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GFEM STABILIZATION TECHNIQUES APPLIED TO DYNAMIC 
ANALYSIS OF NON-UNIFORM SECTION BARS 

Abstract 
The Finite Element Method ሺFEMሻ, although widely used as an approximate 
solution method, has some limitations when applied in dynamic analysis. As 
the loads excite the high frequency and modes, the method may lose 
precision and accuracy. To improve the representation of these high-
frequency modes, we can use the Generalized Finite Element Method 
ሺGFEMሻ to enrich the approach space with appropriate functions according 
to the problem under study. However, there are still some aspects that limit 
the GFEM applicability in problems of dynamics of structures, as numerical 
instability associated with the process of enrichment. Due to numerical 
instability, the GFEM may lose precision and even result in numerically 
singular matrices. In this context, this paper presents the application of two 
proposals to minimize the problem of sensitivity of the GFEM: an adaptation 
of the Stable Generalized Finite Element Method for dynamic analysis and a 
stabilization strategy based on preconditioning of enrichment. Examples of 
one-dimensional modal and transient analysis are presented as bars with 
cross section area variation. Numerical results obtained are discussed 
analyzing the effects of the adoption of preconditioning techniques on the 
approximation and the stability of GFEM in dynamic analysis. 
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1 INTRODUCTION 

The Finite Element Method ሺFEMሻ is the numerical method commonly used in vibration analysis. The free 
vibration analysis by the FEM gives good results for the lowest frequencies but demands great computational cost 
to work up the accuracy for the higher frequencies. Thus, the improvement of Finite Element models applied to the 
structural dynamics is part of a vast field of dynamic analysis of structures, constituting an area of current research 
and industrial applications. 

Using particular information to improve the approximation characteristics is the core of the enriched methods, 
such as the Generalized Finite Element Method ሺGFEMሻ, where enriching functions are used to improve the 
approximation space ሺBabuška et al., 1994; Melenk, 1995; Duarte and Oden, 1996a; Duarte and Oden, 1996b; Oden 
and Duarte, 1997; Babuška and Melenk, 1997; Babuška et al., 2004; Belytschko and Black, 1999; Möes et al., 1999ሻ. 
In this context, the GFEM has applications in several areas, such as fracture mechanics ሺYazid et al., 2009; Gupta et 
al., 2015ሻ, flow of biphasic fluids ሺSauerland and Fries, 2013ሻ, electromagnetism ሺLu and Shanker, 2007ሻ, heat 
transfer with high gradients ሺO’Hara et al., 2009; Aragon et al., 2010ሻ and, as approached in this work, in dynamics 
of structures ሺArndt, 2009; Torii, 2012; Torii and Machado 2012; Shang, 2014; Torii et al., 2016; Hsu, 2016; 
Weinhardt et al., 2016; Piedade Neto and Proença, 2016ሻ. Despite the excellent properties of the GFEM, there are 
aspects that still limit its practical applicability and its efficiency. 

One of these limiting factors is the numerical instability associated with the present enrichment process even 
in well-defined boundary value problems. Several studies have been directed to the treatment of this problem in 
recent years, mainly in the context of fracture mechanics. 

Menk and Bordas ሺ2011ሻ proposed a preconditioning strategy based on the FETI ሺFinite Element Tearing and 
Interconnectingሻ domain decomposition technique considering that linear dependency problems tend to worsen 
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in domains with many enriched elements. The idea is to divide the domain so as to limit the rate of enriched 
elements and avoid conditions where enrichment is ineffective and results in poor conditioning. The method 
involves the application of Cholesky and LQ decomposition in the stiffness matrices of the subdomains and presents 
conditioning close to MEF systems. However, the computational effort is heavily dependent on how the domain is 
partitioned ሺMenk and Bordas, 2011ሻ. 

Sauerland and Fries ሺ2013ሻ have pioneered the ideas of Stable-XFEM for modeling fluid interface problems. 
Since the iterative solvers have their performance intrinsically related to the conditioning of the matrices, the 
application of Stable-XFEM presented a significant advantage over the classical XFEM approach. 

Despite the positive results, the Stable-XFEM was not able to capture with high accuracy the jump in the 
pressure gradient, leaving a topic open on the issue of reproducibility of a priori known effects in the enrichment 
functions. 

In this context, Shibanuma et al. ሺ2014ሻ observed that stabilized XFEM’s accuracy problems could result from 
its untying of PUFEM. In this way, they proposed a reconceptualization taking into account the basis of the unit 
partition, naming the PU-XFEM proposal. 

The PU-XFEM was applied to two-dimensional linear fracture mechanics in numerical examples in infinite 
plates. The results of the PU-XFEM are relatively better than those of the classical XFEM ሺsee Belytschko and Black, 
1999ሻ and the weighted XFEM ሺsee Fries, 2008ሻ, although the results of the weighted XFEM are effective for actual 
use. In particular, the numerical results showed that a priori knowledge of the solution can be reproduced exactly 
in the PU-XFEM. This feature practically solves the stability issue of the blending elements. 

While Stable-XFEM approaches seek to provoke a quasi-orthogonality of enriched functions, Sillem et al. 
ሺ2015ሻ present Orthonormalized Generalized Finite Element Method ሺOGFEMሻ, which explicitly uses a process of 
orthonormalization in the basis of approximation functions. 

The OGFEM can be seen as a process of constructing an enriched orthonormal basis whose stiffness matrix is 
optimally well conditioned. The examples presented in Sillem's work ሺ2015ሻ show an increase in the convergence 
rate for the one-dimensional cases of the modified Helmholtz and Poisson equations. 

Despite the consistent analytical approach of OGFEM, Sillem et al. ሺ2015ሻ do not present a study of the 
numerical sensitivity associated with the orthonormalization process itself. That is, the gain of conditioning, which 
improves the conditions of resolution of the system of equations, appears to come at the cost of adopting a 
numerical process of orthonormalization with its own numerical instabilities. In addition, it should be emphasized 
that the method becomes prohibitively costly for two-dimensional and three-dimensional cases. 

In the context of GFEM, the Stable Generalized Finite Element Method ሺSGFEMሻ was firstly proposed to address 
numeric conditioning issues of GFEM ሺBabuška and Banerjee, 2012ሻ. This promising methodology has been object 
of study in several works in recent years, due to its generality and versatility. The stabilization strategy is well 
grounded in the concept of partition of unity and has a good theoretical foundation. 

Addressing numerical sensitivity problems that arise in the application of enrichment proposals, two 
alternatives are adopted to stabilize the method: application of the concepts of the Stable Generalized Finite 
Element Method and application of preconditioning changes in enrichment functions, called Heuristic Modification 
Stabilization, such as presented in Weinhardt et al. ሺ2015ሻ, Weinhardt et al. ሺ2016ሻ and Weinhardt et al. ሺ2017ሻ. 

Following the idea that small changes in enrichment functions can change the numerical conditioning of the 
problem without significant loss of accuracy properties of the GFEM, this article presents the effects of a subtle 
change in the functions used for one-dimensional dynamic analysis such as presented by Arndt ሺ2009ሻ. The 
stabilization methods are applied in two examples of bar with cross section area variation, and this proposal has 
been proved to be very effective in improving the stability for the modal and transient analysis. 

The strategies of stabilization of the enriched methods are based on the most varied assumptions, from the 
most analytical to the more empirical ones. However, most approaches to the assessment of conditioning are 
focused only on the stiffness matrix. Nevertheless, in problems of dynamic analysis the mass matrix is also used 
and its characteristics are closely related to the nature of the problem and its numerical sensitivity. 

Thus, it is noted that there is a need for stabilization proposals that take into account the inherent 
characteristics of the field of application of the dynamic analysis and the specific types of enrichment used for this 
purpose. Thus, it is important to note that there is a wide-open field of research, especially regarding applications 
to dynamic analysis, both modal and transient. Therefore, it is in this context of innovation that the present work is 
inserted, seeking to address issues raised by previous studies about the stability and sensitivity of the application 
of GFEM in the dynamic analysis, as well as aiming to motivate correlated studies. 

An outline of the present paper is as follows. In Section 2, it is discussed the bar model under study followed 
by some basic concepts of the Finite Element Method applied to dynamic analysis. In Section 3, it is presented the 
numerical results regarding modal and transient analysis of two bar models with polynomial and non-polynomial 
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section variation. Finally, in Section 4, some considerations about the results obtained, contributions of the work 
and directions of new researches are presented. 

2 METHODOLOGY 

2.1 Bar model formulation 

Consider straight bar of length L and variable cross-sectional area A, according to Fig. 1. For simplicity, it is 
considered that the cross section does not vary abruptly and maintains a constant shape, only by varying its area 
as a function of the horizontal relative position x. No damping effects are incorporated into this model and the 
constituent material is considered of linear behavior with modulus of elasticity E being able to vary as a function of 
x and has specific mass ρ ሺCraig, 1981; Arndt et al., 2010ሻ. 

 
Figure 1: Bar model. 

 

The vibration of the bar is a time dependent problem, and the equation of motion governing this problem is a 
partial differential equation. The problem is to find the axial displacement u  satisfying: 

²
( , )

²

u u
A EA p x t
t x x

r
æ ö¶ ¶ ¶ ÷ç- =÷ç ÷ç ÷è ø¶ ¶ ¶

  ሺ1ሻ 

where p is the externally applied axial force per unit length and t is the time. The solution ( , )u u x t  must satisfy 
the boundary and initial conditions defined in the problem. 

According to Carey and Oden ሺ1984ሻ, in order to obtain the variational form of a time dependent problem, test 
functions w ൌ wሺxሻ, independent of t are selected, and the weighted residual method is applied. Then, this 
procedure results in the following system of differential equations: 

Mu Ku F+ =   ሺ2ሻ 

where K is the stiffness matrix, u is the vector of displacements, M is the mass matrix, ü is the vector of accelerations 
and F is the vector of applied forces. The response of the system of equations can be given through the modal 
coordinates, natural frequencies and vibration modes, or through transient analysis, applying a direct integration 
method. 

To obtain the fundamental vibration modes and frequencies of the problem it is solved the generalized 
eigenvalues problem given by ሺBathe, 1996; Hughes, 1987; Zienkiewicz and Taylor, 2000ሻ: 

²K MwF = F   ሺ3ሻ 

where ω are the vibration frequencies andF  are the vibration modes of the problem. 
The stiffness and the mass matrices can be assembled as: 

0

       i, 1,2, 3...
L

ji
ijK EA dx j N

x x

ff ¶¶
= =

¶ ¶ò   ሺ4ሻ 



Paulo de O. Weinhardt et al. 
GFEM STABILIZATION TECHNIQUES APPLIED TO DYNAMIC ANALYSIS OF NON-UNIFORM SECTION BARS 

Latin American Journal of Solids and Structures, 2018, 15ሺ11 Thematic Sectionሻ, e64 4/23 

0

       i, 1,2,3...
L

ij i jM A dx j Nr f f= =ò   ሺ5ሻ 

where ( )x  are the basis functions of the approximation subspace, the indices “i” and “j” respectively refer to the 
“i-th” and “j-th” basis function relative to the calculation of the element ሺi, jሻ of the corresponding matrix and “N” is 
the dimension of the approximation space. Different subspaces of approximation are proposed for different 
methods, such as the Finite Element Method, and the Generalized Finite Element Method. 

2.2 Finite Element Method 

The standard Finite Element Method uses polynomials shape functions in the approximated solution which 
can be expressed generally in matrix form as ሺBathe, 1996; Hughes, 1987ሻ: 

e( ) T
hu N qx =   ሺ6ሻ 

where N is the matrix of shape functions and q is the displacement vector. The polynomial functions may be of any 
order, the simplest being the linear ones. Taking the uniform bar element ሺFigure 1ሻ with one degree of freedom 
per node, the terms of the approximated solution ሺEquation ሺ6ሻሻ using linear Lagrangian polynomials as local shape 
functions are defined in the master element domain [0,1]   as 

[1     ],TN x x= -   ሺ7ሻ 

1 2[u    u ],Tq =   ሺ8ሻ 

,
e

x

L
x =   ሺ9ሻ 

where Le is the element length, and u1 and u2 are the nodal displacements. 

2.3 Generalized Finite Element Method 

The GFEM is an enriched method of which the main goal is the construction of a finite dimensional subspace 
of approximating functions using local knowledge about the solution that ensures accurate local and global results. 
The local enrichment in the approximation subspace is incorporated by the partition of unity approach, which is 
shown below ሺMelenk and Babuška, 1996; Babuška et al., 2004; Duarte et al., 2000; Piedade Neto and Proença, 
2016ሻ. 

The approximated solution proposed by the GFEM in the master element domain may be written as the sum 
of two components: 

( )e e e
h FEM ENRICHEDu u ux = +   ሺ10ሻ 

where eFEMu  is the Finite Element Method component based on nodal degrees of freedom and eENRICHEDu  is the 

enriched component by the partition of unity approach based on field degrees of freedom. In this sense, the bar 
approximated solution on a master element is: 

2 2

1 1 1

( ) ( ) ( ) ( ) ( )
ln

e
h i i i ij ij ij ij

i i j

u u a bx h x h x g x j x
= = =

é ù
ê ú= + +ê ú
ê úë û

å å å
 ሺ11ሻ 

where ih are the partition of unity functions, ijg  and ijj  are the enrichment functions, nl is the number of 

enrichment layers, ui are the nodal displacements and, aij and bij are the field degrees of freedom related to the 
enrichment functions ijg  and ijj , respectively. The term “layer” is adopted herein as a reference to the use of sets 

of enrichment functions which must be applied together. Thus, each new level of enrichment works as a new 
enrichment layer applied at once. For the linear bar element ሺFigure 1ሻ, the partition of unity functions are those 
given by Equation ሺ7ሻ. 

In this study, the enrichment functions proposed by Arndt ሺ2009ሻ and Arndt et al. ሺ2011ሻ are written as a 
group of functions that consists of building a couple of clouds, a sine and a cosine, subordinated to the cover of the 
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master element. These clouds are written in the element domain as two pairs of sine and cosine functions. The 
element domain is considered as [0,1].   

Sine cloud: 

1

2

         sin( )

sin( ( 1))
j j

j j

g b x
g b x

=
= -

  ሺ12ሻ 

Cosine cloud: 

1

2

         cos( ) 1

cos( ( 1)) 1
j j

j j

j b x
j b x

= -
= - -

  ሺ13ሻ 

where Le is the element length and j j  is a hierarchical enrichment parameter proposed by Arndt ሺ2009ሻ 

with α ൌ 1 and with j varying from 1 to the number of enrichment layers ሺnlሻ, such as j ൌ 1, 2, … nl. 

2.4 Stabilization Strategies 

2.4.1 SGFEM-based Stabilization 

Stable Generalized Finite Element Method ሺSGFEMሻ was firstly proposed to address numeric conditioning 
issues of GFEM ሺBabuška and Banerjee, 2012ሻ. This method consists in the application of a subtle modification of 
enrichment function prior to its inclusion in GFEM approximation space ሺGupta et al., 2013; Li, 2014; Lins et al. 
2015ሻ. 

In the SGFEM, the enrichment functions are modified as described in Equation ሺ14ሻ, as presented by Babuška 
and Banerjee ሺ2012ሻ: 

( ) ( ) ( ( ))i i ix x I xmj j j= -   ሺ14ሻ 

where i  as the i-th stabilized enrichment function, i as the i-th enrichment function and ( ( ))iI x  as the linear 

interpolant of the i-th enrichment function subordinated to supportm . 
The proposed stabilization of the first layer of enrichment is shown in Figure 2. 

 
Figure 2: Stabilization process for the first layer of enrichment functions. 
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2.4.2 Heuristic Modification Stabilization 

Note that the variation in the enrichment parameter j  implies different characteristics of approaching, as 

already pointed out by Arndt ሺ2009ሻ and Torii ሺ2012ሻ. However, the gain in accuracy for certain frequencies does 
not appear to be associated with numerical stability gain. In fact, apparently there is a certain trade-off between 
accuracy and numerical stability, regarding the choice of the parameter j . 

Since the enrichment parameters j are intrinsically related to the properties of the generated approximation 

space, another aspect to be considered relative to these parameters is their construction rule. Thus, a search for 
better numerical approximation properties, such as stability, should contemplate a study of this aspect. In this 
context, the proposed modification presented in this paper simply consists of the change in the formation rule of 
this enrichment parameter. 

The choice of this new rule follows an extensive sequence of tests performed for several enrichment 
parameters and growth rates of these parameters, where it was possible to empirically observe a pattern of 
minimization of stability problems while maintaining accuracy. This part of the development of the methodology 
did not result in a general form of representation and therefore the proposal converged to an empirical and 
heuristic approach that will be explained below. 

Recalling that parameter j  is calculated by j j  , it was proposed a modification, creating new stabilized 

parameters j  given by: 

12( 1)        1, 2, 3..., nlj j j
b

b p
p

é ù
ê ú= - + =ê ú
ë û

  ሺ15ሻ 

It is interesting to note that 1 1  , since: 

1 1
1 12(1 1) 0  

b b
b p p b

p p

é ù é ù
ê ú ê ú= - + = + =ê ú ê ú
ë û ë û

  ሺ16ሻ 

This implies that there is no difference between approximation taken by this approach and the standard 
trigonometric one for the first layer of enrichment. 

3 NUMERICAL RESULTS 

In this section modal and transient analysis of bars with polynomial and sinusoidal cross area section variation 
are presented. 

In order to clarify the results presentation, it is necessary to explain some preliminary points. 
Firstly, the condition numbers of the matrices are calculated in a classical manner ሺsee Wilkinson, 1965ሻ 

multiplying the norm of the matrix by the norm of its inverse, that is, 1( )M M M  . It is equivalent to divide 

the greatest eigenvalue by the smallest eigenvalue of the matrix. Conditioning results for stiffness matrices are 
analogous and mass matrices are adopted for such analysis for its dominant behavior in sensitivity analysis, as 
highlighted by Petroli et al. ሺ2017ሻ. 

As for the enrichment parameter, the 1
3

4

  value was adopted based on the experience of other works. This 

value was first used in the Torii’s thesis ሺ2012ሻ. Later, already in the stabilization context, the value of the parameter 
was again tested in Weinhardt's dissertation ሺWeinhardt, 2016ሻ according to accuracy parameters, resulting in the 

choice of the 1
3

4

  value for the following tests. Thus, this enrichment parameter value is adopted for every test 

result presented in this paper. 

3.1 Bar with polynomial cross section area variation 

One of the examples of this paper is a bar with polynomial cross area variation modeled as: 

4( ) ( )A x a bx    ሺ17ሻ 

where a and b are polynomial coefficients. 
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The results for a bar with sinusoidal cross section area variation are presented in the items 3.1.1 and 3.1.2. 

3.1.1 Modal Analysis 

In order to validate the numerical results, we present the comparison of the numerical values obtained through 
the exposed methods. Kumar and Sujith ሺ1997ሻ verified that the lower natural frequencies are more affected by the 
variation of the cross section, and the highest ones are very close to the frequencies of the equivalent uniform bar. 
Therefore, the results obtained for the first six frequencies of a double-clamped bar with chosen area variation are 
exposed in the Table 1. 

Table 1: Prior Modal Results - Dimensionless Eigenvalues 

Vibratio
n mode 

Analytical 
Solution 

FEM - 100 
elements 
99 dofs 

Error 

GFEM - 20 
elements 

1 enrichment 
layer 

99 dofs 

Error 

GFEM - 20 
elements 

2 enrichment 
layers 

179 dofs 

Error 

1 3.286007 3.286175 1.680000E-04 3.286008 1.000000E-06 3.286007 0.000000E൅00 

2 6.360678 6.361800 1.122000E-03 6.360690 1.200000E-05 6.360678 0.000000E൅00 

3 9.477196 9.480820 3.624000E-03 9.477233 3.700000E-05 9.477196 0.000000E൅00 

4 12.605890 12.614341 8.451000E-03 12.605973 8.300000E-05 12.605890 0.000000E൅00 

5 15.739656 15.756038 1.638200E-02 15.739809 1.530000E-04 15.739656 0.000000E൅00 

6 18.876001 18.904194 2.819300E-02 18.876251 2.500000E-04 18.876001 0.000000E൅00 

 
As one may observe in the Table 1, GFEM solution achieve better approximation than FEM using less elements 

and only one enrichment layer. Applying the second enrichment layer improves even more the accuracy, as shown 
in the last column of the Table 1. However, the approximation of higher frequencies may require more enrichment 
layers, as discussed in Weinhardt et al. ሺ2015ሻ and Weinhardt et al. ሺ2017ሻ. This enrichment process may result in 
numerical instabilities arising from ill-conditioned matrices. The Figure 3 presents the evolution of the condition 
number of the mass matrix related to a 20-element uniform mesh successively enriched. 

 
Figure 3: Evolution of Mass Matrix Condition Number ሺNumerically Calculatedሻ – First example. 

 

3.1.2 Transient Analysis 

The trigonometric enrichment of GFEM applied to one-dimensional transient analysis was discussed earlier 
by Torii ሺ2012ሻ and Shang ሺ2014ሻ covering several examples. This work will continue the discussion by presenting 
the application of refinement with stabilization proposals in an enlightening example. Stabilization alternatives in 
transient analysis, such as HHT used by Shang ሺ2014ሻ and Hsu et al. ሺ2016ሻ, were avoided in order to keep focus 
on the analysis of the interactions of the enrichment process and the stabilization proposals. 
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For the following examples, transient analysis arises in the application of the Newmark Method, as described 
in Bathe ሺ1996ሻ, using mass and stiffness matrices generated by the application of GFEM with different approaches. 

Parameters were set such as 1
E

c

  , neglecting damping, and adopting an uniform mesh of 20 finite elements. 

For the time discretization, the 20 seconds analysis interval was divided in 2000 steps of 10-2 seconds. 
The model considered for the examples consists of a bar with a clamped end and the other free end, where the 

load is applied. Trigonometric enrichment was adopted using 1
3

4

   due to its performance in modal analysis as 

presented by Weinhardt et al. ሺ2015ሻ. 
Firstly it is compared an approximation performed using 20-element uniform mesh with: no enrichment 

ሺFEMሻ; standard one-layer trigonometric enrichment ሺGFEMሻ; and Stable one-layer trigonometric enrichment 
ሺSGFEMሻ. The results are presented in the Figs. 4 and 5, and the external load is applied with a value of 1N in the 
time range from 0 to 10-2 seconds. It should be noted that, for the first level of enrichment, the Heuristic Modification 
coincides with the standard GFEM. 

 
Figure 4: Displacements over time. 

 
Figure 5: Velocities over time. 
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Raising enrichment layer, the results obtained are presented in Figs. 6 and 7 for: GFEM; SGFEM; and 
Heuristically Modified GFEM. 

 
Figure 6: Displacements over time. 

 

 
Figure 7: Velocities over time. 

 

Continuing the process of successive enrichment, Figs. 8 and 9 present the respective results. 
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Figure 8: Displacements over time. 

 

 
Figure 9: Velocities over time. 

 

For 4 enrichment layers results are shown in Figs. 10 and 11. 
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Figure 10: Displacements over time 

 

 
Figure 11: Velocities over time. 

 

Results aiming to highlight the stabilization proposal are presented in Fig. 12 and Fig. 13, taking up to 
refinement to high-order. 
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Figure 12: Displacements over time 

 

 
Figure 13: Velocities over time. 

 

Fig. 14 presents the evolution of the condition number of the mass matrix related to a 20 element uniform 
mesh successively enriched for different stabilization strategies, trying to tie the observations of numerical 
instability in the transient analysis with the condition number of mass matrices. 
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Figure 14: Evolution of Mass Matrix Condition Number ሺNumerically Calculatedሻ – First example. 

 

3.2 Bar with sinusoidal cross section area variation 

This paper also studied a bar with sinusoidal cross area variation modeled as: 

0( ) sin ²( )A x A ax b= +   ሺ18ሻ 

where 0 ,A a and b are parameters that describe the sinusoidal variation. 
The results for a bar with sinusoidal cross section area variation are presented in the items 3.2.1 and 3.2.2. 

3.2.1 Modal Analysis 

As in the example 3.1, in order to validate the numerical results, we present the comparison of the numerical 
solutions obtained through the exposed methods. The results obtained for the first six frequencies of a double-
clamped bar with area variation as chosen are exposed in Table 2. 

 
Table 2: Prior Modal Results - Dimensionless Eigenvalues 

Vibration 
mode 

Analytical 
Solution 

FEM - 100 
elements 
99 dofs 

Error 

GFEM - 20 
elements 

1 enrichment 
layer 

99 dofs 

Error 

GFEM - 20 
elements 

2 enrichment 
layers 

179 dofs 

Error 

1 2.978189 2.978330 1.410000E-04 2.978190 1.000000E-06 2.978188 -1.000000E-06 

2 6.203097 6.204151 1.054000E-03 6.203108 1.100000E-05 6.203097 0.000000E൅00 

3 9.371576 9.375094 3.518000E-03 9.371612 3.600000E-05 9.371576 0.000000E൅00 

4 12.526519 12.534827 8.308000E-03 12.526600 8.100000E-05 12.526519 0.000000E൅00 

5 15.676100 15.692301 1.620100E-02 15.676252 1.520000E-04 15.676100 0.000000E൅00 

6 18.823011 18.850986 2.797500E-02 18.823259 2.480000E-04 18.823011 0.000000E൅00 

 
As one may observe in the Table 2, GFEM solution achieve better approximation than FEM using less elements 

and only one enrichment layer. Applying the second enrichment layer improves even more the accuracy, as shown 
in the last column of the Table 2. This enrichment process may result in numerical instabilities arising from ill-
conditioned matrices. The Figure 15 presents the evolution of the condition number of the mass matrix related to 
a 20-element uniform mesh successively enriched. 
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Figure 15: Evolution of Mass Matrix Condition Number ሺNumerically Calculatedሻ – Second example. 

 

3.2.2 Transient Analysis 

As in the previous example, transient analysis arises in the application of the Newmark Method, as described 
in Bathe ሺ1996ሻ, using mass and stiffness matrices generated by the application of GFEM with different approaches. 

Parameters were set such as 1
E

c

  , neglecting damping, and adopting a uniform mesh of 20 finite elements. 

For the time discretization, the 20 seconds analysis interval was divided in 2000 steps of 10-2 seconds. 
The model considered for the example consists of a bar with a clamped end and the other free end, where the 

load is applied. Trigonometric enrichment was adopted using 1
3

4

   due to its performance in modal analysis as 

presented by Weinhardt et al. ሺ2015ሻ. 
Firstly, it is compared an approximation performed using 20-element uniform mesh with: no enrichment 

ሺFEMሻ; standard one-layer trigonometric enrichment ሺGFEMሻ; and Stable one-layer trigonometric enrichment 
ሺSGFEMሻ. The results are presented in the Figs. 16 and 17, and the external load is applied with a value of 1N in the 
time range from 0 to 10-2 seconds. It should be noted that for the first level of enrichment, the heuristic modification 
coincides with the standard GFEM. 
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Figure 16: Displacements over time. 

 

 
Figure 17: Velocities over time. 

 

Raising enrichment layer, the results obtained are presented in Figs. 18 and 19 for: GFEM; SGFEM; and 
Heuristically Modified GFEM. 
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Figure 18: Displacements over time. 

 

 
Figure 19: Velocities over time. 

 

Continuing the process of successive enrichment, Figs. 20 and 21 present the respective results. 
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Figure 20: Displacements over time. 

 

 
Figure 21: Velocities over time. 

 

For 4 enrichment layers results are shown in Figs. 22 and 23. 
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Figure 22: Displacements over time 

 

 
Figure 23: Velocities over time. 

 

Results aiming to highlight the stabilization proposal are presented in Fig. 24 and Fig. 25, taking up to 
refinement to high-order. 
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Figure 24: Displacements over time 

 

 
Figure 25: Velocities over time. 

 

The Fig. 26 presents the evolution of the condition number of the mass matrix related to a 20-element uniform 
mesh successively enriched for different stabilization strategies, trying to tie the observations of numerical 
instability in the transient analysis with the condition number of mass matrices. 
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Figure 26: Evolution of Mass Matrix Condition Number ሺNumerically Calculatedሻ – Second example. 

 

3.3 Behavior Analysis 

The same methodology of numerical experimentation was adopted for both bar examples with variation of 
polynomial and sinusoidal cross section and the results analysis were described. A central point of this analysis is 
the observation that although the two examples have different responses and characteristics, the results in terms 
of the stabilization procedure were similar, which highlights the technique’s robustness in this family of problems. 

The impulse loading case was studied and responses were presented for displacements and velocities. 
Acceleration was omitted since it is poorly approximated using continuous functions. Firstly, the approximation 
was made by one layer of enrichment, concerning GFEM, SGFEM, and FEM. As shown in Figs. 4, 5, 16 and 17, 
displacements response has large oscillations for Linear FEM and a more accurate behavior for all enriched 
approaches. On the other hand, the answer in terms of velocities presents great disturbance for the three alternative 
approaches. 

Results for displacements and velocities tend to present more accurate behavior as analytical refinement is 
performed, as shown in Figs. 6, 7, 18 and 19 for 2 layers and Figs. 8, 9, 20 and 21 for 3 layers of enrichment. 

Applying 4 layers of enrichment, GFEM, SGFEM and the Heuristic Modification were compared, as shown in 
Figs. 10, 11, 22 and 23. The corresponding approximations for displacements are considerably close and more 
accurate than the previous results, and the Heuristic Modification resulted in a fairly accurate approximation for 
the first time steps. However, the velocities response for SGFEM presented a pretty deteriorated behavior over 
time. 

Testing the stability of the proposed Heuristic Modification, Figs. 12, 13, 24 and 25 show the results of 
application of 15 layers of enrichment. In these examples the high order refinement did not result in significant 
gains in accuracy for both displacements and velocities. However, it is worth noting that the application of many 
enrichment layers did not compromised the stability of the Heuristic Modification numerical approach, following 
the trend shown previously in modal analysis as presented by Weinhardt et al. ሺ2015ሻ, Weinhardt et al. ሺ2016ሻ and 
Weinhardt et al. ሺ2017ሻ. 

4. CONCLUDING REMARKS 

This paper discussed issues which are relevant to the stability of the Generalized Finite Element Method 
applied to dynamic analysis. One-dimensional bars with non-uniform cross area were presented contemplating 
modal and transient analysis. GFEM formulation with trigonometric enrichment was based on proposals of Arndt 
ሺ2009ሻ and Torii ሺ2012ሻ. 

Seeking to address the stability issue, two stabilization alternatives were analyzed. The first was based on an 
adaptation of the Stabilized Generalized Finite Element Method, initially proposed for problems that lie in the 
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solution of equation systems by Babuška and Banerjee ሺ2012ሻ. The second proposal was the modification of the 
parameter βj present in GFEM trigonometric functions enrichment proposed by Arndt ሺ2009ሻ and Torii ሺ2012ሻ. 

For transient analysis it was used the Newmark method reusing the already calculated mass and stiffness 
matrices generated by GFEM. Although the results presented inherent disturbances of Newmark method, it was 
possible to compare the proposals for approximation among each other, and the second proposal stabilization 
stood out in most examples. The possibility of making high-order return fines with consequent improvement in 
response without affecting the CFL stability condition ሺCourant-Friedrichs-Lewy, De Moura and Kubrusly ሺ2012ሻሻ 
was presented. 

The results of this work point out that there are ways to overcome instability problems in GFEM applied to 
dynamic analysis, since simple proposals were able to positively impact the approaches. 

Additionally, it was possible to observe that the Heuristic Modification stood out in stabilizing the problem, 
despite the non-uniform cross section. Therefore, it is possible to suppose that stabilization strategies similar to 
those presented in this paper may be extended to other applications. 
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