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Energy based collocation method to predict progressive damage  
behavior of imperfect composite plates under compression 

Abstract 
A new collocation methodology is presented to predict failure and progres-
sive damage behavior of composite plates in this paper. The present work 
deals with composite plates containing initial geometric imperfections and 
different boundary conditions under uniaxial in-plane compressive load. In 
the present study, the domain is discretized with Legendre-Gauss-Lobatto 
nodes and the approximation of displacement fields is performed by Le-
gendre Basis Functions (LBFs). The onset of damage and damage evolution 
are predicted by Hashin’s failure criteria and by proposed material degra-
dation models. Three geometric degradation models are also assumed to 
estimate the degradation zone around the failure location which are named 
complete, region and node degradation models. 
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1 INTRODUCTION 

Over the last decade thin-walled structures have extensively used in various lightweight structural compo-
nents. If these structures be subjected to in-plane compressive loads, they are prone to buckling. Composite plates 
are one of these structures that can be optimized to carry in-plane compressive loads beyond their buckling re-
sistance. They combine high strength with low weight, which makes them ideal for use in many industries such as 
aerospace engineering. Several laminate theories have been exploited to explain composite laminated plates' be-
havior. The Classical Laminated Plate Theory (CLPT) can be considered as an extension of classical plate theory 
based on the Kirchhoff hypothesis for isotropic plates and can be applied, if thickness of the laminate is small and 
the effects of transverse shear stresses are neglected (Dong et al. 1962; Yang et al.1966; Ambarts͡umiፅan 1970). An 
improvement on the CLPT leads to creation of the First order Shear Deformation Theory (FSDT) which accounts 
for the transverse shear effects (Whitney 1969; Pagano 1970) in relatively thick laminates. 

For moderately thick composite plates with geometric imperfection, linear, nonlinear and post-buckling 
analyses without taking account of damage and also material degradations are very conservative analyses and 
give uncertain estimates of critical loads. Hence, damage analyses and ultimate strength of such structures have 
been of considerable research interest. In the field of buckling and post-buckling analyses, many researchers have 
extensively investigated these behaviors for composite beams and plates without considering the damage effects. 
Turvey and Marshall (1995) and Argyris and Tenek (1997) published excellent reviews on past studies of buck-
ling and post-buckling of structures using different methods and recently, Pagani and Carrera (2017) have ana-
lyzed the large deflection and post-buckling behaviors of laminated beams by Carrera unified formulation. 

Finite Element Method (FEM) is one the most common methods for analyzing the buckling and post-buckling 
of composite laminated plates. This method is based on dividing the plate’s domain into a finite number of simple 
subdomains called elements. The behavior of each element is described by some specified functions. Finally, the 
solution of the whole plate as an assembly of its elements can be obtained according to the procedures applicable 
to the standard discrete problems such as those described by Zienkiewicz (1977) and Bathe (2006). Although 
FEM is an intensely powerful technique, it has some disadvantages. It needs large number of elements to reach 
acceptable stress results and in aspect of computational costs, it takes much longer computing time and requires 
larger amount of core storage. 
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Finite Strip Method (FSM) is another universally applicable method for buckling and post-buckling analyses 
of plates and plate structures. It can be considered as a particular kind of simplified finite element method in 
which a special element called strip is used. Finite strip method is based on discretization of the domain into lon-
gitudinal strips and interpolates the behavior in the longitudinal direction by different functions and in the trans-
verse direction by polynomial functions. Cheung (1976) may be considered as the pioneer who first proposed the 
concept of FSM. Cheung established FSM for the analysis of simply supported plates. The studies presented by 
Smith and Sridharan (1978) proposed FSM for buckling of isotropic plate under edge loading. Recently, Ovesy, 
Ghannadpour and their co-workers (Ovesy et al. 2005) have made a contribution by introducing two different 
versions of finite strip methods, namely the full-energy and semi-energy finite strip approaches. Two other differ-
ent versions of finite strip method, namely spline and semi-analytical methods are also developed by them for 
predicting the response of rectangular laminates with non-symmetric and symmetric forms of initial imperfec-
tion. They used both formulations to predict the non-linear response of channel sections when subjected to uni-
form end-shortening in their plane (Ovesy et al. 2006). An exact finite strip is introduced by Ghannadpour and 
Ovesy (2008) to investigate the exact relative post-buckling stiffness of I-section struts. To extend their works, 
they developed a high accuracy finite strip for the buckling and post-buckling analyses of moderately thick sym-
metric cross-ply composite plates based on FSDT (Ovesy et al. 2016). 

Furthermore, many other methods employed to investigate composite plate’s behavior subjected to com-
pressive loads such as new class of numerical methods called meshless methods (Liu, 2009). These methods have 
attracted the attention of many researchers in recent years due to the fact that meshless methods do not require a 
mesh to discretize the problem domain as in the finite element method and require only a scattered set of nodes 
to model the domain of interest. Meshless or mesh-free methods have been proposed in multiple varieties such as 
Generalized Finite Difference method (GFD) (Liszka, 1984), which partial differential equations have been solved 
by applying irregular grids or clouds of points, the Smooth Particle Hydrodynamics (SPH) (Monaghan, 1988), a 
fully Lagrangian meshless method which at first was used for simulating astrophysical phenomena, the Diffuse 
Element Method (DEM) (Nayroles et al., 1992), which is the first meshless method employed moving least-
squares approximation, the Element-Free Galerkin method (EFG) (Belytschko et al., 1996) and Reproducing Ker-
nel Particle Method (RKPM) (Liu et al., 1995). A corrected collocation method to apply essential boundary condi-
tions in the meshless methods have been developed by Wagner and Liu (2000). 

In the field of studies that investigate the plates behavior using mesh-free methods, it can be pointed out to 
the research conducted by Krysl and Belytschko (1995). They have implemented EFG to analyze the thin plates 
bending behavior. Lin and Jen (2005) proposed Chebyshev collocation method to solve the governing differential 
equations of a laminated anisotropic plate. A high order collocation method have been developed by Ferreira et al. 
(2009) for the static and vibration analyses of composite plates. Buckling of laminated composite plates subjected 
to various mechanical and thermal loads using meshless collocations have been studies by Singh et al. (2013). 
Free vibrations of beams were investigated by Carrera et al. (2013) using Radial Basis Functions (RBFs). They 
have analyzed the free vibration characteristics of beams on the basis of unified formulation. Liew and Huang 
(2003) and Liew et al. (2006) studied buckling and post-buckling of laminates using the moving least-squares 
differential quadrature and mesh-free kp-Ritz method. Also, Liew et al. (2011c) published a review paper for 
meshless methods and their applications in the buckling analysis of laminated or functionally graded plates. Re-
cently, Ghannadpour and Barekati (2016) investigated the post-buckling behavior of composite plates using Che-
byshev techniques by considering initial imperfection effects. More recently, Ghannadpour et al. (2017) have de-
veloped a high accuracy mesh-less analysis as a collocation method with Legendre Basis Functions (LBF) for non-
linear analysis of thin and moderately thick composite plates. 

As emphasized earlier, all above mentioned research works, investigate the linear and nonlinear behaviors of 
plates without considering the effects of damage or failure and therefore the obtained results may be unrealistic. 
On the other hand, as was observed, all mentioned studies have been developed by different numerical or semi-
analytical methods. However, strength analyses of metal plates and damage analyses of composite plates are usu-
ally carried out using FEM in which the storage required is extremely large, and the computational time is too 
lengthy. Only a limited number of such analyses have been implemented by other numerical or semi-analytical 
methods. 

Several simplified semi-analytical methods have been purposed by Brubak and Hellesland (2007a,b, 2008, 
2011) and Brubak et al. (2007c) for investigating the strength of stiffened and unstiffened metal plates with im-
perfection and cutout. Accelerated analysis techniques were proposed by Orifici et al. (2008) using FEM tools 
such as ABAQUS to model the degradation and fracture mechanics of composite stiffened fuselage panel in a post-
buckling regime. Some experimental works with comparison by FEM analysis can be found on ultimate strength 
of composite plates such as study investigated by Hayman et al. (2011). These studies are included a parametric 
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study of ultimate strength analysis of rectangular simply supported composite plates with different geometrical 
imperfections. Yang and Hayman (2015a,b) and Yang et al. (2013) recently carried out a valuable studies estab-
lished simplified methods to predict ultimate strength of composite plates with different initial imperfection val-
ues under in-plane compressive loads. 

In the present paper, a simplified progressive damage methodology is developed to predict the ultimate 
strength of imperfect composite plates with different boundary conditions under compression. The simplified 
methodology is referred to the assumptions of small deflection theory by which the computational time is greatly 
reduced. A new methodology is presented based on collocation method in which the interested domain is discre-
tized with Legendre-Gauss-Lobatto nodes and therefore this approach do not require a mesh to discretize the 
problem domain. However, with less computational efforts, an acceptable field of stress can be obtained which is 
necessary for damage analyses. The formulations are based on the concept of the principle of minimum potential 
energy and the approximation of displacement fields is performed by Legendre Basis Functions (LBFs). In this 
new collocation approach which is based on the total potential energy, there is no need to enforce the natural 
boundary conditions, and the essential boundary conditions are satisfied very easily. Therefore, it is easy to apply 
different boundary conditions. The structural model is based on the first order shear deformation theory. The 
onset of damage and damage evolution are predicted by Hashin’s failure criteria (Hashin and Rotem, 1973) and 
by proposed material degradation models. Three types of degradation models are assumed to estimate the degra-
dation zone around the failure location which are named complete, region and node degradation models. With 
these assumed models, the accurate results can be extracted by reducing the area of failure around a node, and 
this is done very easily and quickly due to the proposed formulations. The properties of damaged materials in-
stantaneously reduced to a 1% of primary value. Some examples involving various boundary conditions, initial 
imperfections and different thickness to width ratios are investigated to demonstrate the validity and capability 
of the proposed method. The accuracy of the present work is examined by comparing the numerical results with 
the previous studies. 

2 Theoretical formulations 

A typical rectangular laminated plate of dimensions of a b  and total thickness h  with an initial geometric 

imperfection iw  at the center of plate and in the z-direction is shown in Figure 1. The laminate is subjected to in-

plane compressive load on the edge / 2x a  in the x-direction called   xN . Two different types of boundary con-

ditions are considered that they will be mentioned later. The laminates are assumed to be moderately thick, thus 
the formulations are based on the first order shear deformation theory (FSDT). 

 
 

 
Figure 1: A typical imperfect rectangular laminated plate 
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To described the deformation of a laminated plate, displacement vector 
T

x y zd d dd  is considered 

and expressed by equation (1). 

z  d u u  (1) 

Whose components of displacement vector are given by equation (2). 

     
!

! !
, , ,x xd x y z u x y n

n
z

r r
 


 (2a) 

   , , ,y yd v x yx y zz    (2b) 

     , , ,,zd wx x yy z w x y   (2c) 

Where
T

u v wu , 0
T

x y  and 0 0
T

wu . According to the FSDT (Reddy, 2004),  , ,u v w  

are in-plane and out-of-plane displacement of mid-plane, and x  and y  denote the rotations of a transverse 

normal about axes parallel to the x  and y  axes, respectively andw  is initial geometric imperfection of the 

laminate in the form of a single half sine-wave in both directions. 
Due to moderately large displacements assumption, the vector of Green's strainse  in a total Lagrangian for-

mulation is written as equation (3). 

T p
xx yy xy xz yz zz

n
e e e e e e

         

e
e e  (3) 

Where pe  and ne  are in-plane and out-of-plane component vectors with subscripts p  andn , respectively. By 

substituting geometric nonlinearity in the von Karman sense, the strain-displacement relations are given as: 

      0
1  
2p p p n p n p p nl pw w z z z                 e u u u       (4a) 

n n  e u    (4b) 

where ⊗ denotes the Kronecker product. Also equation (4) defines the plate strain vectors that are the in-plane 

strains vector 0 , the curvatures vector  and the shear strains vector  . Since the structural model in this study 

is based on the assumption of small deflection theory, therefore the nonlinear and imperfection strains vectors 

 ,nl p   are neglected henceforth. Differential operators p  and n  can be defined by equation (5). 
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The mechanical state is described by the stress vector , which can be written as equation (6). 

T p
xx yy zz xz yz zz

n
     

         


   (6) 

On the assumption that the plate is in a state of plane stress 0zz  , the constitutive equations for the ori-

ented kth orthotropic ply of the laminate are written as equation (7). 
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The plate internal actions are including, namely, the in-plane stress resultantsN , the moment resultantsM
and the transverse force resultants T . All these stress resultants are measured per unit length and can be ob-
tained by equation (8). 
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In which pA ,B ,D and nA  are the generalized stiffness matrices, which are extensional stiffness matrix, ex-

tensional-bending stiffness matrix, bending stiffness and interlaminar shear stiffness matrices, respectively. They 
can be computed by the following equations. 

     
1

2

1

, , 1, ,
k

k
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k
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z z dz
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

A B D Q  (9a) 

 
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k

k

hN
k
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K dz
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 


A Q  (9b) 

Where K  is the shear correction factor. By applying the external force vector 
T

x y xyN N N  on the 

plate, the total potential energy Π is consists of the strain energy of the plate   and potential energy of external 
forces  . Therefore, the total potential energy can be obtained by 

1 1 1
2 2 2

T T T
V z

dV dzd d
 

        e  e  S      (10a) 
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     (10c) 

Where   is the domain occupied by the plate mid-plane. It is emphasized that in this paper the plate is only 

subjected to in-plane compressive load xN . 

By using equations (4), (9) and (10) the total potential energy   can be shown as equation (11). 

 0 0 0 0
1 2 2 2  
2

T T T T T T T T
p n p nl p d


              A B B D A              (11) 

3 Displacement fields and boundary conditions 

In order to approximate the displacement functions of the problem, it is necessary to describe the specified 
boundary conditions. The laminates under consideration have two different types of boundary conditions as rep-
resented in Figure 2. As shown in this figure, for both types of boundary conditions, the in-plane displacement in 
x-direction at / 2x a  and in y-direction at / 2y b   are completely restricted and in the opposite edges 

uniform movement are allowed and then all four edges of the plates are being held straight. 

 
Figure 2: Two different types of boundary conditions 

 

However, as it can be seen, the labelling schemes are included in these figures to assign the related boundary 
conditions. The letter S refers to simply supported boundary condition and the letter C refers to clamped bounda-
ry condition on the specified edge. Therefore, the two aforementioned boundary conditions are different from the 
viewpoint of out-of-plane boundary conditions. The details of edges conditions for both Type A and Type B are 
expressed in Table 1. 

 

Table 1: Details of edges conditions for both Type A and Type B 

Displacement 
fields 

Edge boundary condition 
edge 1

 / 2x a   

edge 2

 / 2x a  

edge 3

 / 2y b   

edge 4

 / 2y b  

u  Held Straight Free Free 
v  Free Free Held Straight 
w  Held Held Held Held 

x  Free Free Held Held 

y  Held Held 
Free (for Type A) 
Held (for Type B) 

Free 

 
It is noted that the words “Free” and “Held” denote whether the edge is free to move or restricted against any 

movement, respectively. Also, the word “straight” denotes the edge can move longitudinally (for u ) or laterally 
(for v ) but remain straight. 
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Since the Rayleigh–Ritz technique is used in this study, approximated displacement fields have to satisfy only 
the aforementioned essential boundary conditions. The approximation of displacement fields is performed by 
Legendre basis functionsP . Legendre polynomials are one of the most powerful mathematical series for numeri-
cal methods. Legendre basis functions or Legendre polynomials are solutions to the following Legendre differen-
tial equation is written as equation (12). 

       21 1 0n n
d dx P x n n P x
dx dx

       
 (12) 

Also Legendre polynomials satisfy the three-term recursion expressed by equation (13). 

     1 1
2 1

1 1n n n
n nP x xP x P x
n n 

 
 

 (13) 

Where  0 1P x   and  1P x x . Therefore, the displacement fields of the problem can be approximated by 

equation (14). 

         1 1
1 1

  , , ,
t tN N

T
ij i j c

i j

x y x y P x P y f x y 
      

 

      (14) 

Where  , , , ,x yu v w   is a displacement field, x and y  are non-dimensional coordinates defined as2x a  and 

2y a , respectively and tN is the number of terms in series expansion which is taken same for all displacement 

fields. The coefficients ij
 and c

  are the Ritz unknown coefficients and the latter is for satisfying the straight 

conditions mentioned in Table 1 for in-plane displacements  ,u v  and therefore, function ,( )f x y  is defined as 

equation (15). 

 
 
 

 

1 / 2 for 
,   1 / 2 for 

0   , ,  x y

x u
f x y y v

w





  

      

 (15) 

The so-called boundary function ),(x y  is also chosen to ensure the fulfillment of the essential boundary 

conditions mentioned in Table 1. It can be defined as equation (16). 

       
   

1 1

1,2 3,4
,   1 1 1 1x y x y

 
   


 

 

 
       (16) 

Where  denotes the edge number and the exponents 
  can take the value 0 for free condition and the value 1 

according to the conditions of held or straight for each displacement field  , , , ,x yu v w   . 

Specifically, as noted earlier, to the aim of the present work Legendre orthogonal polynomials have been 
chosen. It is worth mentioning that different types of polynomials can be used, whose characteristic features have 
been discussed in the literature. 

As can be seen in right-hand side of equation (14), each displacement field  , , , ,x yu v w   can be written 

as product of a row vector T
 containing the Legendre and boundary functions and a column vector  contain-

ing the corresponding Ritz unknown coefficients. With this definition and also in order to comply with other nota-
tions, the previously mentioned initial geometric imperfectionw that has a shape of single half sine-wave in both 
directions in this study, can be generally represented by equation (17). 

   , T
w ww x y     (17) 
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4 Equilibrium equations and solution procedure 

As mentioned before, the equilibrium equations are obtained based on the concept of the principle of mini-
mum potential energy. Therefore, the elements in equation (11) should be written as described in previous sec-
tion. For this purpose, the vectorsu , and u  can be rewritten in compact matricial form as equation (18). 

 u uu U  (18a) 

    U  (18b) 

 u U  (18c) 

where , , ,,   u uU U and U are defined as equation (19). 

00 0 0 0 0 0
0 0 ; 0 ; 0 0 0 0
0 0 0 00 0
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TT
uu

T T
v v

T T
w ww w





                                            


    



    




   

 
u


 

 
 (19a) 

0
; ; 0x

y

u

v

w w





                                         








uU U U

 
 
 

 (19b) 

Accordingly, the strain vectors defined in equation (4) with the assumption of small deflection theory can al-
so be rewritten as equations (20) and (21). 

0 p p   u uU   (20a) 

p  U   (20b) 

n  u uU U   (20c) 

1
2nl nl  u uU  (20d) 

p  u uU  (20e) 

Where 

p p u u  (21a) 

 p p    (21b) 

   (21c) 

n n u u  (21d) 

 nl p w n   u u uU 
 (21e) 

 p w n   u uU 
 (21f) 

And finally by using equations (20), the total potential energy  can be shown as: 
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 (22) 

Since in the current study, the domain of the plates is discretized by a set of nodes therefore the above con-
tinuous integrals should be replaced by summations where they can be calculated over all nodes. For this pur-
pose, Legendre-Gauss-Lobatto nodes are established here and can be obtained by solving equation (23). 

 
 

'
1

'
1

  :    0
   :    0

m

n

x P x
y P y
 

 





  
 (23) 

Where the parameters m and n denote the number of nodes in both  x  and y  directions, respectively and  x  and 

y  are non-dimensional coordinates of th  and th  node in the  x  and y  directions. Figure 3 represents a 

scattered set of Legendre-Gauss-Lobatto nodes ( 13 13m n   ) in a typical domain Ω. 

 
Figure 3: Discretized plate model. 

 

In order to achieve better accuracy and also to avoid excessive number of nodes to reduce computational 
costs, an appropriate weight coefficient can be considered for each node. Calculation of the weight coefficients for 
nodes is performed by taking idea from Gauss-Lobatto rules and therefore, the continuous integral of total poten-
tial energy (i.e. equation (22)) after eliminating the constant factors is then converted to the following relation: 
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 (24) 



S. A. M. Ghannadpour et al. 

Energy based collocation method to predict progressive damage behavior of imperfect composite plates under compression 

Latin American Journal of Solids and Structures, 2018, 15(4), e35 10/25 

Where ,  indicates the th  node along  x  direction and th  node along y  direction as represented in Figure 3. 

The coefficients   and   are weight coefficients of nodes along  x  and y  directions, respectively and they can 

be computed by equation (25). 
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       (25a) 
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       (25b) 

To obtain the equilibrium equations of the problem using the principle of minimum potential energy, the dis-
cretized form of the total potential energy equation (24) should be minimized with respect to the unknown pri-

mary variables uU and U  (i.e. / 0  uU and / 0  U ). Therefore, the final set of equilibrium equa-

tions can be written as equation (26) and (27). 
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5 Progressive damage model methodology 

In this section, the methodology of progressive damage analysis including the failure criteria, material deg-
radation model and ply geometric degradation models is described in details. 

5.1 Failure criteria 

In order to determine the failure load and the corresponding failure mode, a proper failure criterion must be 
established. The selected failure criteria applied in the present study are proposed by Hashin and Rotem (1973). 

The Hashin failure criteria used herein include four different damage functions which correspond to the dif-
ferent modes of failure namely fiber tension, fiber compression, matrix tension, and matrix compression. These 
criteria can be presented as equation (28). 

Fiber failure in tension 1 0 : 

2
1T

f
TX

F
      

 (28a) 

Fiber failure in compression 1 0 : 

2
1C

f
CX

F
      

 (28b) 
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Matrix failure in tension 2 0 : 

2 2
2 12

12

T
m

TY S
F

                
 (28c) 

Matrix failure in compression 2 0 : 

2 2
2 12

12

C
m

CY S
F

                
 (28d) 

Here TX  and CX  denote tensile and compressive strengths of fiber and TY  and CY  are tensile and com-

pressive strengths of matrix, respectively. Failure happens when any of these modes reaches unity. 

5.2 Material degradation model 

As it is known, when damage occurs in a composite structure, the effective material properties are reduced. 
This reduction can be modeled in this study by the following matrix. 
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21 12 12
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1 0

1
0 0 1

f f m

p f m m
f m

f m f m
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 
 
       

Q  (29) 

Where 1E , 2E , 12G , 12  and 21  in equation (29) are undamaged material properties. The parameters fd  and md  

are the damage factors in fiber and matrix directions, respectively. Note that for the Hashin criterion, because the 
shear failure component is associated with both the fibre and matrix modes of failure, the shear damage factor is 
assumed to be not independent and given by the remaining damage factors. 

According to degradation model presented by Hayman et al. (2011) and also in order to better comparison 

with the results obtained by Yang et al. (2013), the transverse shear stiffness matrix nQ  is not degraded during 

the damage analysis. 
In the current progressive damage model, the reduction of material properties is considered to happen in-

stantaneously. When failure is detected in specific zone (complete, region or node), its properties are instantane-

ously reduced to %1 of their initial and undamaged values (i.e. fd or 0.01md  ). 

5.3 Ply geometric degradation models 

In this study, three geometric degradation models are assumed to estimate the degradation zone around the 
failure location which are named complete, region and node degradation models. When failure occurs in a loca-
tion, the material properties of its zone should be changed. 
• Complete Degradation Model (CDM) in which, the material properties of the entire ply are reduced. (as illustrated in Figure 4(a)) 
• Region Degradation Model (RDM) in which a plate is divided into 9 regions and material properties of the region where failure has 

occurred are reduced. (as illustrated in Figure 4(b)) 
• Node Degradation Model (NDM) in which, the material properties of the area around the failed node are reduced. (as illustrated in Figure 

1(c)) 
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Figure 4: Ply geometric degradation models around the location failure: a) Complete degradation model (CDM), b) Re-

gion degradation model (RDM), c) Node degradation model (NDM) 

6 Numerical results and discussion 

In this study, in order to implement the proposed formulations for analyzing the progressive damage of 
composite plates, a computer program is developed based on Fortran 77 software pack-age. To reduce the execu-
tion time on multicore processors, a parallel programming technique is used using Open Multi-Processing 
(OpenMP) interface. The program is executed on a computer with TYAN FT48-B8812 mainboard, 4 AMD CPU by 
2.20 GHz frequency (4×16 cores) and 128.00 GB RAM. 

The mentioned proposed formulations should be verified through a number of comparisons and this is done 
by comparing the results with those obtained by Hayman et al. (2011) and Yang et al. (2013). For this purpose, 
the plates which are considered in this study are square plates ( 500 a b mm  ) with two types of boundary 

conditions as described before. Also, a uniform compressive load, xN , is applied in the x-direction at / 2x a  as 

mentioned earlier. Initial imperfection is considered to be a single half sin wave in both directions by maximum 
values of 0.1%, 1%, 2% and 3% of the length a  in center of the plates. 

 

Table 2: Material properties of fiber and matrix (in MPa) 

Compo-
nent 1E  2E  12v  12G

 

13G
 

23G
 

tX
 

cX
 

tY  cY  12S
 

Value 49627 15430 0.272 4800 4800 4800 968 915 24 118 65 

 
 

The composite plates under consideration are modeled as 
,

0 45 90 45
X S

        lay-up using 8X  

distinct layers whose mechanical properties are listed in Table 2 as taken from Yang et al. (2013). The parameter 
X takes the values of 2, 3 and 4 in this study. The thickness of each ply is considered to be equal to 1 mm and 
therefore, the composite laminated plates have total thickness of 16, 24 and 32 mm. 

Since in this study, one of the geometric degradation models is region degradation model (RDM) in which a 
plate is divided into 9 regions, so specifying the size of each region is necessary. Therefore, in order to better 
comparison between the results, the size of the regions has been chosen as those considered by Yang et al. 
(2013): regions dimensions 1, 3, 7 and 9 are 160×160mm. Regions 2 and 8 are 180×160mm each. Regions 4 and 
6 are 160×180mm and region 5 is 180×180mm. 

To do the convergence analysis, two composite plates with total thickness of 16 and 32 mm are selected. The 
boundary conditions are imposed as described for Type A and the plates have the maximum initial imperfection 

of 3% and 2%. Figure 5 shows the convergence study for both plates with the number of terms tN  in the dis-

placement fields. 
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Figure 5: convergence study of 16 mm and 32 mm composite plates with 3% and 2% initial imperfection respectively 

 

As can be seen, for the plates under consideration the convergence studies with regard to the number of 
terms have revealed that 8 terms are sufficient to obtain converged results. However, the number of 9 terms is 
used to ensure accurate convergence in all analyses. Thus, the total number of unknown coefficients is 407. Also, 
similar analyzes were conducted with regards to the number of nodes for all three geometric degradation models 
and it was concluded that the total number of 169 nodes (m×n=13×13) are sufficient to obtain converged re-
sults. 

6.1 Results for CDM. 

To investigate the results for complete degradation model (CDM), two types of boundary conditions are con-
sidered as shown in Figure 2. The results for composite plates with geometrical and mechanical properties men-
tioned in previous section and for CDM are given in Tables 3 and 4 for different maximum initial imperfections 
and total thicknesses. Other given data in these tables are first ply failure (FPF) stress, number and angle of that 
layer and the location failure, last ply failure (LPF) stress and also number and angle of last failed ply. Total num-
ber of failed plies is also given in these tables. Ultimate strength of composite plates with boundary condition 
Type A is tabulated in Table 3 and they are compared by results reported by Yang et al. (2013) and the results 
computed for boundary condition Type B are presented in Table 4. Also, the load-center out-of-plane displace-

ment history  x tcN w  and load-end shortening response  x cN u  are graphically represented for composite 

plates having total thickness of 16 and 24 mm and for two types of boundary conditions A and B in Figures 6-9. 

The parameter tcw  is defined as the value of total out-of-plane displacement in the center of the plate (i.e.

   0,0 0, 0w w ). As can be seen in these figures, the results for different values of initial imperfection are also 

incor-porated in order to better comparison and observation. 
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Table 3:Results for progressive damage of composite plates using CDM and for boundary condition Type A 

100iw
a

    mmh  
 FPF  

 MPa  

FP No. 
(angle) 

 LPF  

 MPa  

LP No. 
(angle) 

No. of 
failed ply 
(matrix) 

No. of 
failed ply 

(fiber) 

max  

Yang et al. 
(2013) 

0.1 16 80.34 16 (0) 80.34 16 (0) 1 0 80.69 

0.1 24 166.12 24 (0) 167.57 20 (0) 2 0 168.9 

0.1 32 198.25 3 (90) 235.64 1 (0) 29 0 239.28 

1.0 16 39.87 16 (0) 56.56 14 (90) 6 0 57.7 

1.0 24 67.81 24 (0) 114.02 15(45) 18 0 116.5 

1.0 32 95.21 32 (0) 174.14 1 (0) 30 1 177.81 

2.0 16 25.85 16 (0) 46.24 15 (45) 12 1 49.47 

2.0 24 41.76 24 (0) 99.49 23 (45) 18 1 100.5 

2.0 32 57.31 32 (0) 148.84 16 (-45) 29 0 152.59 

3.0 16 19.15 16 (0) 42.46 15 (45) 12 1 45.98 

3.0 24 30.37 24 (0) 88.53 23 (45) 18 1 90.42 

3.0 32 41.31 32 (0) 131.16 1 (0) 27 1 133.3 

 

Table 4. Results for progressive damage of composite plates using CDM and for boundary condition Type B 

100iw
a



 

  mmh  
 FPF  

 MPa  

FP No. 
(angle) 

 LPF  

 MPa  

LP No. 
(angle) 

No. of 
failed ply 
(matrix) 

No. of 
failed ply 

(fiber) 

max  

Table 3 

0.1 16 98.47 1 (0) 100.73 16 (0) 2 0 80.34 

0.1 24 189.37 1 (0) 192.37 3 (90) 2 0 167.57 

0.1 32 202.12 3 (90) 277.39 1 (0) 32 1 235.64 

1.0 16 33.28 1 (0) 68.11 3 (90) 12 1 56.56 

1.0 24 53.67 1 (0) 141.57 3 (90) 22 1 114.02 

1.0 32 73.75 1 (0) 211.73 1 (0) 32 1 174.14 

2.0 16 19.25 1 (0) 59.96 3 (90) 12 1 46.24 

2.0 24 30.31 1 (0) 117.32 3 (90) 18 1 99.49 

2.0 32 41.31 1 (0) 174.48 3 (90) 32 1 146.11 

3.0 16 13.59 1 (0) 53.42 3 (90) 12 1 42.46 

3.0 24 21.12 1 (0) 98.93 10 (45) 19 0 88.53 

3.0 32 28.75 1 (0) 148.32 1 (0) 32 3 131.16 
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Figure 6: Response of Load vs maximum out-of-plane displacement for 16 mm composite plates (Type A) 

 

 
Figure 7: Response of Load vs end shortening for 16 mm composite plates (Type A) 
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Figure 8: Response of Load vs maximum out-of-plane displacement for 24 mm composite plates (Type B) 

 

 
Figure 9: Response of Load vs end shortening for 24 mm composite plates (Type B) 

 

As it can be seen, according to the results presented in Tables 3 and 4 for laminated plates with different 

boundary conditions, almost the o0 ply fails first. However, for plates with boundary condition Type A, first failure 
usually occurs in the upper-most layer while for the plates having boundary condition Type B this mostly occurs 
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in the lower-most ply. The only exceptions for both types are the two thicker plates with small initial imperfection 

(0.1%). For these special cases, the first ply failure occurred in ply with o90 fiber orientation angle. Another im-
portant point is the location of first failure for both composite plates with different boundary conditions. For 
composite plates with all simply-supported edges (Type A), first failure usually occurs in the middle of the plates 
while for plates having one clamped edge (Type B) damage correspond to the first ply failure load mostly initiates 
from the mid-point of the clamped edge. 

It is also seen that the ultimate strength of the composite plate is usually attained at the first incidence of fi-
ber failure especially for plates having one clamped edge. Furthermore, the investigations show that for thin 
plates with small initial imperfections, there are little reserve strength beyond the first ply failure load while the 
ultimate strength of the thicker plates or the plates with larger initial imperfections have higher values than first 
ply failure loads. In these laminates, all plies usually have to experience matrix failure. 

It is also seen from both tables and figures that by increasing the maximum value of initial imperfection of 
the plates, both FPF and LPF loads are decreased. Furthermore, as it can be observed from tables and figures, 
ultimate strength of composite plates having at least one clamped edge, is usually much greater than those plates 
with boundary condition Type A. 

6.2 Results for RDM 

In this section, the results for region degradation model (RDM) are presented and investigated. Tables 5 and 
6 show the results for composite plates having boundary conditions Type A and Type B, respectively. Similar to 
the section of CDM results, first ply failure stresses and locations have been achieved. Also in both tables, last ply 
failure stresses and the number of matrix and fiber failed regions are included for each laminate thickness and 
initial imperfection. Furthermore, the values of ultimate strength obtained by CDM (Tables 3 and 4) are also re-
tabulated here for better comparison. 

 

Table 5. Results for progressive damage of composite plates using RDM and for boundary condition Type A 

100iw
a

    mmh  
 FPF  

 MPa  

FP No. 
(angle) 

 LPF  

 MPa  

No. of 
failed ply 
(matrix) 

No. of 
failed ply 

(fiber) 

max  

Table 3 

0.1 16 80.34 16 (0) 80.34 1 0 80.34 

0.1 24 166.12 24 (0) 168.89 7 0 167.57 

0.1 32 198.25 3 (90) 235.68 254 0 235.64 

1.0 16 39.87 16 (0) 59.01 46 0 56.56 

1.0 24 67.81 24 (0) 114.04 150 0 114.02 

1.0 32 95.21 32 (0) 176.23 260 0 174.14 

2.0 16 25.85 16 (0) 49.00 66 0 46.24 

2.0 24 41.76 24 (0) 99.59 158 2 99.49 

2.0 32 57.31 32 (0) 150.50 258 1 148.84 

3.0 16 19.15 16 (0) 44.34 111 3 42.46 

3.0 24 30.37 24 (0) 88.67 160 3 88.53 

3.0 32 41.31 32 (0) 133.75 210 0 131.16 
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Table 6. Results for progressive damage of composite plates using RDM and for boundary condition Type B 

100iw
a

    mmh  
 FPF  

 MPa  

FP No. 
(angle) 

 LPF  

 MPa  

No. of 
failed ply 
(matrix) 

No. of 
failed ply 

(fiber) 

max  

Table 4 

0.1 16 98.47 1 (0) 106.49 13 0 100.73 

0.1 24 189.37 1 (0) 193.58 2 0 192.37 

0.1 32 202.12 3 (90) 280.77 254 1 277.39 

1.0 16 33.28 1 (0) 75.88 57 0 68.11 

1.0 24 53.67 1 (0) 143.19 166 0 141.57 

1.0 32 73.75 1 (0) 213.43 268 1 211.73 

2.0 16 19.25 1 (0) 62.05 67 0 59.96 

2.0 24 30.31 1 (0) 119.37 158 2 117.32 

2.0 32 41.31 1 (0) 177.00 272 3 174.48 

3.0 16 13.59 1 (0) 54.74 95 1 53.42 

3.0 24 21.12 1 (0) 104.00 156 6 98.93 

3.0 32 28.75 1 (0) 153.91 277 4 148.32 

 
It can be observed that there is no difference between the first ply failure loads obtained by both CDM and 

RDM. However, the CDM model gives generally slightly lower ultimate loads than the RDM model. This difference 
is slightly higher for plates with boundary condition Type B. 

In Figures 10 and 11, the applied load is plotted against the central out-of-plane displacement and end short-
ening displacement respectively, for plates having total thickness of 32 mm and 2% initial imperfection. In order 
to better comparison, the results for both types of boundary conditions A and B are also represented in these fig-
ures. 

 
Figure 10: Response of Load vs maximum out-of-plane displacement for 32 mm composite plates with 2% initial imper-

fection (Type A and Type B) 
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Figure 11: Response of Load vs end shortening for 32 mm composite plates with 2% initial imperfection (Type A and 

Type B) 

 

It is seen that the results obtained for plates with boundary condition Type B have 10-20% upper ultimate 
loads with respect to the results obtained for Type A. This is due to the fact that the boundary conditions have 
significant effects on the response of imperfect composite plates and as mentioned earlier the last ply failure loads 
of plates having one clamped edge are greater than the corresponding values in plates with all simply-supported 
edges. 

However, regarding the first ply failure, for plates with small initial imperfection, Type A gives lower values 
than the results of Type B but by increasing amount of initial imperfection, FPF loads take higher values than Type 
B. In general, the laminates with boundary condition Type B can carry higher loads after their first ply fails. 

Moreover, considering the location of first ply failure, plates with boundary conditions Type A fail in the cen-
ter of the plate as mentioned in previous section, while laminates with boundary condition Type B fail in near the 
center of clamped edge. 

6.3 Results of NDM. 

The results for node degradation model (NDM) are presented and discussed here. Only the results corre-
spond to the plates with boundary conditions Type A are presented in this section. These results are tabulated in 
Table 7. As for previous models, first and last ply failure loads are reported in this table. In addition, the number 
of failed nodes in each fiber or matrix mode are also given. In order to better discussions, the results obtained by 
previous models (Tables 3 and 5) and those reported by Hayman et al. (2011)are tabulated in the separate col-
umns. 
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Table 7. Results for progressive damage of composite plates using NDM and for boundary condition Type A 

100iw
a

    mmh  
 FPF  

 MPa  

FP No. 
(angle) 

 LPF  

 MPa  

No. of 
failed 
node  

(matrix) 

No. of 
failed 
node 

(fiber) 

max  

Table 3 
max  

Table 5 

max  

Hayman 
et al. 

(2011) 

0.1 16 80.34 16 (0) 81.62 51 0 80.34 80.34 180 

0.1 24 166.12 24 (0) 170.82 22 0 167.57 168.89 215 

0.1 32 198.25 3 (90) 238.42 4319 0 235.64 235.68 270 

1.0 16 39.87 16 (0) 62.81 383 0 56.56 59.01 181 

1.0 24 67.81 24 (0) 120.29 283 0 114.02 114.04 210 

1.0 32 95.21 32 (0) 179.25 4508 1 174.14 176.23 240 

3.0 16 19.15 16 (0) 54.74 1485 8 42.46 44.34 185 

3.0 24 30.37 24 (0) 91.91 2073 2 88.53 88.67 205 

3.0 32 41.31 32 (0) 135.96 2630 1 131.16 133.75 222 

 
The behaviors of load against central out-of-plane displacement and load against end-shortening displace-

ment for plates with 16h  and 32 mm and for two different values of initial imperfection are depicted in Fig-
ures 12-15. In these figures, in addition to the results obtained by NDM, the results taken from two other models, 
CDM and RDM, are also represented. 

 

 
Figure 12: Response of load vs maximum out-of-plane displacement, compression between degradation model for 16 

mm composite plate with %1 initial imperfection (Type A) 
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Figure 13: Response of load vs end shortening, compression between degradation model for 16 mm composite plate 

with %1 initial imperfection (Type A) 

 

 
Figure 14: Response of load vs maximum out-of-plane displacement, compression between degradation model for 32 

mm composite plate with %3 initial imperfection (Type A) 
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Figure 15:Response of load vs end shortening, compression between degradation model for 32 mm composite plate 

with %3 initial imperfection (Type A) 

 
As it can be observed, there is no difference between the values of first ply failure loads calculated by three 

degradation models however, the complete model gives generally slightly lower values of ultimate load than the 
two others. 

With comparison between three degradation models in Table 7 it is seen that the node degradation model 
gives upper last ply failure load and this can be due to the effects of dividing the plate (or ply) into smaller areas. 
Therefore, if one wants to obtain better and more accurate results, the node degradation model should be used in 
which more computation time is also needed but in the early stages of structural design, the results taken from 
region model can be accepted with slightly lower accuracy. 

However, as it is seen, the ultimate loads predicted by all geometric degradation models in this study and 
those reported by Yang et al. (2013) are still smaller than those calculated by FEM analysis. This is mainly due to 
neglecting of the nonlinear terms in strain-displacement relations and therefore post-buckling effects, which are 
particularly considerable for thin plates. But for thick plates even by neglecting of those effects, the results have 
less deviation from FEM. 

7 Conclusions 

A new methodology has been introduced in this study to investigate the progressive damage analysis of 
composite plates with initial imperfection under in-plane compressive load. The concept of the first order shear 
deformation theory and the assumption of small deflection have been established to drive the equilibrium equa-
tions. In presented method, the domain of the plate is discretized with Legendre-Gauss-Lobatto nodes. The onset 
of damage has been predicted by Hashin’s failure criteria and material properties of damaged zone have been 
degraded by instantaneous material degradation model. Three geometric degradation models were assumed to 
estimate the degradation zone around the failure location. The results were compared with linear analysis re-
ported by Yang et al. (2013) and also non-linear FE analysis presented by Hayman et al (2011). By comparison, it 
has been concluded that the obtained results by increasing the thickness of the plates and decreasing the area 
around the location of failure can take better accuracy. 
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