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Updating Finite Element Model Using Stochastic Subspace 
Identification Method and Bees Optimization Algorithm  

Abstract 
This study investigates the application of operational modal analysis along 
with bees optimization algorithm for updating the finite element model of 
structures. Bees algorithm applies instinctive behavior of honeybees as 
they look for nectar of flowers. The parameters that needed to be updated 
are uncertain parameters such as geometry and material properties of the 
structure. To determine these uncertain parameters, local and global sensi-
tivity analyses have been performed. An objective function is defined based 
on the sum of the squared errors between the natural frequencies obtained 
from operational modal analysis and finite element method. The natural 
frequencies of physical structure are determined by stochastic subspace 
identification method which is considered as a strong and efficient method 
in operational modal analysis. To verify the accuracy of this method, the 
proposed algorithm is implemented on a three-story structure to update 
parameters of its finite element model. Moreover, to study the efficiency of 
bees algorithm, its results are compared with those of the particle swarm 
optimization, and Nelder and Mead methods. The comparison indicates 
that this algorithm leads more accurate results with faster convergence. 

Keywords 
Vibration analysis, Finite element model updating, Operational modal 
analysis, Stochastic subspace identification, Bees algorithm, Sensitivity 
analysis. 

1 INTRODUCTION 

Due to increase in demand for improving efficiency and reducing the weight of structures in modern indus-
tries such as aviation and aerospace industries, developing an accurate understanding of dynamic and vibrational 
behavior of systems and providing a precise model to describe their behavior are necessary. Accurate dynamic 
model ensures accuracy of subsequent analyses done on the structure such as structural health monitoring, dam-
age detection and many others (He and Fu 2001). Over the last few years, numerous methods have been intro-
duced to accurately model the dynamics of a real mechanical system, one of which is the vibrational experiment 
and measured data analysis method. This method also called as modal analysis is considered as one of the most 
potent methods for obtaining dynamic parameters of structures such as natural frequencies, damping ratios and 
modal shapes (Brincker et al 2000). When modal analysis is implemented on large structures such as bridges, 
dams and buildings, measuring exciting forces is almost impossible and output responses are the sole practical 
information that can be used for system identification algorithms. Vibrational methods based only on output re-
sponses are called operational modal analysis (Pioldi et al 2016). Operational modal analysis methods are catego-
rized in frequency and time domains. Peak picking, transmissibility and frequency domain decomposition are the 
most demanding methods among the frequency domain category. On the other hand, stochastic subspace identifi-
cation, linear autoregressive method and Ibrahim's time domain method are considered as the important meth-
ods in time domain. Increasing demands of various applications for precise calculation of modal parameters have 
resulted in expanding operational modal in the past two decades. Zaghbani and Songmene (2009) used opera-
tional modal analysis as a powerful tool for estimating modal parameters of a machine-tool during machining 
operations. They applied the autoregressive moving average method and the least square complex exponential 
method for extracting modal parameters of a machine-tool with high speed. Then, these modal parameters were 
applied to determine machine dynamic stability lobes. Ebrahimi et al. (2013) calculated the natural frequencies of 
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a cutting blade platform of a harvest combine machine using real data by frequency domain decomposition (FDD) 
method. They modeled the blade using finite element method by Ansys software and calculate the dynamic be-
havior of the cutting blade platform in a harvest combine, and updated the model by natural frequencies obtained 
from FDD method. Then, by using mass change strategy and finite element model, a modification technique was 
introduced to reduce the vibration of cutting blade platform. Van Overschee and De Moor (1990) introduced the 
stochastic subspace identification (SSI) method which has been proposed as an alternative to classical methods. 
In this stochastic method, the state space model is calculated from system output measurements. The key step in 
the SSI method is to calculate projection of future outputs matrix on past outputs matrix. Noël and Kerchen 
(2013) developed a new method by combining SSI and frequency methods in order to calculate modal parame-
ters of a nonlinear system. To verify their method, they calculated modal parameters of a 5 degree of freedom 
system with two nonlinear parts. Dӧhler and Mevel (2010) examined SSI method in large structures. They point-
ed out that, to obtain modal parameters of a large structure, a large number of sensors should be used to record 
vibration signals, which incurs higher costs. To solve this problem, they developed a sensor-integrating method 
which could extract modal parameters of a large structure using few sensors. Goursat et al. (2011) analyzed vi-
brational data of a spacecraft during a commercial mission. The analysis was performed using SSI algorithm, the 
direct data utilization and covariance functions calculation methods. It was found that natural frequencies of the 
structure show small changes during the mission; however, mode shapes were more stable before and after its 
operation. Kompalka et al. (2007) compared data obtained from the finite element model and empirical model in 
order to examine accuracy of SSI algorithm in detection of damage and its location in structures. They demon-
strated that SSI algorithm can predict the presence and location of damage with an appropriate accuracy. Moreo-
ver, they confirmed their approach by performing experiments on damaged beam. 

Updating the finite element model is considered as an inverse method which involves reducing the difference 
between finite element model and empirical data. Methods based on gradient are extensively used in finite ele-
ment model updating. Collins et al. (1974) have used inverse eigensensitivity method for updating finite element 
model. Failing to find global optimum point of the system is one of the fundamental problems of these methods. In 
addition, existence of optimum points in system boundaries results in reduction in efficiency of these methods. To 
cope with these problems, evolutionary intelligent optimization methods such as genetic, bees and particle swarm 
optimization algorithms were introduced, which inspired from natural evolution. These methods are not relying 
on the initial guess and do not need complicated mathematical concepts. Consequently, considering these charac-
teristics, they can be used in finite element model updating. Dunn et al. (2005) applied genetic algorithm for up-
dating finite element model of an F/A-18 aircraft based on experimental data. Moradi et al. (2010) updated a pip-
ing system with finite element method using bees algorithm and classical modal analysis data. Then, they com-
pared their results with those obtained by genetic and PSO algorithms. Malekzehtab and Golafshani (2013) ap-
plied genetic algorithm for finite element model updating and damage detection of a jacket offshore platform. 
Their objective function was defined based on the natural frequencies and mode shapes of offshore platform. 
Chouksey et al. (2013) utilized experimental data for updating a rotating shaft with two journal bearing supports. 
They modeled the supports with linear and rotational springs and dampers. Moradi and Jamshidi moghadam 
(2015) used bees algorithm to find location and depth of crack in post-buckled beam-type structures. Bussetta et 
al. (2017) used discrete-time voltra series in order to update nonlinear finite element model of buckeled beam. 
Altunisik and Bayraktar (2017) updated model of Birecik Highway Bridge using operational modal analysis and 
finite element analysis. They changed some prominent parameters such as boundary conditions, material proper-
ties and section properties manually in order to reduce the difference between finite element and real models. In 
this study, the modal parameters of a system are calculated empirically using SSI method. Then, the effective pa-
rameters in model updating are obtained by performing a sensitivity analysis. Next, the sum of the squared errors 
between the natural frequencies obtained by the OMA and FEM is defined as the objective function, and will be 
minimized by the bees algorithm. In order to verify the integrity and the effectiveness of the proposed updating 
algorithm, the finite element model of a three-story frame is updated. 

2 THEORY 

2.1 Vibration Theory 

Dynamic model of a linear system can be defined by a set of linear second-order differential equations with 
constant coefficients such as (Goursat et al. (2011)): 

       My t Dy t Ky t f t     (1) 
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where M, D and K represent the mass, damping and stiffness matrices, respectively. Also, y(t) is the vector of 
displacement and f(t) denotes vector of structure input forces. Equation (1) can be rewritten as a system of first 
order differential equations using various methods. Since measurement data are time-discrete, Equation (1) can 
be discretized such as the following steady-space model (Dӧhler and Mevel (2010)): 

1k k k

k k k

x Ax
y Cx w

  
 

 (2) 

where x and y denote state and output vectors, respectively, and vectors v and w are input and output 
perturbations (system input is considered as a noise). A is state matrix and C is output matrix which is illustrated 
as a link between output and state variables. Moreover, v possesses noise due to modeling inaccuracy and w is the 
measurement noise related to data gathering system. Processing noise and data gathering noise are non-
measurable signals and cannot be calculated by mathematical equations or signal processing, however, they are 
assumed as zero mean white noise signals between which the below relation exists (Goursat et al. (2011)). 
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 (3) 

In Equation (3), E denotes expected value operator and δrs is the Kronecker delta. Unscaled natural frequen-
cies and mode shapes of system are obtained by eigenvalue and eigenvector analysis of matrix A and matrix C as: 

  0i i i iA I C       (4) 

where λ is unscaled natural frequency and φ is defined as mode shape of the system. Moreover, by using 
Equations (5)-(6), scaled natural frequencies and damping ratios are estimated by the following relations: 

 
 
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where τ is considered as sampling rate. Therefore, vibration equation is converted to a system identification 
problem by solving which the desired modal parameters can be obtained. 

2.2 Stochastic Subspace Identification Method 

For obtaining modal parameters in time domain strategies, there is no need to transfer data to frequency 
domain, thus, eliminate any leakage error. Stochastic subspace identification method is one of the strong methods 
for estimating modal parameters in time domain. Making covariance functions of output data is regarded as the 
first step in SSI method (Equation (7)). 

 , T
i k k iR E Y Y   (7) 

where i is time delay and T is transpose symbol. Also, yk is the output signals in time k which is defined in 
Equation (8). 

  1,2,...,kY Y k t k N    (8) 

here N is the total number of samples. Since, output data are discrete in time domain, the expected value operator 
of them is stated as Equation (9). 

1
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
   (9) 

In second step, the obtained covariance functions are used to build the Henkel matrix. 
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 (10) 

Next, the Henkel matrix is decomposed into controllable and observable matrices using singular value de-
composition factorization. 

H o  (11) 

In Equation (11), o is the observable matrix and η denotes controllable matrix. Matrix C, that plays an im-
portant role in modal identification, equals to the first row block of observable matrix (Equation (12)). 
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 (12) 

In addition, the state transfer matrix A is calculated by shift invariance property of the observable matrix o 
and least square solution which is presented in Equation (13). 
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where superscript † denotes pseudo inverse matrix. By identifying state matrix A and according to Equations (5)-
(6), the natural frequencies and damping ratios can be obtained. Furthermore, the mode shapes of the system can 
be computed using the C matrix. 

In order to calculate correct natural frequencies, order selection is regarded as a prominent factor in SSI 
method. If user underestimates order of SSI method, the method will not be able to obtain all of the natural fre-
quencies. In contrast, spurious natural frequencies can be calculated if order is overestimated. Therefore, to solve 
this problem stabilization diagram is applied to distinct real natural frequencies from spurious ones. In stabiliza-
tion diagram, different selected orders versus the natural frequencies obtained at each order is plotted. Real natu-
ral frequencies show a consistent behavior at different system orders whilst superior natural frequencies do not 
have stable attitude. For identification and omitting spurious natural frequencies in stabilization diagram, three 
criteria must be implemented (Cara et al. (2012)). 
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 1 ,pi qi MACMAC      (16) 

where ɛf, ɛζ and ɛMac are three limiting criteria which indicate that ith real mode obtained from order p differs 
slightly from the same mode from order q (in most cases, p and q are consecutive numbers i.e. q=p+1). As a 
result, by observing these conditions in SSI algorithm, spurious modes can be omitted. These limiting criteria are 
chosen by trial and error and in this research they are considered as 0.02, 0.05 and 0.05, respectively. 
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2.3 Selections of the Best Degrees of Freedom for Operational Modal Test 

In order to transfer the excitation energy to all degrees of freedom a system, the excitation points should not 
be located close to the nodes of the mode shapes of the system. By using ODP parameter given in Equation (17), 
the distance of the degrees of freedom to the modal nodes can be estimated. 

  2
1

1 1

m

jr
r

ODP j 


   (17) 

where j and m are the degree of freedom and number of mode shapes of the system, respectively. The points of 
which ODP values are zero or close to zero are not suitable to be used for stimulation of the system, since they are 
on the mode shape nodes or near them. By contrast, points with maximal ODP values are appropriate for 
excitation and mounting the accelerometers. While exciting a structure by a shaker, the possibility of interference 
between the shaker and structure establishes that should be minimized. Each shaker is composed of a system of 
mass, spring and damper and any interference between it and the structure causes changes in signal generated by 
the shaker. To reduce this effect, shaker should be installed in locations where average acceleration is of 
minimum value. Average acceleration is defined using ADDOFA as in Equation (18). 

 
2
1

2
1 1 1

m
jr

r r

ADDOFA j



   (18) 

The possibility of interface excitation in points with high ADDOFA is higher than the other points. Therefore, 
the points with higher ODP/ADDOFA are considered more appropriate points for excitation (Imamovic (1998)). 

2.4 Sensitivity Analysis 

Various mathematical models have been implemented for estimation of complex phenomena in different ar-
eas such as engineering, economy and physics. Identification of effective parameters in these mathematical mod-
els is the major challenge which users often deal with. Sensitivity analysis is one of the most important methods 
capable of identifying the parameters that have the most impact on results. In other words, any small changes in 
sensitive parameters would result in significant changes in output. 

Once at a time index (OAT) is considered as one of the most applicable criteria for determination of sensitive 
parameters. Equation (19) states OAT index for identification of sensitive parameters. According to Equation 
(19), a dimensionless index is considered in order to remove effects of various units of parameters (Hamby 
(1994)). 

Y XOAT
X Y




 (19) 

where X and Y are input and output parameters of the model, respectively. Moreover, factor X/Y is defined as a 
normalized coefficient to omit effects of the units. The OAT Index defined in Equation (19) measures the local 
sensitivity. Global sensitivity index (GSI) is defined by Equation (20) in which overall sensitivity can be estimated 
(Hamby (1994)). 

max min

max

Y Y
GSI

Y


  (20) 

In this equation, Ymin and Ymax are the minimum and maximum output of the model using upper and lower 
limit bounds of the input parameters. According to Equations (19)-(20), parameters that play significant role in 
output can be identified. In this research, input parameters are physical properties of the structure, whereas the 
natural frequencies are considered as outputs. By using sensitivity analysis, physical parameters which are suita-
ble for optimization algorithm can be determined. 

2.5 Bees Algorithm 

Bees optimization algorithm is classified in evolutionary algorithms. There is an organized social behavior 
among bees which can be used for solving complex optimization problems. There are scout bees in each swarm 
whose main task is to find food sources for their hives. As scout bees find new food sources, they return to their 
hives and evaluate various discovered gardens based on specific parameters. Then, by performing a toggle dance, 
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they provide the information of the direction, distance and amount of nectar in these gardens for worker bees. 
Next, the worker bees fly to the detected locations. The number of worker bees sent to these locations is propor-
tional to the available nectar amount in the detected gardens. In other words, more worker bees are sent to gar-
dens which have more nectars and shorter distance to the hive. Therefore, this strategy enables bees swarm to 
obtain food sources in an efficient manner. Figure 1 shows the flowchart of the bees algorithm. From Nt random 
solutions, Nt1 solutions which have the highest fitness values are selected as the best solutions. Then, among the 
best solutions Nt2 solutions are selected as the elite ones. In order to find better solutions, the best solution neigh-
borhoods are searched. nt1 and nt2 denote the number of neighborhoods searched around the best and elite solu-
tions, respectively (nt1<nt2). 

Next, the remaining solutions are chosen randomly in the search space to find other solutions. Equation (21) 
indicates formation of a new generation in bees algorithm. 

   
1

1 2 1 2 2 1( ) ( )

t

new t t t t t old t

N selected

N N N n N n N N      (21) 

where Nnew and Nold are the new and the previous generation, respectively. Additionally, the number of 
population in each generation is fixed. These steps continue until the convergence criteria have been reached. 
 

 
Figure 1: Flowchart of bees optimization algorithm 

In this research, an objective function is defined to update the finite element model and bring it closer to the 
experimental model. It is expressed as the summation of the errors between the natural frequencies obtained by 
the operational modal analysis and the finite element method as represented by the following equation. 

    2, ,
1

s

c j uc j
j

Error function Z


    (22) 
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where s is the number of natural frequencies used in optimization problem, Ωc denotes natural frequencies 
calculated from the finite element method and Ωuc are the natural frequencies obtained using the operational 
modal analysis. Moreover, vector Z includes design parameters which are identified by the sensitivity analysis 
(section (2-4)). By minimization of the objective function (Equation (22)) using bees optimization algorithm, 
design parameters are obtained and a precise finite element model based on real structure is designed. 

3 RESULTS AND DISCUSSION 

The main objective of this research is to optimize the finite element model of structures by using a combina-
tion of SSI, sensitivity analysis and finite element methods. The algorithm of the proposed method is described in 
Figure 2. 

 

 
Figure 2: Finite element model updating algorithm 

To verify the proposed algorithm, a three-story structure is built numerically and experimentally, the updat-
ing algorithm is applied on it, and the results are presented in the following sections. 

3.1 Finite Element Model 

Figure 3 shows sketch of the three-story structure. It is built by steel bars with all connections welded. Bars 
are cut carefully and welded together using templates. 

 

 
Figure 3: Plan of three views of the three-story structure 
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Moreover, anchor bolts are used to connect the structure to the ground. The dimensions of the three-story 
structure are presented in Table 1. 

 
Table 1: Dimensions of the three-story frame 

No Parameter Symbol Length (m) 

1 
Height of vertical members 

in the y-z plane 

La1 0.600 
2 La2 1.100 

1.600 3 La3 
4 

Height of vertical members 
in the x-z plane 

Lb1 0.600 
5 Lb2 1.100 

1.600 6 Lb3 
7 

Length of horizontal members 
in the x-y plane 

Lc1 0.500 
8 Lc2 0.400 
9 a 0.016 

10 Cross section b 0.016 

 
In Figure 4, the finite element model of three-story structure in ANSYS software is displayed. Solid 186 ele-

ment is used for building this model. Additionally, in this model, welds are taken into account as a change in 
Young's modulus in connections. 

 

 
Figure 4: Finite element model of the three-story structure 

Next, an eigenvalue analysis was performed on the model to obtain the natural frequencies and the results 
for the first six natural frequencies are tabulated in Table 2. Also, the corresponding mode shapes are displayed in 
Figure 5. 

Table 2: Natural frequencies obtained by FEM 

Frequency no. Finite element method (rad/sec) 
1 73.052 
2 84.700 
3 92.862 
4 234.564 
5 276.033 
6 326.483 
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Figure 5: Modal shapes of the three-story structure 

3.2 Appropriate Points for Shaker and Accelerometer Installation 

Acquiring modal parameters requires an accurate planning for conducting experiments. Appropriate loca-
tions of accelerometers and shaker can lead to more precise modal parameters. 

 

 
Figure 6: a- Best locations of accelerometers installation in y direction b- Best locations of shaker installation in y direc-

tion 

According to section (2-3), by using ODP and ODP/ADDOFA, the best points for accelerometers placement 
and structure stimulation by shaker can be detected. Figure 6 displays these points for installation of accelerome-
ters and shaker in y direction. The points are also tabulated in Table 3. 

 

Table 3: Coordinates of the best locations of accelerometers and shaker in y direction 

Point Length (cm) point Length (cm) 
A1 95 A6 12 
A2 110 A7 46 
A3 122 A8 44 
A4 144 A9 86 
A5 160 A10 105 

 
Figure 7 shows the best places for the installation of accelerometers and shaker in x direction and Table 4 

presents their corresponding coordinates. 
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Figure 7: a-The Best locations for accelerometers installation in x direction b-The Best location for shaker installation in 
x direction 

 

Table 4: Coordinates of the best locations of accelerometers and shaker in x direction 

Point Length (cm) Point Length (cm) 

B1 91 B5 13 
B2 120 B6 33 
B3 148 B7 50 
B4 160 B8 72 

 

3.3 Sensitivity Analysis Results 

In order to determine effective parameters for finite element model updating, a sensitivity analysis is per-
formed on the three-story frame according to section (2-4). Table 5 presents the lower and upper limits of design 
parameters for sensitivity analysis (see section (2-4)). 

Table 5: Upper and lower bounds of design parameters 

no Parameters Symbol (unit) Lower limit Upper limit 
1 Density (kg/m3) ρ 7600 8000 
2 Young's modulus (Gpa) E 180 220 
3 Poisson's ratio ([]) θ 0.2 0.4 
4 

Length of vertical 
members 

Da1 (m) 1.55 1.65 
5 Da2 (m) 1.55 1.65 
6 Da3 (m) 1.55 1.65 
7 Da4 (m) 1.55 1.65 
8 

Height of horizontal 
members in x-z plane 

Dd1 (m) 0.58 0.62 
9 Dd2 (m) 1.07 1.14 

10 Dd3 (m) 1.55 1.65 
11 

Height of horizontal 
members in y-z plan 

De1 (m) 0.58 0.62 
12 De2 (m) 1.07 1.14 
13 De3 (m) 1.55 1.65 
14-

29 
Width of cross section a1….a16 (m) 0.0155 0.0165 

30-
45 

Length of cross section b1….b16 (m) 0.0155 0.0165 

46 
Length of horizontal 
bars in x-z plane 

Dc (m) 0.48 0.52 

47 
Length of horizontal 
bars in y-z plane 

Dd (m) 0.38 0.42 

48-
71 

Weld Young's modulus 
E1…E24 
(Gpa) 

180 220 

 
Figures 8-9 present the local and global sensitivity results for the three-story structure, respectively. 
Figure 8 shows that the maximum local sensitivity belongs to design parameters related to length of the 

members, and physical characteristics of the structure such as Young's modulus and density. However, the mini-
mum values are related to Young's modulus of welded connections and the cross-section of the members. 
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Figure 8: Results of local sensitivity analysis 

Moreover, in global sensitivity, approximately the same parameters that considered in local sensitivity can 
have direct impact on the obtained natural frequencies (Figure 9). 

 

 
Figure 9: Results of global sensitivity analysis 

 

3.4 Operational Modal Analysis 

Operational modal analysis is regarded as a subset of modal analysis that only depends on output responses. 
In this research, SSI method is applied to identify dynamic parameters of the three-story frame. Random inputs 
are the main assumption of SSI method. Therefore, for random excitation of the three-story structure, an electro-
dynamic shaker is used. This electro-dynamic shaker can produce random, burst random, pseudo random, sweep 
random and periodic random signals. Then, by using accelerometers attached on the structure, the output signals 
are captured and send to the time recorder software. Figure 10 shows equipment used in data acquisition of the 
structure. 



Pouyan Alimouri et al. 
Updating Finite Element Model Using Stochastic Subspace Identification Method and Bees Optimization Algorithm 

Latin American Journal of Solids and Structures, 2018, 15(2), e12 12/19 

 
Figure 10: Equipment used in empirical modelling 

 

Figure 11 demonstrates the time response obtained from the three-story structure under random excitation. 
These data were recorded using a sampling rate of 16328 samples per second. 

 

 
Figure 11: Response of the three-story structure under random excitation 

Table 6 presents the natural frequencies obtained by SSI method under different excitations, plus those fre-
quencies obtained by classical modal analysis. 

 
Table 6: Experimental natural frequencies calculated by SSI and classical methods 

Method Input signal 
Frequency no. 

1st 2nd 3rd 4th 5th 6th 

SSI 
(method) 

Random 62.230 71.830 90.120 205.230 239.230 293.970 
Burst random 63.140 73.430 91.250 208.380 240.460 294.080 

Pseudo random 62.450 71.210 89.640 205.090 237.900 292.010 
Sweep random 64.170 74.120 95.420 209.450 241.340 294.140 

Periodic random 59.230 78.230 96.150 210.130 244.250 296.340 
Classical 

modal 
Hammer 62.328 71.341 89.380 206.240 238.010 292.210 

 
Figure 12 shows the relative error of natural frequencies of the structure obtained from operational modal 

analysis and classical modal analysis (hammer test). According to this figure, natural frequencies calculated by 
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pusedo random signals are more consistent with those obtained from classic modal analysis, therefore, only this 
signal will be used in the following sections of this research. 

 

 
Figure 12: The natural frequencies relative error between SSI and classical modal analysis 

 
Stability diagram of SSI method for pusedo random excitation signal in y direction is depicted in Figure 13. 
 

 
 

Figure 13: Stability diagram obtained from SSI method for the three-story structure in y direction 

As stated in section (2-2), points deployed next to each other in rows are an approximation of natural fre-
quencies and can be seen in the figure clearly. As can be seen from Figure 13, system order varies between 40 and 
200. Table 7 compares the natural frequencies obtained by SSI method and those computed by the finite elements 
method. As can be seen from the table the relative error between the two methods is comparable. 

 

Table 7: Natural frequencies (rad/sec) obtained from SSI and FEM methods 

Frequency no. SSI method FEM method Relative error (%) 
1 62.450 73.052 14.513 
2 71.210 84.700 15.927 
3 89.640 92.862 3.470 
4 205.090 234.564 12.566 
5 237.900 276.033 13.815 
6 292.010 326.483 10.559 
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3.5 Bees Algorithm Results 

According to Table 7, the relative error between the natural frequencies obtained by SSI and FE methods is 
high and therefore the finite element model needs to be updated. The mismatch may be due to the values of phys-
ical properties such as density, Young’ module or can be related to geometric properties of structure such as 
length, thickness and size of the members. 

 

Table 8: Design parameter sets used in FEM updating 

Design Parameters Set 1 Set 2 Set 3 

ρ √ √ √ 

E √ √ √ 
Da1 √ × √ 
Da2 √ × √ 
Da3 √ × √ 
Da4 √ × √ 
Dd1 √ × √ 
Dd2 √ × √ 
Dd3 √ × √ 
De1 √ × √ 
De2 √ × √ 
De3 √ × √ 

a1….a16 × √ √ 
b1….b16 × √ √ 

Dc √ × √ 
Dd √ × √ 

E1…E24 × √ √ 
ν × √ √ 

 
In order to update the finite element method and reduced the discrepancy between the computed and meas-

ured natural frequencies, an objective function is defined and minimized by the bees algorithm. Three different 
sets of design parameters are defined for bees algorithm. 

The first set includes parameters obtained from sensitivity analysis, second set includes parameters not im-
portant for sensitivity analysis and material properties, and the third set consists of all design parameters. Table 8 
summarizes all the design parameter sets in this study. As shown in the table, these sets consist of 14, 59 and 71 
design variables, respectively. 

Figure 14 shows the convergence of bees algorithm for different sets of design parameters. As it is clear from 
this figure the convergence of the first and third sets are faster and the results are more precise than the second 
set. However, the convergence occurred with 14 design parameters by set 1 and 71 design parameters by set 3. 
Additionally, the run time of the optimization process in set 1 is lower than that in set 3. This shows that optimiza-
tion using set 1 could achieve optimal response in minimum time. Moreover, since all of design parameters in set 
1 were obtained by sensitivity analysis, it is clear that sensitivity analysis is able to identify effective parameters 
in optimization process. 

 

 
Figure 14: Convergence of bees algorithm 
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Table 9 presents control parameters utilized in bees optimization algorithm. These values have been ob-
tained by empirical studies. 

Table 9: Control parameters of bees algorithm 

Control Parameter Values 

Number of objective functions 40000 

Neighborhood radius 0.01 
Nt1 20 
Nt2 12 
nt1 10 
nt2 15 
Nt 100 

Number of iterations 100 

 
The natural frequencies obtained from updated finite element model are tabulated in Table 10. It can be de-

duced from Tables 7 and 10 that relative error between natural frequencies calculated by finite element and ex-
perimental methods decreased remarkably after model updating. Total relative error before model updating 
was %70.850 that reduced to %0.021 after model updating. 

 

Table 10: Design parameter sets used in FEM updating 

Mode number 
Natural frequencies (rad/sec) 

Relative error (%) 
Experimental model Updated finite element model 

1 62.450 62.451 0.002 

2 71.210 71.213 0.004 
3 89.640 89.647 0.008 
4 205.090 205.098 0.004 
5 237.900 237.904 0.002 
6 292.010 292.008 0.001 

3.6 Validation of Bees Algorithm 

In order to the verify the performance of bees optimization algorithm in model updating, the results obtained 
by this algorithm are compared with those of particle swarm optimization (PSO) algorithm, one of the most popu-
lar evolutionary algorithms, and Nelder and Mead simplex method. PSO was introduced by Kennedy and Eberhart 
(1995). This method is inspired by migration behavior of birds or fish schooling. PSO algorithm is based on the 
particles movement in which each particle can be considered as a possible optimal solution. Particles in PSO 
method follow a very simple behavior: trying for neighboring particles success and their success. Finding optimal 
solution area in the search space with a large number of dimensions is the result of mass movement behavior. The 
Nelder-Mead algorithm is a direct method for finding minimal value of an unconstrained ns-dimensional objective 
function presented by Nelder and Mead (1965). 

 

 
Figure 15: Evolution of the best function values 
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This method is based on the comparison of the function value in the ns + 1 vertices of a simplex and replac-
ing the worse vertex in terms of the objective function with a new point. Moreover, the method works only by 
using the function values and does not need any function derivatives. 

Figure 15 portrays the convergence of BA, PSO and Nelder-Mead methods for finite element model updating 
of the three-story structure using first set of design parameters. 

 

Table 11: Relative error (%) between natural frequencies of updated finite element model with experimental frequen-

cies 

Optimization 
Method 

Frequency no 

1st 2nd 3rd 4th 5th 6th 
Bees 0.002 0.004 0.008 0.004 0.002 0.001 
PSO 0.034 0.038 0.056 0.095 0.053 0.081 

Nelder-Mead 1.725 1.106 1.034 0.503 0.448 1.001 

 
As can be seen from the Figure 15, BA algorithm converges faster than other algorithms and its objective 

function has the lowest value. Relative errors between natural frequencies obtained from the finite element up-
dated model and the experimental modal analysis using different optimization methods are tabulated in Table 11. 
The table shows that the natural frequencies calculated by BA are more accurate than other optimization algo-
rithms. The optimized values of the first set of design parameters are tabulated in Table 12. 

 

Table 12: Design parameter sets used in FEM updating 

Design parameters BA Nelder-Mead PSO 

(kg/m3) ρ 7710 7650 7765 

(Gpa) E 198 203 201 
Da1 1.61 1.63 1.65 
Da2 1.61 1.63 1.65 
Da3 1.61 1.62 1.65 
Da4 1.61 1.62 1.64 
Dd1 0.59 0.61 0.60 
Dd2 1.08 1.13 1.08 
Dd3 1.64 1.63 1.63 
De1 0.61 0.58 0.62 
De2 1.09 1.11 1.09 
De3 1.64 1.63 1.64 
Dc 0.51 0.48 0.50 
Dd 0.39 0.38 0.39 

 
To evaluate the efficiency of optimization algorithms, two criteria are defined, practical reliability index and 

normalized price value. Practical reliability index is defined as the probability of the solution to reach a practical 
optimum. A practical optimum is stated as an optimal solution within 0.1% of the global optimum. In this study, 
the best solution found after 80000 objective functions evaluations were used to define global optimum. Moreo-
ver, the normalized price value is defined as the ratio of the number of evaluated objective functions to the practi-
cal reliability. 

 

Table 13: Practical reliabilities and normalized prices obtained from BA, PSO and Nelder-Mead methods 

Method practical reliability normalized price 
BA 0.9 44444.4 

PSO 0.7 57142.9 
Nelder-Mead 0.6 66666.7 

 
The values of practical reliability and normalized price for the three optimization algorithms are shown in 

Table 13. According to this table, BA algorithm has the highest practical reliability amongst all the methods. It also 
has the lowest cost to find the global optimum. 

3.7 Mode Shapes 

Figure 16 portrays the mode shapes obtained from the updated finite element model and SSI method. 
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Figure 16: Mode shapes using FEM and SSI methods 

To compare the mode shapes obtained from SSI and FEM methods, the mode assurance criterion (MAC) is 
used which is defined by the following equation: 

   

       

2

( , )

T T

SSI FEM

T T T T
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MAC i j
 

   



 (23) 

where ϕ is the mode shape. MAC values greater than 0.7 shows good correlation between the two methods. The 
MAC values for the mode shapes of SSI and FEM is shown in Figure 17. As can be seen from the Figure 17, the 
mode shapes calculated by these methods are compatible with each other and the value of MAC criteria is more 
than 0.9 for the same mode shapes. 
 

 
Figure 17: MAC criteria between SSI and FEM mode shapes 
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4 CONCLUSIONS 

In this study, a method to update the finite element model of structures has been developed using operation-
al modal analysis and bees optimization algorithm. An objective function based on the summation of the squared 
errors between the natural frequencies obtained from the numerical method and experimental analysis was de-
fined. Numerical and experimental frequencies obtained by the finite element method and operational modal 
analysis, respectively. By minimization of this function, the values of uncertain design parameters were calculat-
ed. To validate the proposed method, it was implemented on numerical and physical model of a three-story frame. 
Numerical frequencies were calculated by eigenvalue analysis of Ansys software and experimental frequencies 
were obtained by stochastic subspace identification. Results show that the combined errors between the first six 
natural frequencies were reduced from %70.850 to %0.021. In addition, a very good compatibility was found 
between the mode shapes obtained by the finite element and operational modal analysis methods where the MAC 
values were more than 0.9 for all the same modes. Moreover, to investigate the efficiency of the bees algorithm, its 
results compared with those obtained by particle swarm optimization and Nelder and Mead methods. The results 
indicated that the bees algorithm is faster and more efficient compare with those methods and can successfully 
bring the finite element model closer to the physical model. 
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