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A Parametric Study on the Centrifugal Force-Induced Stress and  
Displacements in Power-Law Graded Hyperbolic Discs 

Abstract 
An extensive parametric study on the variation of the centrifugal-force-in-
duced stress and displacements with the inhomogeneity indexes, profile pa-
rameters and boundary conditions is conducted based on the author’s re-
cently published analytical formulas for radially functionally power-law 
graded rotating hyperbolic discs under axisymmetric conditions. The radial 
variation of the thickness of the disc is chosen to obey a hyperbolic function 
defined either convergent or divergent. In the present work, contrary to the 
published one, it is assumed that both Young’s modulus and density radially 
vary with the same inhomogeneity index to enable to conduct a parametric 
study. Under this additional assumption, for the values of the chosen power-

law indexes 5,  0,  5    for the material grading rule, and the chosen profile 

parameters 1,    0.75,    0.5,    0.25,  0,   0.25,   0.5,   0.75,  1   m       
for a hyperbolic disc; the variations of the radial stress, the hoop stress and 
the radial displacement are all illustrated graphically for a rotating disc 
whose both surfaces are stress-free, for a rotating disc mounted a rigid shaft 
at its center and its outer surface is stress-free, and finally for a rotating disc 
attached a rigid shaft at its center and guided at its outer surface (a rigid 
casing exists at the outer surface). 

Keywords 
Elasticity solution, rotating disc, functionally graded, axisymmetric, variable 
thickness disk. 

1 INTRODUCTION 

Analytical and numerical studies on functionally graded discs have gained a momentum since 1990s. There 
are numerous studies on stationary/rotating discs with constant/variable thickness and made of an isotropic and 
homogeneous/non-homogeneous material in the available literature. Some of those studies performed analytically 
and almost directly relevant to this study are cited in the present paper. In the literature, especially analytical stud-
ies on such structures subjected to only the inner pressure are relatively large. In this section, especially, just discs 
rotating at a constant speed and mainly analytical studies about those are cited. 

    Güven (1995) studied Tresca's yield condition and the linear hardening rotating solid disk of variable thick-
ness. Eraslan (2003a) obtained analytical solutions for the stress distribution in rotating parabolic solid disks made 
of an isotropic and homogeneous material based on Tresca’s yield criterion associated with the flow rule and linear 
strain hardening. Eraslan (2003a) showed that the deformation behavior of the convex parabolic disk is similar to 
that of the uniform thickness disk, but in the case of concave parabolic solid disk, it is different. Eraslan (2003a) 
also showed mathematically that in the limiting case the parabolic disk solution reduces to the solution of rotating 
uniform thickness solid disk. Based on Tresca’s yield criterion, its associated flow rule and linear strain hardening 
material behavior, Eraslan (2003b) offered analytical solutions for the elastic–plastic stress distribution in rotating 
parabolic disks with free, pressurized and radially constrained boundary conditions. In this study it was also shown 
mathematically that in the limiting case the parabolic disk solution reduces to the uniform disk solution. Apatay 
and Eraslan (2003) achieved analytical solutions in terms of hypergeometric functions for the elastic deformation 
of rotating parabolic discs made of isotropic and homogeneous materials.  Calderale et al. (2012) studied theoreti-
cally a thermoelastic analysis of the Stodola's hyperbolic disk made of an isotropic and homogeneous material, ax-
isymmetric and symmetric with respect to the mid-plane, and subjected to a radially polynomially varying thermal 
load. Vivio et al. (2014) introduced a theoretical method for the evaluation of elastic stresses and strains in rotating 
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hyperbolic disks made of an isotropic and homogeneous material.  For rotating discs made of an isotropic and ho-
mogeneous material, Eraslan and Ciftci (2015) used a disk profile changing with an exponential function. Yıldırım 
(2017) offered all-in-one formulas for uniform discs, cylinders and spheres subjected to the mechanical and ther-
mal loads. In this Reference centrifugal force-induced, heat-induced, and pressure-induced elastic responses have 
all been considered for those structures made of an isotropic and homogeneous material. 

    As to rotating discs made of functionally graded materials, material grading function was chosen as a simple 
power function in some References (Horgan and Chan, 1999a,b, You et al. (2007); Bayat et al., 2008; Çallıoğlu et al., 
2011; Yıldırım, 2016; Gang, 2017),  and as an exponential function in some studies (Zenkour, 2005, 2007; Zenkour 
and Mashat, 2011; Eraslan and Arslan, 2015) to get analytical solutions. From those, Horgan and Chan (1999a,b) 
gave explicit solutions for rotating discs of constant density and thickness. Zenkour (2005) studied analytically 
exponentially graded rotating annular discs with constant thickness. Eraslan and Akış (2006) used two variants of 
a parabolic function for disks made of functionally graded materials. Zenkour (2007) extended his study (Zenkour, 
2005) for such discs with rigid casing.  Bayat et al. (2008), based on the power-law distribution, gave both analytical 
and semi-analytical elastic solutions for axisymmetric rotating hollow discs with parabolic and hyperbolic thick-
ness profiles. This semi-analytic solution was obtained by dividing the disc with varying thickness into sub-domains 
with uniform thickness. By taking Young’s modulus, thermal expansion coefficient and density to be  functions of 
the radial coordinate, a closed form solution of rotating uniform circular disks made of power-law graded materials 
subjected to a constant angular velocity and a uniform temperature is proposed by You et al. (2007). Vivio and Vullo 
(2007) presented an analytical procedure based on the hypergeometric differential equation for evaluation of elas-
tic stresses and strains in rotating solid or annular conical disks subjected to thermal load, and having a fictitious 
density variation along the radius. Vivio and Vullo (2007) also verified their analytical results with finite element 
solutions. Vullo and Vivio (2008) presented an analytical procedure for evaluation of elastic stresses and strains in 
non-linear variable thickness rotating disks, either solid or annular, subjected to thermal load, and having a ficti-
tious density variation along the radius.  Thickness variation of disks was described by means of a power of linear 
function by Vullo and Vivio (2008).  Peng and Li (2009) studied a thermoelastic problem of a circular annulus made 
of functionally graded materials with an arbitrary gradient. Peng, and Li (2012) also studied effects of gradient on 
stress distribution in rotating functionally graded solid disks. Zenkour and Mashat (2011) used the modified Runga-
Kutte algorithm in their numerical analysis.  Çallıoğlu et al. (2011) performed an exact stress analysis of annular 
rotating discs made of functionally graded materials by assuming that both elasticity modulus and material density 
vary radially as a function of a simple power rule with the same inhomogeneity parameter. Hassani et al. (2011) 
obtained distributions of stress and strain components of rotating hyperbolic disks with non-uniform material 
properties subjected to a power form thermo-elastic loading under different boundary conditions by semi-exact 
methods of Liao’s homotopy analysis method.  Argeso (2012) presented analytical solutions for two different an-
nular rotating disk problems for the elastic stress state: The first problem involves an exponentially variable profile 
rotating disk made of an isotropic and homogeneous material, the second is a uniform disc made of exponentially 
functionally graded materials. Nejad et al. (2013, 2014) gave a closed-form analytical solution in terms of hyper 
geometric functions to elastic analysis of exponentially functionally graded stationary discs subjected to internal 
and external pressures. Eraslan and Arslan (2015) developed analytical and numerical solutions to a rotating uni-
form thickness exponentially functionally graded (FGM) solid and annular disks. Yıldırım (2016) studied the exact 
elastic response of a rotating disk having a continuously varying hyperbolic thickness profile under different 
boundary conditions. Both convergent-hyperbolic and divergent-hyperbolic disk profiles together with uniform 
profile are all studied. Power-law grading is used for material gradation pattern. Yıldırım’s (2016) formulation 
comprises both continuously variations of elasticity modulus and material density including continuously variation 
of the thickness of the disc except variation of Poisson’s ratios.  Contrary to the literature all effects affecting the 
elastic behavior of the disk with varying thickness such as internal and external pressures including rotation at a 
constant angular velocity are all studied under four physical boundary conditions and presented in compact forms 
in Yıldırım’s study (Yıldırım, 2016). Recently, Gang (2017) analytically studied the stress analysis of hyperbolic 
simple-power law graded rotating discs under stress-free conditions for four convergent disc profiles and negative 
inhomogeneity indexes.  
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Figure 1: 3-D view of convergent/divergent hyperbolic and uniform disc profiles 

 

    In this study, under the additional assumption that both Young’s modulus and material density have a vari-
ation with the same inhomogeneity index, closed-form formulas derived by Yıldırım (2016) are employed in the 
present work in a customized form to study the variation of centrifugal force-induced stress and displacements in 
power-law graded hyperbolic discs with inhomogeneity parameter, profile parameter and boundary conditions 
(Fig. 1). As mentioned above, radial variation of Poisson’s ratio is neglected. As You et al. (2007) expressed “Dou-
bling Poisson’s ratio, the radial and circumferential stresses and radial displacement have very few changes. How-
ever, doubling Young’s modulus, the radial stress is increased obviously, the circumferential stress is raised greatly, 
and the radial displacement is reduced noticeably. Therefore, compared to the effects of Young’s modulus, the var-
iation of Poisson’s ratio can be omitted.” 

2 EXPANDING YILDIRIM’S (2016) FORMULAS 

The disk whose inner radius is denoted by a and outer radius is denoted by b is assumed to be symmetric with 
respect to the mid plane, and its profile vary radially continuously in an hyperbolical form 

 
m

a

r
h r h

a
   
   (1) 

where 
ah  is the thickness of the disc at the inner surface, r is the radial coordinate, and m is the disc profile 

parameter.  In Eq. (1), a uniform disc profile is obtained with m=0, a convergent hyperbolic dick profile is attained 
with m<0 and for m>0 a divergent hyperbolic disc profile is reached (Fig. 1). 

Yıldırım (2016) solved the following nonhomogeneous equation governing the elastostatic behavior of a ro-
tating disc made of functionally graded materials for the hyperbolic discs rotating at a constant angular velocity, ω. 
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In the above equation, the prime symbol, (‘), denotes the derivative with respect to the radial coordinate. Pois-

son’s ratio is indicated by v; 
aE and 

a are the inner surface values of elasticity modulus and the density, respec-

tively. Representing Young’s modulus by E , and material density by  , in the above either 
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may be applied as a material grading rule. In Eq. (3) β and q are called inhomogeneity parameters for both elasticity 
modulus and density, respectively. If one suppose that Material-a is located at the inner surface and Material-b is 
located at the outer surface, inhomogeneity parameters in these equations are defined as follows 
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Derivation of Eq. (2) is presented in Appendix A. The general solution of Eq. (2) is written in terms of unknown 

coefficients 1C  and 2C  as follows (Yıldırım, 2016) 
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Where 
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 (6) 

Yıldırım (2016) presented explicit definitions of unknown coefficients, 
1C  and 

2C , for all possible boundary 

conditions. Although Yıldırım’s (2016) formulas are valid for the different inhomogeneity parameters for both elas-
ticity modulus and material density, in the present study, those indexes are assumed to be equal to each other, that 
is q   is to be used. That is those formulas will be customized for q   to allow a parametric study. 

Let’s do this. Under this assumption, q  , the solution in Eq. (5) together with Eq. (3a) turns into the follow-

ing 
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Boundary conditions considered in the present study are presented in Fig. 2. For those boundary conditions 
and q  , the closed-form expressions of the radial displacement, radial and hoop stresses are presented in Tables 

1-3. 

 
Figure 2: Boundary conditions considered in the present study 

 

Table 1: Closed-form formulas for free-free boundary conditions 

FREE-FREE 

𝑢௥ =
𝜌௔𝜔ଶ

𝐸௔(𝛽(𝜈 + 3) + 𝑚(𝜈 + 3) + 8)
൮

2(𝜈 − 1)(𝜈 + 1)(𝜈 + 3)𝑎క ଶ⁄ 𝑏క ଶ⁄ 𝑟
ଵ
ଶ

(ିఉି௠ିక)
൬𝑎క ଶ⁄ 𝑏

ଵ
ଶ

(ఉା௠ା଺)
− 𝑏క ଶ⁄ 𝑎

ଵ
ଶ

(ఉା௠ା଺)
൰

(𝑎క − 𝑏క)(𝛽 + 𝑚 − 2𝜈 + 𝜉)
 

−
2(𝜈 − 1)(𝜈 + 1)(𝜈 + 3)𝑟

ଵ
ଶ

(ିఉି௠ାక)
൬𝑎

ଵ
ଶ

(ఉା௠ାకା଺)
− 𝑏

ଵ
ଶ

(ఉା௠ାకା଺)
൰

(𝑎క − 𝑏క)(−𝛽 − 𝑚 + 2𝜈 + 𝜉)
+ (𝜈ଶ − 1)𝑟ଷ൲ 

𝜎௥ =
1

(𝑎క − 𝑏క)(𝛽(𝜈 + 3) + 𝑚(𝜈 + 3) + 8)
ቊ(𝜈 + 3)𝜌௔𝜔ଶ𝑎ିఉ𝑟

ଵ
ଶ

(ఉି௠ିకିଶ)
ቆ൫𝑟క − 𝑏క൯𝑎

ଵ
ଶ

(ఉା௠ାకା଺)

+ 𝑎క ൬𝑏
ଵ
ଶ

(ఉା௠ାకା଺)
− 𝑟

ଵ
ଶ

(ఉା௠ାకା଺)
൰ − 𝑟క𝑏

ଵ
ଶ

(ఉା௠ାకା଺)
+ 𝑏క𝑟

ଵ
ଶ

(ఉା௠ାకା଺)
ቇቋ 

𝜎ఏ =
1

൫(𝑎క − 𝑏క)(𝛽(𝜈 + 3) + 𝑚(𝜈 + 3) + 8)(𝛽 + 𝑚 − 2𝜈 − 𝜉)(𝛽 + 𝑚 − 2𝜈 + 𝜉)൯
ቌ𝜌௔𝜔ଶ𝑎ିఉ𝑟

ଵ
ଶ

(ఉି௠ିకିଶ)
൭(𝜈

+ 3)𝑎
ଵ
ଶ

(ఉା௠ାకା଺)
ቀ𝑟క(𝜈(𝛽 + 𝑚 − 𝜉) − 2)(𝛽 + 𝑚 − 2𝜈 + 𝜉)

− 𝑏క(𝛽 + 𝑚 − 2𝜈 − 𝜉)(𝜈(𝛽 + 𝑚 + 𝜉) − 2)ቁ

+ 𝑎క(𝛽 + 𝑚 − 2𝜈 − 𝜉) ቆ(𝜈 + 3)𝑏
ଵ
ଶ

(ఉା௠ାకା଺)(𝜈(𝛽 + 𝑚 + 𝜉) − 2)

− (3𝜈 + 1)(𝛽 + 𝑚 − 2𝜈 + 𝜉)𝑟
ଵ
ଶ

(ఉା௠ାకା଺)
ቇ

+ 𝑏క ଶ⁄ 𝑟క ଶ⁄ (𝛽 + 𝑚 − 2𝜈 + 𝜉) ቆ(𝜈 + 3)൫−𝑟క ଶ⁄ ൯𝑏
ଵ
ଶ

(ఉା௠ା଺)(𝜈(𝛽 + 𝑚 − 𝜉) − 2)

− (3𝜈 + 1)𝑏క ଶ⁄ 𝑟
ଵ
ଶ

(ఉା௠ା଺)(−𝛽 − 𝑚 + 2𝜈 + 𝜉)ቇ൱ቍ 

 

  



Vebil Yıldırım 

A Parametric Study on the Centrifugal Force-Induced Stress and Displacements in Power-Law Graded Hyperbolic Discs 

Latin American Journal of Solids and Structures, 2018, 15(4), e34 6/16 

Table 2: Closed-form formulas for fixed-guided boundary conditions 

FIXED-GUIDED 
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Table 3: Closed-form formulas for fixed-free boundary conditions 
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ଶ

(ఉା௠ାకା଺)
− 𝑟

ଵ
ଶ

(ఉା௠ାకା଺)
൰

+ 2(𝜈 + 3)𝑏క ଶ⁄ 𝑟క ଶ⁄ (−𝛽 − 𝑚 + 2𝜈 + 𝜉) ൬𝑟క ଶ⁄ 𝑏
ଵ
ଶ

(ఉା௠ା଺)
− 𝑏క ଶ⁄ 𝑟

ଵ
ଶ

(ఉା௠ା଺)
൰ቇ൱ൡ 

𝜎ఏ =
1

ቀ2(𝛽(𝜈 + 3) + 𝑚(𝜈 + 3) + 8)൫𝑎క(𝛽 + 𝑚 − 2𝜈 + 𝜉) + 𝑏క(−𝛽 − 𝑚 + 2𝜈 + 𝜉)൯ቁ
 

൝൭𝜌௔𝜔ଶ𝑎ିఉ𝑟
ଵ
ଶ

(ఉି௠ିకିଶ)
ቆ𝑎

ଵ
ଶ

(ఉା௠ାకା଺)
ቀ𝑏క(𝛽 + 𝑚 − 2𝜈 − 𝜉)(𝜈(𝛽 + 𝑚 + 𝜉) − 2)

− 𝑟క(𝜈(𝛽 + 𝑚 − 𝜉) − 2)(𝛽 + 𝑚 − 2𝜈 + 𝜉)ቁ

+ 2𝑎క ቆ(𝜈 + 3)𝑏
ଵ
ଶ

(ఉା௠ାకା଺)(𝜈(𝛽 + 𝑚 + 𝜉) − 2) − (3𝜈 + 1)(𝛽 + 𝑚 − 2𝜈 + 𝜉)𝑟
ଵ
ଶ

(ఉା௠ାకା଺)
ቇ

− 2(𝜈 + 3)𝑟క𝑏
ଵ
ଶ

(ఉା௠ାకା଺)(𝜈(𝛽 + 𝑚 − 𝜉) − 2)

− 2(3𝜈 + 1)𝑏క(−𝛽 − 𝑚 + 2𝜈 + 𝜉)𝑟
ଵ
ଶ

(ఉା௠ାకା଺)
ቇ൱ൡ 

 
Çallıoğlu et al. (2011) studied the elastic response of power-graded uniform stress-free rotating disks with 

boundary conditions:   0ru a   and   0r b   (Fig. 2). They assumed that both the Young’s modulus and the 

material density change with the same inhomogeneity index, q  , in their formulation as in the present work. 

However, they further assumed that the thickness of the disc remains constant along the radial coordinate, that is 
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0m . Yıldırım (2016) also showed that her formulas coincides with Çallıoğlu et al.’s (2011) study under those 
assumptions stated in this paragraph. 

3 A NUMERICAL STUDY 

The following geometrical properties are used in the parametric study: 0.02   ; 0.1  .a m b m   Poisson’s ratio 

is assumed to be constant along the radial coordinate as 0.3.   Dimensionless elastic stress and displacements 
are defined as 

r
2 2

σ
r

a b


 


 ; 

θ
2 2

σ

a b  


 ; 
2 3

a r
r

a

E u
u

b 


 (8) 

For the values of the chosen simple power-law indexes 5,  0,  5    for the material grading rule (Fig. 3), and 

the chosen profile parameters 1,    0.75,    0.5,    0.25,  0,   0.25,   0.5,   0.75,  1 m       for a hyperbolic disc; the 

variations of the radial stress, the hoop stress and the radial displacement are all illustrated graphically for a rotat-
ing disc whose both surfaces are stress-free, for a rotating disc mounted a rigid shaft at its center and its outer 
surface is stress-free, and finally for a rotating disc attached a rigid shaft at its center and guided at its outer surface 
(a rigid casing exists at the outer surface) in Figs. 3-5. Some numerical results are also presented in Tables 4-6 to 
serve as a numerical data for investigators. 

According to Eq. (3) the positive inhomogeneity indexes suggest that the outer surface and its vicinity is highly 
stiffer than the middle and the inner surfaces. However, the inner surface is stiffer than the middle and outer sur-
faces for the negative inhomogeneity indexes. The results obtained from a parametric study of the present work 
may be outlined concisely as follows (see Figs 3-5): 

Convergent hyperbolic dick profiles, 0m , offer smaller elastic field than divergent ones for negative inho-
mogeneity indexes including isotropic and homogeneous materials with   0  . However, for the positive inho-

mogeneity parameters some differences in the behavior may be observed. For instance, while the hoop stresses are 
smaller for fixed-free and free-free ends of convergent disc profiles, the radial stresses behave contrarily to this for 
all boundary conditions. Similar to this, for fixed-free and free-free conditions, convergent profiles having positive 
inhomogeneity parameter present much smaller radial displacement values. 

As expected, fixed-guided discs have higher elastic field than fixed-free and free-free boundary conditions. 
For fixed-guided disc and positive inhomogeneity index, hoop stresses are in tension-compression. For other 

boundary conditions they are in tension. However, negative inhomogeneity parameters offer hoop stresses in ten-
sion for all boundary conditions and for both convergent and divergent disc profiles. 

While positive inhomogeneity indexes present the maximum hoop stress at the outer surface of the disc, their 
locations are at the inner surface of the disc for negative inhomogeneity indexes. 

It may be noted that Gang (2017) analytically studied convergent hyperbolic discs with
  1,    0.75,    0.5,    0.25m      , and negative inhomogeneity indexes which may be defined approximately as 

0.00265    and 0.019q    under stress-free conditions (free-free). He concluded that radial and tangential 

stresses in convergent FGM hyperbolic disc with negative inhomogeneity indexes is significantly reduced as com-
pared to FGM uniform disc. This comment is in agreement with the first item of the conclusions given above of Figs. 
3-5 and obtained from a widespread search. 
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Figure 3: Variation of the displacement, the radial and hoop stresses with the boundary conditions and profile indexes 

for 5   

  



Vebil Yıldırım 

A Parametric Study on the Centrifugal Force-Induced Stress and Displacements in Power-Law Graded Hyperbolic Discs 

Latin American Journal of Solids and Structures, 2018, 15(4), e34 9/16 

 

Table 4: Some numerical results for 5   

r/b m=1 m=0.75 m=0.5 m=0.25 m=0 m=-0.25 m=-0.50 m=-0.75 m=-1 

 Dimensionless radial displacement (Free-Free) 
0.2 0.84645 0.82656 0.80574 0.78395 0.76114 0.73728 0.71231 0.68622 0.65899 

0.4 0.74676 0.73108 0.71459 0.69725 0.67901 0.65981 0.63963 0.61841 0.59612 

0.6 0.70113 0.68815 0.67448 0.66007 0.64487 0.62885 0.61194 0.59411 0.57531 

0.8 0.66415 0.65279 0.64082 0.62820 0.61488 0.60082 0.58598 0.57032 0.55379 

1. 0.62776 0.61731 0.60631 0.59470 0.58245 0.56953 0.55588 0.54148 0.52627 

 Dimensionless radial displacement (Fixed-Free) 
0.4 0.72968 0.71097 0.69094 0.66948 0.64649 0.62186 0.59552 0.56741 0.53754 

0.6 0.69733 0.68322 0.66811 0.65189 0.63445 0.61567 0.59544 0.57364 0.55023 

0.8 0.66155 0.64935 0.63630 0.62231 0.60728 0.59109 0.57365 0.55485 0.53463 

1. 0.62540 0.61420 0.60222 0.58937 0.57557 0.56071 0.54469 0.52743 0.50887 

 Dimensionless radial displacement (Fixed-Fixed) 

0.4 0.03431 0.03496 0.03565 0.03631 0.03697 0.03760 0.03821 0.03878 0.03930 

0.6 0.02797 0.02867 0.02939 0.03015 0.03093 0.03173 0.03255 0.03340 0.03426 

0.8 0.01698 0.01744 0.01792 0.01842 0.01895 0.01950 0.02008 0.02069 0.02132 

 Dimensionless radial stress (Free-Free) 
0.4 9.95242 10.1466 10.3411 10.5343 10.7244 10.9092 11.0859 11.2514 11.402 

0.6 41.0716 42.0999 43.1677 44.2746 45.4194 46.6 47.8127 49.0521 50.3108 

0.8 78.8049 80.9321 83.1634 85.504 87.9584 90.5305 93.2231 96.0375 98.9726 

 Dimensionless radial stress (Fixed-Free) 
0.2 25.7854 24.0535 22.3476 20.6702 19.024 17.4126 15.8403 14.3124 12.835 

0.4 17.0016 17.9167 18.8648 19.835 20.8123 21.7777 22.7078 23.5746 24.3465 

0.6 44.2218 45.9081 47.7453 49.7422 51.904 54.23 56.7115 59.3291 62.0503 

0.8 80.2097 82.7282 85.4451 88.382 91.5599 94.9984 98.7125 102.71 106.988 

 Dimensionless radial stress (Fixed-Fixed) 

0.2 1.27037 1.24024 1.2087 1.17568 1.14113 1.10496 1.06714 1.02761 0.98635 

0.4 0.26598 0.33666 0.41691 0.50770 0.61004 0.72486 0.85307 0.99540 1.15236 

0.6 -7.6694 -7.75575 -7.82984 -7.88779 -7.92493 -7.93568 -7.91341 -7.8504 -7.7377 

0.8 -69.936 -71.693 -73.5186 -75.4127 -77.3735 -79.397 -81.4768 -83.6031 -85.7622 

1. -352.50 -362.394 -372.817 -383.808 -395.404 -407.644 -420.567 -434.21 -448.605 

 Dimensionless hoop stress (Free-Free) 

0.2 4.23223 4.13278 4.0287 3.91975 3.80571 3.68638 3.56156 3.43111 3.29495 

0.4 62.7265 61.5302 60.2696 58.9403 57.5379 56.0579 54.496 52.8479 51.1101 

0.6 296.279 291.33 286.113 280.609 274.799 268.662 262.179 255.329 248.095 

0.8 873.758 859.853 845.199 829.743 813.432 796.211 778.024 758.818 738.543 

1. 1961.74 1929.1 1894.7 1858.43 1820.17 1779.77 1737.13 1692.11 1644.6 

 Dimensionless hoop stress (Fixed-Free) 

0.2 7.73562 7.21605 6.70429 6.20105 5.70719 5.22377 4.75209 4.29372 3.85051 

0.4 63.4748 62.2522 60.9344 59.509 57.9629 56.2822 54.4535 52.4649 50.3071 

0.6 295.687 290.475 284.906 278.938 272.524 265.616 258.165 250.124 241.456 

0.8 870.842 855.985 840.101 823.076 804.784 785.095 763.88 741.019 716.417 

1. 1954.38 1919.37 1881.93 1841.79 1798.65 1752.21 1702.16 1648.23 1590.21 

 Dimensionless hoop stress (Fixed-Fixed) 

0.2 0.381112 0.372071 0.362609 0.352705 0.342338 0.331489 0.320142 0.308283 0.295904 
1. -105.751 -108.718 -111.845 -115.142 -118.621 -122.293 -126.17 -130.263 -134.582 



Vebil Yıldırım 

A Parametric Study on the Centrifugal Force-Induced Stress and Displacements in Power-Law Graded Hyperbolic Discs 

Latin American Journal of Solids and Structures, 2018, 15(4), e34 10/16 

 
Figure 4: Variation of the displacement, the radial and hoop stresses with the boundary conditions and profile indexes 

for 0   
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Table 5: Some numerical results for 0   

r/b m=1 m=0.75 m=0.5 m=0.25 m=0 m=-0.25 m=-0.50 m=-0.75 m=-1 

 Dimensionless radial displacement (Free-Free) 
0.2 0.2746 0.24457 0.216397 0.19028 0.1664 0.144855 0.125665 0.108776 0.094076 
0.4 0.2658 0.23860 0.212836 0.188726 0.16647 0.14618 0.127925 0.111691 0.097406 
0.6 0.2852 0.26001 0.235801 0.212851 0.19136 0.171479 0.153298 0.136846 0.122101 
0.8 0.2951 0.27214 0.249946 0.228775 0.20881 0.190203 0.17304 0.157363 0.143166 
1. 0.2879 0.26666 0.246123 0.226513 0.208 0.190719 0.174756 0.160151 0.146899 
 Dimensionless radial displacement (Fixed-Free) 

0.4 0.1495 0.12772 0.108643 0.092138 0.07800 0.065996 0.055867 0.047364 0.040253 
0.6 0.2057 0.18263 0.161774 0.143105 0.12654 0.111938 0.099143 0.087972 0.078246 
0.8 0.2290 0.20755 0.187894 0.170079 0.15406 0.139731 0.126981 0.115666 0.105641 
1. 0.2275 0.20761 0.18937 0.172807 0.15788 0.144503 0.132565 0.121942 0.1125 
 Dimensionless radial displacement (Fixed-Fixed) 

0.4 0.0354 0.03393 0.032276 0.030510 0.02867 0.026778 0.024887 0.023023 0.021216 
0.6 0.0410 0.04072 0.040268 0.039633 0.03883 0.037868 0.036778 0.035581 0.034304 
0.8 0.0295 0.02990 0.030264 0.030537 0.03071 0.03079 0.030772 0.030664 0.030474 

 Dimensionless radial stress (Free-Free) 
0.4 0.3212 0.30758 0.292615 0.276603 0.25988 0.24277 0.225619 0.208724 0.192345 
0.6 0.2477 0.24612 0.24338 0.239538 0.23467 0.22887 0.222282 0.215051 0.207334 
0.8 0.1335 0.13553 0.137187 0.138424 0.13922 0.13957 0.139489 0.139 0.138135 

 Dimensionless radial stress (Fixed-Free) 
0.2 1.5905 1.25541 0.985606 0.770806 0.60145 0.468979 0.36602 0.28637 0.224944 
0.4 0.5702 0.52369 0.477776 0.433445 0.39144 0.352265 0.316201 0.28336 0.253716 
0.6 0.3169 0.30946 0.300484 0.290295 0.27922 0.26756 0.255589 0.243534 0.231579 
0.8 0.1525 0.15357 0.154053 0.153948 0.15332 0.15222 0.150731 0.148914 0.146828 

 Dimensionless radial stress (Fixed-Fixed) 

0.2 0.4039 0.35844 0.315752 0.276182 0.24 0.207356 0.17828 0.152691 0.130418 
0.4 0.1139 0.11829 0.121622 0.123826 0.12488 0.124789 0.123635 0.121517 0.118566 
0.6 0.0049 0.01104 0.017376 0.023815 0.03022 0.036466 0.042426 0.047999 0.053102 
0.8 -0.098 -0.0970 -0.09511 -0.09260 -0.0895 -0.08594 -0.08190 -0.07747 -0.07274 
1. -0.216 -0.2222 -0.22845 -0.23439 -0.24 -0.24524 -0.25007 -0.2545 -0.25852 
 Dimensionless hoop stress (Free-Free) 

0.2 1.3728 1.22285 1.08198 0.951401 0.832 0.724276 0.628325 0.543881 0.470378 
0.4 0.7608 0.68877 0.619874 0.554796 0.49413 0.43828 0.387499 0.341844 0.301219 
0.6 0.5497 0.50718 0.466016 0.426613 0.38933 0.35446 0.322181 0.292592 0.265702 
0.8 0.4089 0.38083 0.353588 0.327495 0.30278 0.279625 0.258146 0.238403 0.220399 
1. 0.2879 0.26666 0.246123 0.226513 0.208 0.190719 0.174756 0.160151 0.146899 
 Dimensionless hoop stress (Fixed-Free) 

0.2 0.4771 0.37662 0.295682 0.231242 0.18043 0.140694 0.109806 0.085911 0.067483 
0.4 0.5449 0.47641 0.414939 0.360378 0.31244 0.27067 0.234527 0.203418 0.176747 
0.6 0.4379 0.39722 0.359768 0.325596 0.29466 0.266832 0.241915 0.219681 0.199884 
0.8 0.3320 0.30551 0.281083 0.258783 0.23856 0.22033 0.203946 0.189256 0.1761 
1. 0.2275 0.20761 0.18937 0.172807 0.15788 0.144503 0.132565 0.121942 0.1125 
 Dimensionless hoop stress (Fixed-Fixed) 

0.2 0.1212 0.10753 0.094727 0.082855 0.072 0.062207 0.053484 0.045807 0.039125 
0.4 0.1228 0.12031 0.117177 0.113423 0.10913 0.104382 0.099308 0.094012 0.088610 
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Figure 5: Variation of the displacement, the radial and hoop stresses with the boundary conditions and profile indexes 

for 5    
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Table 6: Some numerical results for 5    

r/b m=1 m=0.75 m=0.5 m=0.25 m=0 m=-0.25 m=-0.50 m=-0.75 m=-1 

 Dimensionless radial displacement (Free-Free) 
0.2 0.0234 0.02185 0.02051 0.01937 0.01839 0.01755 0.01682 0.016182 0.01562 
0.4 0.0250 0.02320 0.02167 0.02035 0.01921 0.01822 0.01736 0.016601 0.01593 
0.6 0.0386 0.03601 0.03375 0.03175 0.02997 0.02839 0.02697 0.025701 0.02456 
0.8 0.0567 0.05360 0.05082 0.04830 0.04603 0.04396 0.04206 0.040333 0.03874 
1 0.0649 0.06185 0.05910 0.05660 0.05433 0.05224 0.05033 0.048564 0.04693 
 Dimensionless radial displacement (Fixed-Free) 

0.4 0.0083 0.00754 0.00688 0.00632 0.00582 0.00539 0.00501 0.004674 0.00438 
0.6 0.0249 0.02310 0.02152 0.02011 0.01884 0.01769 0.01666 0.015717 0.01486 
0.8 0.0447 0.04226 0.04006 0.03805 0.03621 0.03451 0.03295 0.031499 0.03016 
1 0.0538 0.05141 0.04920 0.04717 0.04529 0.04354 0.04193 0.040424 0.03902 
 Dimensionless radial displacement (Fixed-Fixed) 

0.4 0.0074 0.00688 0.00638 0.00593 0.00552 0.00516 0.00483 0.004536 0.00427 
0.6 0.0195 0.01853 0.01765 0.01683 0.01605 0.01533 0.01465 0.014007 0.01341 
0.8 0.0249 0.02438 0.02385 0.02333 0.02282 0.02231 0.02182 0.021344 0.02088 

 Dimensionless radial stress (Free-Free) 
0.4 0.0021 0.00195 0.00181 0.00168 0.00156 0.00146 0.00137 0.001285 0.00121 
0.6 0.0005 0.00046 0.00044 0.00042 0.00040 0.00038 0.00036 0.000348 0.00033 
0.8 0.0001 0.00011 0.00011 0.00010 0.00010 0.00010 0.00010 0.000095 0.00009 

 Dimensionless radial stress (Fixed-Free) 
0.2 0.0244 0.02171 0.01945 0.01756 0.01597 0.01463 0.01346 0.012466 0.01160 
0.4 0.0024 0.00219 0.00202 0.00188 0.00175 0.00163 0.00152 0.001428 0.00134 
0.6 0.0005 0.00048 0.00045 0.00043 0.00041 0.00039 0.00038 0.000359 0.00034 
0.8 0.0001 0.00011 0.00011 0.00010 0.00010 0.00010 0.00010 0.000096 0.00009 

 Dimensionless radial stress (Fixed-Fixed) 

0.2 0.0234 0.02098 0.01895 0.01722 0.01574 0.01447 0.01336 0.012397 0.01155 
0.4 0.0020 0.00190 0.00179 0.00169 0.00159 0.00151 0.00143 0.001351 0.00128 
0.6 0.0003 0.00030 0.00030 0.00030 0.00029 0.00029 0.00028 0.000275 0.00027 
0.8 -0.0000 -0.00001 -0.00001 -0.00000 -.000000 0.00000 0.00000 0.000007 0.00001 
1. -0.0001 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.000092 -0.00009 

 Dimensionless hoop stress (Free-Free) 

0.2 0.1171 0.10924 0.10255 0.09684 0.09195 0.08774 0.08409 0.080909 0.07812 
0.4 0.0026 0.00240 0.00223 0.00209 0.00197 0.00186 0.00177 0.001683 0.00161 
0.6 0.0004 0.00039 0.00036 0.00034 0.00033 0.00031 0.00029 0.000281 0.00027 
0.8 0.0001 0.00010 0.00009 0.00009 0.00009 0.00008 0.00008 0.000078 0.00008 
1 0.0000 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.000016 0.00002 

 Dimensionless hoop stress (Fixed-Free) 

0.2 0.0073 0.00651 0.00583 0.00527 0.00479 0.00439 0.00404 0.003740 0.00348 
0.4 0.0014 0.00125 0.00115 0.00106 0.00098 0.00091 0.00085 0.000794 0.00075 
0.6 0.0003 0.00030 0.00028 0.00027 0.00025 0.00024 0.00023 0.000215 0.00020 
0.8 0.0001 0.00008 0.00008 0.00008 0.00008 0.00007 0.00007 0.000067 0.00006 
0.1 0.0000 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.000013 0.00001 

 Dimensionless hoop stress (Fixed-Fixed) 

0.2 0.0070 0.00629 0.00569 0.00517 0.00472 0.00434 0.00401 0.003719 0.00347 
0.4 0.0012 0.00111 0.00104 0.00097 0.00091 0.00086 0.00081 0.000760 0.00072 

4 CONCLUSIONS 

After they are customized, in this study, the closed-form formulas derived by Yıldırım (2016) are employed to 
study the variation of the centrifugal-force-induced stress and displacements in power-law graded hyperbolic discs 
with inhomogeneity parameter, profile parameter, and boundary conditions. Contrary to Yıldırım’s (2016) study, 
it is assumed that both Young’s modulus and material density change with the same inhomogeneity parameter. If 
one suppose that Material-a is located at the inner surface and Material-b is located at the outer surface, inhomo-
geneity indexes should be defined by Eq. (4). Under this assumption, in practice, it is hardly confronted to get a 
physical metal-ceramic pair to satisfy that condition which may be defined by the following derived from Eq. (4). 

/   /  a b a bE E    (9) 
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On the other hand, in the present parametric study, Eq. (4) is not used to define the inhomogeneity indexes. 
Equation (3) is used by attributing hypothetically chosen values to the inhomogeneity indexes instead. For positive 
inhomogeneity indexes this means that while Material-a is located at the inner surface, the mixture of two materials 

which is multiples of aE exist at the other surfaces including the outer surface. The change of the properties of the 

mixture is defined by Eq. (3). 
Taking the same inhomogeneity index for both Young’s modulus and density helps to conduct a parametric 

study by eliminating subordinate changes in some variables (See Eqn. (2)). That is, by doing so, we may acquire, at 
least, a ballpark estimate about the variation of the elastic response of hyperbolic rotating discs made of function-
ally graded materials. It may be noted that the formulas derived in the present study may be used for both arbitrar-
ily chosen inhomogeneity indexes as in the parametric study and inhomogeneity indexes computed by Eq. (4). 

It is obvious that analytical formulas offered by Yıldırım (2016) should be employed to get accurate results for 
hyperbolic discs made of physically exist material-ceramic pairs in the last decision stage of a design process. 

Taking into consideration the above ball-park estimations, the true material tailoring may be done without 
consuming much time in the design process of such rotating hyperbolic discs made of functionally graded materials. 
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APPENDIX A 

Under axisymmetric plane stress and small deformation assumptions, in a polar coordinate system,  ,r  , the 

relations between the strain and displacement components are as follows 
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Where ru  is the radial displacement; r  and   are the radial and tangential strain components, respectively. For 

an isotropic and non-homogeneous material, the stress-strain relations (Hooke’s law) is 

        

        

2

2

1

1

r r

r

E r
r r r

E r
r r r



 

  


  


 


 
  (A.2) 

Where  E r  is the elasticity modulus; v is Poisson’s ratio; r  and   are radial stress and circumferential stress 

(hoop stress), respectively. The equilibrium equation of a variable thickness disk rotating at a constant angular 

velocity,   , is 
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 (A.3) 

Where  r  is the material density, and  h r  defines the profile of the disc, ( ) ( / )mah r h r a . Substituting Eq. 

(A.1) in Eq. (A.2), and then Eq. (A.2) in Eq. (A.3) yields the following non-homogeneous governing equation in terms 
of radial displacement and its derivatives. 
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In the above equation called Navier equation, after choosing either ( ) ( / )aE r E r a   with ( ) ( / )qar r a   

or  ( ) ( / )bE r E r b   with ( ) ( / )qbr r b   as a material grading rule 

(( ( ) / / ( ) ; ( ( ) / ) / ( ) / )dE r dr E r dh r dr h r m r   then one may reach the following. 
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