the vibration amplitude in the lattice matrix is attenu-
ated and a small amount of energy can reach the end of the bar, see the bottom plot of Figure 4b. 
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Figure 4: Vibration amplitude (a) of the mass m2 (resonator) and (b) of mass 1m , for x a  (top plots), 2x a  (mid-

dle plots) and almost at the end of the bar (bottom plots). 

 

Lattice with three zones of different resonators 

As proposed in Huang and Sun (2009), we analyze the response of a uniaxial bar composed of three zones, 
denoted by A, B and C respectively, each one consisting of 500 unit cells. Each zone has uniform unit mass-in-mass 

cells with the same mass matrix 1m , and different resonators A, B and C with the properties given in Table 1. The 

input displacement in this case is the superposition of three sinusoidal waves with the same amplitude 1 ou  mm 

and different frequencies, 

   sin sin sin   o A B cu t u t t t      (8) 

The frequencies were chosen in such a way that each resonator A, B and C be tuned to attenuate a single fre-

quency of eq. (8). Assuming 
2 1.01r  , the excitation frequencies were selected: 202A  rad/s, 505 B  rad/s 

and 1010C   rad/s. Figure 5a shows the longitudinal displacement profile for the complete lattice at the end of 

the analysis, 1.5t   s. The selective damping effect of the three lattices is visible. 
To further clarify this effect, the response at three different locations (one for each lattice region), is repre-

sented in the frequency domain in Figure 5b. In the first region (A) only the lower frequency is attenuated, and, 

hence, the response has two peaks for 505 B  rad/s and 1010C   rad/s; the second (B) and third (C) regions 

attenuates the subsequent frequencies. 
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Figure 5: Lattice with three zones of different resonators (A, B and C): (a) displacement along the lattice at the end of 

the analysis 1.5t   s; (b) response, in the frequency domain, in the three regions. 

 

Lattice with three resonators unit cell 

We also analyze a further lattice in which a sequence of cells with the three resonators A, B and C is repeated 
500 times along the bar. Even though the properties and the total number of resonators is the same of the previous 
analysis, this different sequence proves to be more effective for wave attenuation, at least in the present case when 
the excitation contains three harmonics of frequencies very close to those of the resonators. Figure 6a shows the 

attenuated displacement along the lattice at the end of the analysis, 1.5t   s. It is noteworthy that the peak value 
of the displacement is lower than the one of the three-zones lattice, shown in Figure 5a, and that the first cell with 
the three different resonators is able to attenuate the three harmonics, therefore only very low values of displace-
ment are present in almost all the bar. 

 

 
Figure 6: Lattice with three resonators (A, B and C) unit cells: (a) displacement along the lattice at the end of the analy-

sis 1.5t   s, (b) response in the frequency domain, at the middle of the bar. 

 

Figure 6b presents the response of a lattice in the frequency domain, at the middle of the bar. 
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3.1. LOCALLY RESONANT CELLULAR METAMATERIALS 

3.2. Analysis of free-wave motion 

In this section we consider the different two dimensional, three-component, periodic LRAM, represented in 
Figure 7a. The lattice is composed by aluminum cells of square or hexagonal shape, filled by a soft, light material, 
e.g. a polymeric foam, with a heavy circular inclusion. Figure 7b shows the unit cells of the two materials and the 

basis vectors 1e  and 2e  of the direct lattices, a  is the side of the square, while L  is the length of the side of the 

hexagon. The vectors   ie are not unit vectors and, for the hexagonal cell, they are not orthogonal. Each cell within 

the material is identified by 1n  and 2n  translations in the 1e  and 2e  directions. Note that, for the hexagonal lattice, 

the choice of the quadrangular unit cell, instead of the more natural hexagonal one, proves to be more convenient 
to impose the Floquet-Bloch periodic boundary conditions. 

Figure 7c shows the unit cell of the reciprocal lattices which is used to compute the dispersion curves. The 
points of the reciprocal lattice represent possible wave vectors q . 

When a wave of angular frequency   and wave vector q  propagates through a periodic material, the solution 

in terms of displacements u inside a cell j has the form: 

   ji q x tj
jx U e

   (9) 

where 
jU  are the complex wave amplitudes and jx  the coordinates of points inside the chosen cell ( j ). The 

displacements of point x  in any other cell, identified by the integer pair ( 1 2;n n ), is given by the Bloch's theorem 

(see Phani et al., 2006): 

       1 1 2 2ji t i q n q nj
je e

   q x
u x U u x  (10) 

 
Figure 7: (a) Sketch of the two LRAMs considered, (b) corresponding unit cell with the vectors of direct lattice ( ie ), (c) 

the first Brillouin zone with the vectors of the reciprocal lattice ( *
ie ) and the irreducible Brillouin zone (shaded). 

 

where ,i iq  q e   1, 2i  . Due to periodicity, the wave vector can be restricted to the first Brillouin zone of the 

reciprocal lattice, see Figure 7c. The vectors of the reciprocal lattice are obtained from the original ones by the 
orthogonality condition: 
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* 2i j ij e e  (11) 

For the square lattice the reciprocal unit cell is the square of side 2 / ,a  while for the hexagonal lattice with 

side L , the reciprocal unit cell is an hexagon with side  4 / 3 3L . Furthermore, due to the symmetries of the 

reciprocal unit cells, to compute the band-gaps, it is sufficient to consider wave vectors belonging to the boundary 
of the irreducible Brillouin zone (IBZ), shaded in Figure 7c, see Kittel (1962). The vertexes of the IBZ identify the 
couples of q1 and q2 reported in Table 2. 

 

Table 2: Vertex points of the IBZ. 

point 
square hexagonal 

1q  2q  1q  2q  

Γ  0 0 0 0 

Χ  0       

Μ      
4

3
  

2

3
  

 

For any pair  1 2,  q q within the IBZ, the Bloch's conditions (10) enforce periodicity. The calculation of the 

frequency   can be performed numerically by considering a single unit cell (as in Figure 7b), by discretizing it into 
finite elements, and by using (10) to constrain the displacements at its boundary, see Phani et al. (2006) for details. 

In this paper the numerical analyses were performed by the Abaqus code assuming plane strain conditions. 
We adopted two superposed meshes to treat the real and the imaginary part of the displacements which are in-

volved in the Bloch's boundary conditions. The solutions in the space 1 2, ,q q  describe surfaces which are called 

dispersion surfaces. 

3.3. Band-gaps structure of different cellular lattices 

We have performed the dispersion analysis, as described above, of several three-component LRAMs of the type 
shown in Figure 7. We have considered different dimensions of the square and hexagonal cells, of the resonating 
core and different materials. The properties of all considered constituent materials are reported in Table 3. 

 

Table 3: Material properties of the components of the LRAMs. 

Material E  [MPa]     [t/mm3] 

Aluminium alloy 70000 0.34 2.6E-09 
Steel 207000 0.30 7.78E-09 
Lead 40800 0.37 1.16E-08 

Polyethylene 100 0.45 1.15E-09 
Foam 10 0.45 1.15E-10 

 
Figure 8 shows the results in terms of frequency versus a scalar pathlength parameter along the boundary of 

the IBZ for two representative cases, of a square and a hexagonal lattice. The square cell considered is of 8 mm x 8 
mm. The walls of the cells are made of aluminum with a thickness of 0.6 mm. The hexagonal cell has a side of 4.6 
mm and thickness 0.4 mm. In both cases the cells are filled by a polymeric foam and the internal core is made of 
lead with radius 3mm. One can observe the presence of a bandgap between the third and fourth mode, from 5.5 
kHz and 19 kHz for the square cell and from 5.8 kHz and 26.5 kHz for the hexagonal one. 
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Figure 8: Dispersion spectrum of in-plane modes in a LRAM: (a) with square lattice (cell b of Table 4); (b) with hexago-

nal lattice. 

The first four modes for the square cell are displayed in Figure 9 on a unit cell at the points Χ  and Μ  of the 

IBZ. The first mode is a torsional mode 
1  T characterized by displacements that are almost axisymmetric, which 

correspond to a rigid rotation of the internal core. The second and third modes are called circumferential modes 
1S  and 

2S  and are characterized by a rigid translation of the internal core. These modes have the same frequency 

at point Μ  and can generate a bandgap, with a mechanism similar to that of the mass-in-mass one-dimensional 
lattice. 

 
Figure 9: In-plane modes in a LRAM: magnitude of the displacement vector for a square unit cell at points × and Ě of the 

Brillouin zone. 

 

Figure 10 displays the first four modes for the hexagonal lattice at points Γ  and Χ  of the irreducible Brillouin 
zone. At point Γ  the first two modes are rigid body translations which corresponds to zero frequency, while the 

third and fourth are a torsional mode 
1T  circumferential mode 

1S . These two modes which are characterized by a 
rigid rotation and a rigid translation of the internal core, respectively, are better shown on a patch of four cells 
(shown on the same figure in the rectangular insets). 
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Figure 10: In-plane modes in a LRAM: magnitude of the displacement vector for a hexagonal unit cell at points Ă and × 

of the Brillouin zone. 

 

As discussed by Krushynska et al. (2014) for a different three-component LRAM with rubber-coated inclu-
sions, the width and the location of the band-gap depends on the geometrical properties, in particular on the filling 
fraction, and on the stiffness and density of the inclusions. In the present work, we have considered the influence 
of the geometry and materials of the external frame, of the dimensions of the inclusion and of the material filling 
the cell, on the band-gap. 

Figure 11 shows the band gap obtained with several different LRAMs, all of them having the same lead inclu-

sion of radius 3 mm and characterized by the properties listed in Table 4. The case labeled as “b ” is that previously 
considered (see Figures 8a and 9) and it is taken as a reference for the discussion. One can observe that the use of 
a stiffer and heavier material for the external frame (steel instead of aluminum) results in a reduced band gap (cp. 

cell b  and d ). A similar effect is obtained by increasing the thickness of the frame (as in cell a ), while an opposite 

effect is obtained decreasing the thickness (as in cell c ). Comparing cell b  and e  one can see that an increase of 
the size of the cell (i.e., at equal core inclusion, a decrease in the filling fraction) reduces the band-gap, as already 
evidenced in Krushynska et al. (2014), and shifts it to lower frequencies. 

 

Table 4: Geometry and materials of different LRAMs. In all cases the circular inclusions of lead have radius 3 mm. 

label 
external frame 

filler 
length [mm] 

thickness 
[mm] 

material 

a  8 1.0 aluminum foam 

b  8 0.6 aluminum foam 

c  7.44 0.37 aluminum foam 
*c  7.44 0.37 aluminum polyethylene 

d  8 0.6 steel foam 

e  12 0.6 aluminum foam 
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Figure 11: Bandgap frequencies of different square lattices filled with a light foam with circular lead core of radius 

3R   mm: external frame of aluminum with different dimensions (a, b, c, e) and steel (d). 

 

The influence of the radius of the inclusion, and hence of the filling fraction on the resulting bandgap is further 
shown in Figure 12. By increasing the radius of the inclusion, at equal external cell, the width of the band gap in-
creases, while the lower limit of it remains almost constant. The shape of the inclusion has a little effect: at equal 
area of the inclusion the square one shown in yellow in Figure 12 results in a slightly wider band gap. 

 

 
Figure 12: Bandgap frequencies for varying radius of the circular lead core (in blue) and for a square lead core (in yel-

low), square aluminum cells of 12mm x 0.6mm. 

 

Figure 13 shows the influence of the shape of the lattice on the band gap. The material with the hexagonal 

lattice labeled c H  is the same considered in Figures 8b and 10. The hexagonal lattices (c H  and 
*c H ) and 

the square lattices ( c  and 
*c ) are endowed by the same global area and also the same area of aluminum frame and 

of the lead inclusion. One can observe a significant advantage of the hexagonal lattice in terms of band gap width. 
The properties of the material which fills the cell is also very important: considering a cell filled by a polymeric 

material, cells 
*c  and 

*c H , instead of a foam, cells c  and c H  (i.e. using a stiffer and heavier filler) one obtains 
a shift of the band gap to higher frequencies. 
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Figure 13: Bandgap frequencies for square and hexagonal lattice with different filling materials: in blue foam filler, in 

orange polyethylene filler. 

 

As proposed in Section 2.2 for the discrete mass-in-mass lattice, we also considered the effect of different res-
onators within the same LARM. In particular, we studied two square lattices with two and four different circular 
lead inclusions. The adopted geometries are shown in the insets of Figure 14. The corresponding band gaps are 
shown in the same figure. For comparison also the band gaps of the cells with a single small and large inclusion are 
plotted. One can observe that the multi-resonator cells have a more complex dynamic behavior, characterized by 
several band gaps and a global increase of filtering frequency range. Hence also in the continuum locally resonant 
metamaterials the inclusion of different resonator can have a beneficial effect for wave attenuation. 

 

 
Figure 14: Bandgap frequencies for square lattices with different resonators. 

 

It is worth noting that even if the cells with several resonators loose some of the symmetries of the single 
resonator cell, the band structure can still be computed by considering the boundary of the IBZ. Figure 15a shows 
the dispersion surfaces computed on the whole BZ for the lattice with two resonators and Figure 15c shows their 
2D projection where the band gaps are more clear: their amplitude and position is the same highlight in the disper-
sion spectrum computed through the IBZ, Figure 15b. 
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Figure 15: Square lattice with two different resonators: (a) dispersion surfaces (whole BZ), (b) dispersion spectrum 

along the boundary of the IBZ, (c) 2D projection of the dispersion surfaces (whole BZ). 

4 CONCLUSIONS 

This paper provides an extensive numerical study of the attenuation properties of 1D mass-in-mass and 2D 
cellular LRAM. 

For the one dimensional lattice system, the dispersion equation analysis can lead to the so called band gap, 
characterized by a behavior compatible with the existence of an effective negative mass. In the case of a uniform 
lattice, a narrow band of frequencies can be attenuated. Two configurations of non-uniform lattices, composed by 
three different resonators, was numerically studied. The results evidenced that the use of a non-uniform lattice can 
be an efficient way to enlarge the band gap. 

The dispersion properties of different 2D LRAMs were discussed, for in-plane modes. Particularly, we have 
considered different dimensions of the square and hexagonal cells and of the resonating core, and different mate-
rials. According to the analyses, the width and the frequency limits of the band gap strongly depends on the filling 
fraction, and on the stiffness and density of the core. Moreover, the use of a stiffer and heavier material for the 
external frame resulted in a reduced band gap. A similar effect is obtained by increasing the thickness of the frame. 
The adoption of a hexagonal array, analyzed in this paper for three components locally resonant materials, widens 
the band gap and hence seems to be promising for impact absorption applications. 

The elastic wave propagation has been performed in a two dimensional setting, the study in 3D is currently 
under development. 
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