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Numerical combination for nonlinear analysis of structures cou-
pled to layered soils

Abstract

This paper presents an alternative coupling strategy between

the Boundary Element Method (BEM) and the Finite Ele-

ment Method (FEM) in order to create a computational code

for the analysis of geometrical nonlinear 2D frames coupled

to layered soils. The soil is modeled via BEM, considering

multiple inclusions and internal load lines, through an al-

ternative formulation to eliminate traction variables on sub-

regions interfaces. A total Lagrangean formulation based on

positions is adopted for the consideration of the geometric

nonlinear behavior of frame structures with exact kinemat-

ics. The numerical coupling is performed by an algebraic

strategy that extracts and condenses the equivalent soil’s

stiffness matrix and contact forces to be introduced into the

frame structures hessian matrix and internal force vector,

respectively. The formulation covers the analysis of shallow

foundation structures and piles in any direction. Further-

more, the piles can pass through different layers. Numerical

examples are shown in order to illustrate and confirm the

accuracy and applicability of the proposed technique.
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1 INTRODUCTION

The analysis of soil-structure interaction problems is very complex due to the large number

of variables involved. To simplify a conventional building analysis, foundations are usually

considered rigid supports, or approximate models, such as Winklers springs are adopted for

the consideration of soil’s deformability, see [9, 18]. Although this type of approximation has

been commonly applied to many practical engineering problems, it does not consider the soil’s

continuity, and in some cases a more refined methodology is required.

Furthermore, regarding geometric nonlinear analysis of structures, it is often performed

adopting approximate coefficients or simplified formulations [10]. However, for slender struc-

tures, like high-towers or high-rise buildings, simplified models may not be the most appropri-

ate, compromising the structural analysis.
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In recent years, plenty of progress has been made regarding numerical formulations applied

to structural mechanics. It is important for engineers to follow this progress and to be prepared

to choose appropriate structural models for modern structures design since these structures

are becoming slender.

This paper presents a numerical technique for the analysis of 2D frame structures coupled

to heterogeneous soils in order to create a computational program for the geometric nonlinear

analysis of soil-structure interaction problems. The proposed technique may be useful for

engineers as it offers a refined methodology for this type of analysis in a simple engineering

language.

The soil is modeled by the Boundary Element Method (BEM) adopting an alternative

sub-region technique based on [21] for the consideration of multiple inclusions and internal

load lines. This strategy reduces the number of variables as it avoids contact traction approx-

imations. The same strategy is adapted for bending plate analysis in [15, 16]. Also in [17] the

alternative technique is used for tridimensional analysis of multi-region BEM elastic problems.

In the present study, internal load lines pass through different domains for the simulation

of piles foundation in elastic layered soils.

The frame structure is modeled by the Finite Element Method (FEM) using the positional

formulation described in [2, 6, 8]. The positional description simplicity facilitates the imple-

mentation of a Lagrangean formulation to consider the geometric nonlinear behavior of the

structure with exact kinematics considering shear effects.

The numerical coupling is performed by an algebraic strategy that extracts and condenses

the equivalent soil’s stiffness matrix and contact forces on BEM to be respectively introduced

into the frame structure’s hessian and the internal force vector on FEM. Thus, the soil rep-

resents more than a simple boundary condition for the frame structure considering the cross

influence of near or distant foundations.

The association of soil-structure interaction with geometric nonlinear behavior improves

the structural model that can be applied to the analysis of slender structures supported on

soft layered soils. Some numerical examples are shown to prove the accuracy and applicability

of the proposed technique.

2 THE SOIL MODELING – BEM FORMULATION

The application of BEM to elastic problems consists basically in solving the differential equi-

librium equation of an elastic solid by converting it into an integral equation on the boundary.

Roughly, this procedure is performed using Gauss theorem, and results in the following bound-

ary integral equation:

cikui (s) + ∫
Γ

p∗ik (s, f)ui (f) dΓ = ∫
Γ

pi (f)u∗ik (s, f)dΓ (1)

Equation (1) is written for a source point s located inside the body domain or, occasionally

over its boundary Γ and related to the field point f, where displacement ui and traction pi are
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measured. The left term cik depends on the source point position and its determination can be

performed indirectly through the rigid body concept. This equation is valid for homogeneous,

isotropic and linear elastic domains and is also called Somigliana identity [1].

The integral kernels u*ik and p*ikconstitute the Kelvin two-dimensional fundamental so-

lution, representing displacements and tractions, respectively, and are given as follows:

u∗ik =
−1

8πG (1 − ν)
{(3 − 4ν) ln rδik − r,ir,k +

(7 − 8ν)
2

δik} (2)

p∗ik =
−1

4π (1 − ν) r
{(1 − 2ν) (nir,k − nkr,i) + ((1 − 2ν) δik + 2r,ir,k)

dr

dn
} (3)

where r is the distance between the source and field points, i.e. r = |f-s|, G is the shear elastic

modulus of the material, ν is the Poisson ratio, n is the boundary normal unit vector and δik
represents the Kronecker delta.

For numerical solution, nodal approximations for ui and pi are taken using polynomial

functions over boundary elements (appendix A), and the integral equation (1) is converted

into an equivalent algebraic system as follows:

HU =GP (4)

where matrix H is obtained from the left terms in equation (1) and matrix G from the terms on

the right side. U is a vector which contains the nodal values of displacements for all boundary

nodes and P is another vector for nodal values of tractions.

As there are known values of the boundary conditions (restricted displacements and applied

forces) it is possible to transform equation (4) into a linear algebraic system with a possible

solution, allowing the calculation of the unknown values of displacements and tractions.

Back to the fundamental solution expressions, it is important to observe that u*ik has a

singularity order of ln(r), while p*ikhas singularity of 1/r. It is easy to see that, the closer the

source point reaches the boundary, the more equations (2) and (3) tend to infinity, leading to

a mathematical singularity. In this study, the H matrix singularity will be solved through the

rigid body concept [4]. For the G matrix calculation it is necessary to adopt a subtraction

singularity technique as presented in [5, 11] in order to accurately perform the involved integrals

over curved elements. For this technique, a fictitious element is assumed on the singular core,

and a Taylor expansion allows for the division of the singular equation into two terms: a

regular integral and one solved analytically.

It is also worth observing that in expression (3) the fundamental solution for traction does

not depend on the G modulus, as the displacement, in expression (2) does. This information

will be useful for the alternative coupling technique discussed in the next section.

As the applications of interest are soil-structure interaction problems, it is interesting to

arbitrate the width of soil domain that will influence the frame structure behavior. This

procedure can be performed multiplying equation (1) by the width of influence, which replaces

surface forces per unit of area by surface forces per unit of length and corrects the H matrix

to consider the width of influence.
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Equation (1) is developed for homogeneous bodies. In the next section an alternative

formulation for the consideration of multiple domains is presented and the implementation of

internal load lines is developed.

2.1 Alternative boundary technique for sub-regions

For the elastic analysis of heterogeneous domains it is usual to adopt the widely known classical

sub-region technique, which consists basically in the non-homogeneous body division according

to the material characteristics of each sub-region. Each sub-region has its own system of

equation (separately stored), therefore, by applying the forces equilibrium and displacement

compatibility over interfaces, a unique algebraic system is written for the whole domain [3].

Although this procedure has been widely used for elastic problems with BEM, [12, 19]

observed that for nonlinear problems the definition of several interfaces for a continuum domain

could introduce inaccuracies in the final results due to the large number of equations. Besides,

it is difficult to apply this technique to a large number of sub-regions because of the complex

disposition of algebraic terms in the final system, which results in a sparse matrix.

In order to reduce the number of equations in the final system of heterogeneous bodies,

[21] proposed an alternative technique that eliminates interface traction when writing the

integral equation, reducing the overall number of degrees-of-freedom. From this idea, a simple

algebraic strategy can be implemented in the BEM computational code for the analysis of

multiple generalized inclusions.

As previously mentioned, the fundamental solution for traction, equation (3), does not

depend on the G shear modulus. Considering that all involved sub-regions have the same

Poisson ratio, it is possible to write a unique p*ik along all body boundaries. Besides, with

an equal Poisson ratio, the u*ik solution of each sub-region j can be related to each other by

dividing shear modulus j by a standard modulus, where the standard shear modulus should be

the one of the predominant material. Thus, combining these ideas, it is possible to write one

equation for the whole heterogeneous body, including only displacement field approximation

for common interfaces.

To illustrate this procedure, consider a two sub-region domain as showed in Figure 1.

 
Figure 1 A two sub-region domain

The boundary of Ω1 is divided into Γ10 and Γ12 – the latter is the contact line with sub-

region Ω2. Similarly, the boundary of Ω2 is divided into Γ20 and Γ21. Considering each domain
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separately, but taking a unique source point, it is possible to write one integral equation for

each domain, as:

c1ikui + ∫
Γ10

p∗1ikuidΓ10 + ∫
Γ12

p∗1ikuidΓ12 = ∫
Γ10

u∗1ik pidΓ10 + ∫
Γ12

u∗1ik pidΓ12 (5)

c2ikui + ∫
Γ20

p∗2ikuidΓ20 + ∫
Γ21

p∗2ikuidΓ21 = ∫
Γ20

u∗2ik pidΓ20 + ∫
Γ21

u∗2ik pidΓ21 (6)

For this hypothetical problem the sub-region Ω1 is considered the standard domain. Although

this is an arbitrary choice, it is recommended that the standard sub-region should be chosen

as the predominant domain to improve the numerical accuracy.

Remembering the Kelvin fundamental solution for displacement, equation (2), and assum-

ing the same Poisson ratio for both materials, the following relation can be written:

u∗1ik =
G2

G1
u∗2ik (7)

Also, with an equal Poisson ratio, the fundamental solution for traction p*j becomes unique,

i.e.

p∗1ik = p∗2ik = p∗ik (8)

At this moment, both equations are multiplied by the rate between the corresponding G

modulus per standard modulus, with no loss of validity. It is clear that for equation (5) there

is no difference because the rate is the unity.

Thus, multiplying both sides of equation (6) by G2/G1 and adding equation (5), the fol-

lowing expression can be written for the whole body:

c1ikui + G2

G1
c2ikui + ( ∫

Γ10

p∗ikuidΓ10 + ∫
Γ20

G2

G1
p∗ikuidΓ20)+

+( ∫
Γ12

p∗ikuidΓ12 + ∫
Γ21

G2

G1
p∗ikuidΓ21) = ( ∫

Γ10

u∗1ik pidΓ10 + ∫
Γ20

G2

G1
u∗2ik pidΓ20)+

+( ∫
Γ12

u∗1ik pidΓ12 + ∫
Γ21

G2

G1
u∗2ik pidΓ21)

(9)

On the right side of equation (9) it is possible to apply the relation given by (7) forward to

the integral over Γ20 and backward to the integral over Γ12. Then, organizing the terms, the

following expression is obtained:

(c1ik +
G2

G1
c2ik)ui + ∫

Γ10

p∗ikuidΓ10 + ∫
Γ12

p∗ikuidΓ12 + G2

G1
( ∫
Γ20

p∗ikuidΓ20 + ∫
Γ21

p∗ikuidΓ21) =

∫
Γ10

u∗1ik pidΓ10 + ∫
Γ20

u∗1ik pidΓ20 + G2

G1
( ∫
Γ12

u∗2ik pidΓ12 + ∫
Γ21

u∗2ik pidΓ21)
(10)
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Imposing the equilibrium condition on the last term of the right side of expression (10), the

term in parentheses becomes null, meaning that no traction approximation is performed for

the contact line reducing the number of degrees-of-freedom as desired.

The final integral equation for the heterogeneous domain without contact forces is given

by:

(c1ik +
G2

G1
c2ik)ui + ∫

Γ10

p∗ikuidΓ10 + ∫
Γ12

p∗ikuidΓ12+

+G2

G1
( ∫
Γ20

p∗ikuidΓ20 + ∫
Γ21

p∗ikuidΓ21) = ∫
Γ10

u∗1ik pidΓ10 + ∫
Γ20

u∗1ik pidΓ20

(11)

Using a unique source point to derive equation (11) indicates that, when discretizing the whole

heterogeneous domain, each source point influences all boundary elements of the problem,

independently of which region it belongs to.

The illustrated example consists of only two different sub-regions, but the technique can

be applied to any number of sub-regions. Indeed, by the observation of expression (11), a

generalized equation can be written for ns sub-regions:

{
ns

∑
m=1

Gm

G1
cmik}ui +

ns

∑
m=1

⎡⎢⎢⎢⎢⎢⎣

Gm

G1
∫
Γm

p∗ikuidΓm

⎤⎥⎥⎥⎥⎥⎦
=

ne

∑
n=1

⎡⎢⎢⎢⎢⎢⎣
∫
Γe

u1∗
ik pidΓe

⎤⎥⎥⎥⎥⎥⎦
(12)

where Γe is the external boundary and ne is the number of external surfaces.

For the algebraic procedure, the first thing to do is to define the predominant domain. For

the chosen region, the shear modulus shall be considered G1, and the other sub-regions may

be numbered from this one.

The systems of equations for all involved sub-regions are stored using all source points of

the original problem, even if the source point is not over the sub-region that is being inte-

grated. Therefore, each sub-region system will have more rows than columns and each matrix

is multiplied by the shear modulus rate. Finally, superposition is assumed, adding each sub-

regions matrix to the system of the predominant domain. Because the terms of the G matrix

(in each sub-region) related with contact interfaces were multiplied by the rate between differ-

ent modulus, these terms become equal to the corresponding terms in the standard equation

system. After applying the equilibrium condition of contact traction, the sum of those terms

becomes null, algebraically eliminating all contact tractions. The technique is applicable to

both layered sub-regions and internal inclusions.

The singularity of the H matrix can still be calculated using the rigid body concept, by

the sum of odd and even terms of each row for each sub-region separately. For the G matrix,

singularity is solved by a subtraction technique, as already mentioned in the previous section.

For internal points, as the original system is multiplied by the shear modulus rate, it is

necessary to correct the displacement multiplying it by the inverse rate at the end of the

numerical solution.

It is also possible to calculate stresses at internal points, using the Hooke constitutive law

over equation (12). The following expression is obtained for stress determination on internal
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collocation points:

σj
ik = −

ns

∑
m=1

Gm

Gj
∫
Γj

S∗mikj u
m
i dΓ + ∫

Γe

D∗ikjpidΓe (13)

where Sikj* and Dikj* are well-known tensors for the stress equation [3].

2.2 Internal Load Lines

Some engineering problems require modeling load lines inside bodies. That is the case of piles

analysis in foundation engineering problems, in which the piles inserted in the soil can be

modeled via FEM and act as internal load lines on BEM meshes [20].

For this type of analysis, there must be load line elements implemented in BEM formulation.

However, load lines do not form closed regions and must be completely inside the body domain.

Double nodes are used in the points where load lines meet the boundary elements, avoiding

the continuity of distributed forces values with different meanings (shear and normal) over each

element.

Regarding tractions, load lines work exactly as boundary elements, i.e., source points inte-

grate tractions weighted by fundamental displacements generating new columns in G matrix.

However, as displacements are not approximated over load lines, no new column is generated in

H matrix. Displacements at internal points are usually calculated as post processing, because

the solution of the problem is only dependent on boundary values. However, when piles are con-

nected to solids, the contact forces (tractions at load lines) are functions of pile displacements;

therefore the displacements of load line nodes are directly written in the system of equations

introducing source points geometrically coincident with those nodes. This procedure results in

additional lines in matrix H including non-zero values related to boundary displacements and

diagonal unit values related to domain displacements. For G matrix non-zero values appear

for boundary and load lines columns, see equation (14). The weak singularities present in G

matrix calculations are treated following the same procedure used for boundary elements. The

final algebraic system is written as:

[ Hee 0

Hie I
] ⋅ { Ue

Ui
} = [ Gee Gei

Gie Gii
] ⋅ { Pe

Pi
} (14)

where index e identifies boundary terms, index i indicates internal nodes of load lines and I

is the identity matrix.

The same shape functions can be adopted for the load line description as boundary ele-

ments, using Lagrange polynomials, see appendix A. These polynomials allow the use of curved

internal load lines of any load order. Another advantage of load lines is that they may have

any direction, making it possible to analyze inclined piles.

As for heterogeneous domains the integration procedure is affected only by the fundamental

values, and the consideration of load lines trespassing regions is straightforward. First, one

must identify the sub-region each load line is inserted in. Then, during the matrices storage

for each sub-region, the load lines are integrated as boundary elements storing only G terms.
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One considers a load line trespassing two regions by dividing it into two elements, each one

inserted in a different domain. Superposition is still valid, and the final system includes all

load lines.

3 FEM PROCEDURE

The frame structure is modeled adopting the Finite Element Method. Using the positional

formulation and an intermediate non-dimensional space it is possible to apply a simple La-

grangean formulation for the consideration of geometric nonlinearity with exact kinematics.

The same formulation is used in [13] for the analysis of 2D frames, assuming a nonlinear and

objective engineering strain measurement for the kinematics assumption. The authors also

present a comparison between Reissner and Euler-Bernoulli kinematics, checking the influence

of shear deformation on bending problems.

The accuracy of positional FEM formulation has also been proved by [7, 8, 14].

In the present study, the Green strain tensor and second Piola-Kirchhoff stress are adopted.

Both of them, as well as the energy functional are written as functions of the structures position.

To find the equilibrium configuration, the minimum total potential energy principle is used

regarding nodal position parameters.

As one can see, the FEM formulation adopted here consists basically in assuming the

position of the structure as the main variable of the problem, instead of displacements. In

this study, node and angular positions are assumed as the variables for each node in the finite

element mesh.

3.1 Kinematics

Figure 2 presents the mapping from a non dimensional space to the initial configuration of

a generic bar. This mapping is performed by Lagrange shape functions of any order (see

appendix) and nodal initial positions or coordinates. The nodal initial angle indicates an

orthogonal direction with respect to the mid line of the element. Function f⃗0(ξ, η) is a mapping

that locates any point inside the initial domain from a point in the non-dimensional domain.

Figure 3 is a similar drawing of a generic current position of the bar. In this case the

angular positions do not indicate an orthogonal direction to the reference line, but a direction

that composes both bending and shear contributions to the cross-section position. In the same

way, function f⃗1(ξ, η) is the mapping from the non-dimensional space to the current position.

Putting both mappings together, Figure 4 presents the desired mapping, i.e., from the

initial to the current configuration.

The initial and current mappings are written for each coordinate as:

f01 = x1(ξ, η) = ϕℓX1ℓ +
h0

2
η cos(ϕk(ξ)θ0k) (15)

f02 = x2(ξ, η) = ϕℓX2ℓ +
h0

2
ηsen(ϕk(ξ)θ0k) (16)
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Figure 3 Generic current position

f11 = y1(ξ, η) = ϕℓY1ℓ +
h0

2
η cos(ϕk(ξ)Y3k) (17)

f12 = y2(ξ, η) = ϕℓY2ℓ +
h0

2
ηsen(ϕk(ξ)Y3k) (18)

where x and y stand for initial and current positions, respectively, ℓ represents node and

the corresponding shape function ϕℓ, Xiℓ and Yiℓ are the initial and current nodal positions,

respectively, and θ0ℓ and Y3ℓ = θℓ are initial and current nodal angular positions. Defining the

current angular position as Y3ℓ = θℓ is useful to generalize the FEM solution procedure in the

next section.

One may write the total mapping or the change of configuration function as:

f⃗ = f⃗1 ○ (f⃗0)−1 (19)

However, only its gradient is necessary to develop the proposed formulation, i.e.:

A = A1.(A0)−1 (20)
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where the dot indicates a simple contraction, A1 is the gradient of the current mapping f⃗1(ξ, η)
and A0 is the gradient of the initial mapping f⃗0(ξ, η). These gradients are written as:

A0 =
⎡⎢⎢⎢⎢⎣

∂f0
1

∂ξ

∂f0
1

∂η
∂f0

2

∂ξ

∂f0
2

∂η

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

∂x1

∂ξ

∂x1

∂η
∂x2

∂ξ

∂x2

∂η

⎤⎥⎥⎥⎥⎦
(21)

A1 =
⎡⎢⎢⎢⎢⎣

∂f1
1

∂ξ

∂f1
1

∂η
∂f1

2

∂ξ

∂f1
2

∂η

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

∂y1

∂ξ

∂y1

∂η
∂y2

∂ξ

∂y2

∂η

⎤⎥⎥⎥⎥⎦
(22)

In order to achieve the Green strain tensor one calculates the right Cauchy-Green stretch

tensor C of the change of configuration function as:

C = At.A = (A0)−t .A1t.A1. (A0)−1 (23)

and the Green strain, assumed in this study as the strain measurement, is given by:

E = 1

2
(C − I) (24)

3.2 Potential energy minimization - equilibrium

As previously mentioned, the total mechanical energy should be minimized in order to solve the

problem. The simple specific strain energy assumed is the so-called Saint-Venant-Kirchhoff,

written in a simplified form for the analyzed problem as:

ue =
E

2
{(E2

11 +E2
22) + (E2

12 +E2
21)} (25)

where E is the Young modulus and Eij the components of the Green strain tensor.

Therefore, the total potential energy for a conservative elastic structure is given by:

Π = Ue + P (26)

where Ue is the elastic strain energy and P the potential energy of applied forces.
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A Lagrangian description is assumed by writing the strain energy over the initial volume

as follows:

Ue = ∫
V0

uedV0 (27)

The potential energy of applied forces (concentrated and conservative) is written as:

P = −F.Y (28)

As the Green strain is a function of nodal current positions (positional parameters), the

same is stated for Ue and P. Applying the minimum total potential energy principle regarding

positions Y follows the non-linear equilibrium equation:

∂Π

∂Y
= ∫
V0

∂ue

∂Y
dV0 −F = F int −F = g (29)

Note that the integral over the initial volume of ∂ue/∂Y (for an arbitrary position) is also

understood as the internal forces F int. Thus, g is a vector that assumes null value when the

solution is obtained, i.e., when the equilibrium position of the structure is verified. However,

it is understood as the unbalanced force of the mechanical system when a trial position is

assumed.

For the numerical solution the Newton-Raphson procedure is used. In order to do that, a

Taylor expansion from an initial trial solution Yarb of g is carried out as follows:

g(Y ) = g(Yarb) +∇g(Yarb).∆Y +Θ2 = 0 (30)

Neglecting higher-order terms (Θ2) and reorganizing the other terms, equation (30) can be

rewritten to provide the following expression:

∆Y = − (∇g(Yarb))
−1

g(Yarb) =K
−1
T . (F − Fint(Yarb)) (31)

where KT is the hessian matrix or the tangent stiffness matrix, given by the second derivative

of the strain energy.

The solution is achieved by assuming an arbitrary position Yarb to calculate the internal

forces Fintand the hessian matrix KT . For the very first iteration the initial configuration X

is taken as Yarb.

The correction position vector ∆Y is found by equation (31) and used to “correct” the

arbitrary solution as follows:

Yarb+1 = Yarb +∆Y (32)

This new arbitrary position is assumed as the current configuration and the iterative process

is carried out until ∣∆Y ∣ becomes smaller than a tolerance value. With both FEM and BEM

computational codes prepared, the numerical coupling is performed for the fulfillment of this

study.
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4 BEM-FEM COUPLING

The numerical coupling is performed following the idea of inserting BEM’s conditions in the

finite element mesh by condensing the BEM algebraic system regarding coupled nodes. To do

so, it is necessary to identify the coupled elements in each BEM and FEM mesh.

For the boundary element domain the following algebraic system is written:

[ Hcc Hcl

Hlc Hll
]{ UB

c

UB
l

} = [ Gcc Gcl

Glc Gll
]{ PB

c

PB
l

} (33)

where c is the index to identify the coupled terms and l is used for the free terms (those not

coupled to the finite element mesh). The superior index B shows that those terms are related

to the BEM formulation. U is a vector containing the nodal displacements and P another

vector for distributed forces.

On the other hand, the finite element structure mesh is given by the algebraic system

written in a simplified form as:

[ Kcc Kcm

Kmc Kmm
]{ UF

c

UF
m

} = { FF
c

FF
m

} (34)

Again, c is related to the coupled terms. The superior index F is related to FEM formula-

tion, and index m is used to identify the nodes which are not coupled to the boundary mesh.

Vector F represents concentrated nodal forces vector. In particular UF is related to ∆Y in

the iterative procedure, as a change in position is in fact a displacement.

From (33) it is possible to write two equations. Isolating Ul and organizing the result, we

obtain the following expression:

H̄ccU
B
c = ḠccP

B
c + T (35)

where:

H̄cc = [Hcc −HclH
−1
ll Hlc] (36)

Ḡcc = [Gcc −HclH
−1
ll Glc] (37)

T = [Gcl −HclH
−1
ll Gll]PB

l (38)

Pre-multiplying both sides of (35) by a Qc matrix, which is originated from shape functions

integration on the finite element mesh, the result does not change. The objective of Qc matrix

is to convert distributed forces P into concentrated forces F :

QcP = F (39)

In this way it is possible to transform the boundary distributed forces into FEM nodal forces

to be applied on FEM nodes. As a result of this multiplication, expression (35) becomes:

K̄ccU
B
c = FB

c + P̄c (40)
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where:

K̄cc = QcḠ
−1
cc H̄cc (41)

P̄c = QcḠ
−1
cc T (42)

FB
c = QcP

B
c (43)

From (40) it is possible to isolate the equivalent applied concentrated forces from boundary

elements Fc
B.

Over the interface line the following compatibility and equilibrium conditions must be

imposed:

UB
c = UF

c (44)

FB
c = −FF

c (45)

Back to the FEM algebraic system and applying conditions (44) and (45), a final algebraic

system is obtained for the coupled structure:

[ (Kcc + K̄cc) Kcm

Kmc Kmm
]{ UF

c

UF
m

} = { P̄c

FF
m

} (46)

This algebraic system represents the frame structure coupled to the heterogeneous soil

domain. The K̄cc matrix is understood as an equivalent soil’s stiffness matrix condensed on

contact nodes. Its physical significance is that soil’s conditions computed in BEM model are

added to the frame structure modeled by FEM as “springs”. However, these “springs” have a

more refined concept as they consider the soil’s continuity and every condition from the BEM

model, unlike Winklers approximation.

At each iteration, it is necessary to correct the internal force vector of the frame structure by

adding the reaction values from soil restriction. Vector P̄c has these load conditions on interface

lines and will update the FF
c vector at each iteration of the Newton-Raphson procedure.

As the soil is assumed here linear elastic, the equivalent stiffness matrix is calculated only

once at the very first iteration of the nonlinear analysis.

The solid heterogeneous model is still valid, as the alternative sub-region technique is

performed before the condensation of BEM algebraic system to the BEM-FEM interface.

It is important to observe that BEM formulation does not consider rotation a degree-of-

freedom. Therefore, to perform the numerical coupling, null rows and columns were inserted

in the BEM matrices.

Various numerical examples were processed and compared to analytical solutions or results

obtained from FEM commercial software. Some of these examples are showed in the next

section.
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5 EXAMPLES

5.1 Tensile bar

This is a simple example of a straight bar under a tensile force. It is presented here to prove

the formulation efficiency, as the result can be compared to the analytical solution.

Half of the bar is modeled via BEM and the other half via FEM, with a coupled interface

in the middle section, as shown in Figure 5. The section area is unitary as a unitary width is

adopted.  
Figure 5 BEM-FEM model for straight tensile bar

The boundary mesh is divided into three domains to test the alternative technique of sub-

regions. The material properties are the same for all elements, on both BEM and FEM meshes

(E1 = E2 = E3 = Ebar = 10000kN/cm2). The finite element coupled to the boundary element

has thickness of 20 cm (more rigid) to allow the comparison with the analytical result. The

analytical solution is given by:

u(x) =
F

EA
x (47)

The results are shown in Table 1.

Table 1 − Horizontal displacement (cm) along the bar length

x BEM-FEM Analytical Difference %
0.00 0.00E+00 0.00E+00 -
0.33 3.334076E-04 3.333333E-04 0.02%
0.67 6.668118E-04 6.666667E-04 0.02%
1.00 1.000233E-03 1.000000E-03 0.02%
1.33 1.333483E-03 1.333333E-03 0.01%
1.67 1.664417E-03 1.666667E-03 0.13%
2.00 2.004045E-03 2.000000E-03 0.20%
3.00 3.000000E-03 3.000000E-03 0.00%
4.00 4.000000E-03 4.000000E-03 0.00%

As one can see, the connecting element flexibility allows a small difference along the central

line of the BEM domain. However, results are very well compared to the references values.
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5.2 Vertical pile in homogeneous domain

This is an example of a vertical pile structure inserted in a homogeneous domain and subjected

to a bending moment, as it is shown in Figure 6.

 
Figure 6 Vertical pile in homogeneous domain

The continuum domains Young modulus is Es = 21000 kPa while the pile structure’s mod-

ulus is Ep = 21 GPa. The Poisson ratio is taken as ν = 0.2 for both soil and pile materials. A

unitary influence width for the soil domain is considered and the plane stress is assumed. The

pile has a circular section area with diameter D = 30 cm, resulting in a 706.8 cm2 area and

inertia moment of 39760 cm4. The pile has a small length of 2.0 cm outside of soil domain on

which the concentrated load is applied. A quadratic approximation is adopted for both finite

and boundary elements. Two regular meshes (varying the piles discretization) are used: M1

is a mesh formed by 24 boundary elements (each element has a length of 5.0 m), and 8 finite

elements (element length of 2.5 m) along the piles height; for mesh M2 50 finite elements are

considered for the piles discretization (element length of 0.4 m).

The results were compared to the same example processed with the commercial ANSYS®

software. For the ANSYS® model a mesh with 3200 plane stress elements was used for

continuum domain’s discretization and 43 conventional beam elements for the frame’s mesh.

The results for horizontal displacement and section rotation are presented in Figures 7 and 8.

Distributed forces along the piles length are also compared, as shown in Figure 9. The

distributed force is directly obtained from the developed program. For ANSYS®, these values

are obtained dividing the nodal reaction by each finite element length.

As one can see, the results compare very well despite the difference of the adopted formu-

lations.

5.3 Pile inclined in a layered soil

An inclined pile foundation structure subjected to vertical and horizontal concentrated forces

is now considered inserted in a layered soil, as shown in Figure 10.

The frame structure has a rectangular section of 10x15 cm resulting in a 150 cm2 area and
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Figure 7 Horizontal displacement along the piles height

 
Figure 8 Rotation of sections along the piles height

inertia moment of 2812.5 cm4. The Young modulus is Ep = 2100 MPa and Poisson ratio is

null. For the soil, the elastic modulus of each layer is shown in Figure 10 and a unitary width

of influence is considered.

Two regular meshes (with quadratic elements) are used: M1 is a mesh formed by 20

boundary elements and 4 finite elements along the piles height, with elements length varying

from 1.0 m to 2.75 m; M2 has 210 boundary elements for the soil and 40 finite elements for

the piles discretization (each element has a length of 0.1 m).

The results are again compared to ANSYS® model, with 3750 plane strain elements for

the soil’s mesh and 41 conventional beams elements for the pile.

For this analysis, forces FH and FV were separately applied and their values are FH = 10

kN and FV = -50 kN. The pile has a small length of 2.0 cm outside of soil domain on which

the concentrated load is applied.

The results for the horizontal displacement caused by FH are shown in Figure 11. Figure
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Figure 9 Horizontal distributed force along the piles height

 
Figure 10 Pile inclined in heterogeneous soil

12 exhibits the vertical displacement caused by FV .

There are no significant differences among the results obtained with meshes M1 and M2,

which demonstrate the numerical convergence for this problem.

5.4 Bending frame

This is an example of the applicability of the proposed technique. It consists of a slender

frame structure coupled to a heterogeneous soil. In this case, geometric nonlinear analysis is

required to determine the structure’s displacement with better accuracy. To demonstrate the

importance of considering the soil-structure interaction, the results are compared to the same

frame fixed by a rigid support instead of soil’s domain for the contact nodes. Geometrical

linear and nonlinear analyses are performed and compared.

Figure 13 presents the soil and frame dimensions and other information of interest.

The frames section is a square steel tube (1.0 x 1.0 m) with 3.0 cm thickness resulting in a
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Figure 11 Horizontal displacement along the piles height caused by FH

 
Figure 12 Vertical displacement along the piles height caused by FV

section area of 0.1164 m2 and inertial moment of 0.0183 m4. The Young modulus is E = 210

GPa. A cubic approximation is adopted for both BEM and FEM models. Two regular meshes

are used, varying the discretization of the frames length inside the soil’s domain: M1 is a mesh

formed by 14 boundary elements and 2 finite elements along the inserted length (each finite

element has a length of 7.5 m); for mesh M2 6 finite elements are considered for the inserted

length, and in this case, each element has a length of 2.5 m.

The results for horizontal displacement considering linear and nonlinear analyses for the

fixed support model and soil-structure interaction (SSI) model are presented in Figure 14.

Note that an additional horizontal displacement is verified by considering the soil-structure

interaction (SSI), as the soil’s deformability influences the final results.

Table 2 shows the comparison of the maximum horizontal displacement at the top of the

frame structure for linear and nonlinear analyses, for both the rigid support and soil-structure

interaction (SSI) models.

Latin American Journal of Solids and Structures 9(2012) 235 – 257



W.Q. Silva et al / Numerical combination for nonlinear analysis of structures coupled to layered soils 253

 
Figure 13 Slender bending frame supported by a layered soil

 01020304050
6070

-0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60Frame height (m) Horizontal Displacement (m)Rigid Support - LinearRigid Support - NonlinearSSI - Linear (M1)SSI - Nonlinear (M1)SSI - Linear (M2)SSI - Nonlinear (M2)
Figure 14 Horizontal displacement along the frames height

The difference between a linear analysis with rigid support and the nonlinear analysis

considering soil-structure interaction is 34%, which proves that the simplified model may not

be appropriate in this case.

The consideration of soil-structure interaction also leads to a different distribution the

internal efforts on the frame structure model. It is interesting to measure here the influences

that these differences may cause on the structural design for a safer and more economical

project.

The internal normal force, shear and bending moment along the frame’s height are pre-

sented next.

Also, the frames influence over the soil contact interface can be introduced into the BEM

program to compute the soil final displacements and stresses. It is possible to determine the

soil deformation and stress components (see Figure 18).

Latin American Journal of Solids and Structures 9(2012) 235 – 257



254 W.Q. Silva et al / Numerical combination for nonlinear analysis of structures coupled to layered soils

Table 2 Maximum horizontal displacement (cm) at the top of the structure

Type of analysis Rigid Support SSI (M1) SSI (M2)
Linear 37.48 40.07 40.39

Nonlinear 46.14 49.88 50.31

 051015202530354045505560657075
-600 -500 -400 -300 -200 -100 0 Frame height (m)Normal force (kN)

SSI - Nonlinear (M1)SSI - Nonlinear (M2)
Figure 15 Normal force along the frames height

6 CONCLUSIONS

The alternative technique for sub-regions on BEM has been successfully applied allowing for

the consideration of multiple inclusions. The strategy reduces the number of variables as

it eliminates the traction approximation on contact interfaces. It is possible to consider a

large number of sub-regions in a much simpler way than by using the classical sub-region

technique. The final matrix is compact and full. Load lines are also implemented allowing for

the simulation of internal elements in any direction and passing through different domains.

The FEM based on positions is used to implement a Lagrangean formulation considering the

frame geometric nonlinear behavior with exact kinematics.

The developed BEM-FEM coupling introduces the linear soil influence into the frame non-

linear system of equations. The main advantage of the procedure is the calculation of the

matrix soil influence only once in a very compact way, reducing the amount of calculations in

the iterative solution process.

The coupling strategy is more powerful than the usual Winkler procedure as it takes into

account the influence of different foundations, or even buildings, on each other. Moreover the

use of BEM is much more economical than the use of FEM to model the soil. Examples show

the good behavior of the procedure when compared to a generalist commercial package, as

ANSYS® for instance.

Moreover, this study has emphasized the importance of the influence of the soil’s flexibil-

ity on the nonlinear behavior of structures. It is important to mention the two-dimensional

characteristic of the presented model, i.e., the considered soil width for all analyses is taken

Latin American Journal of Solids and Structures 9(2012) 235 – 257



W.Q. Silva et al / Numerical combination for nonlinear analysis of structures coupled to layered soils 255

 051015202530354045505560657075
-400 -200 0 200 400 600 800Frame height (m) Shear force (kN)

SSI - Nonlinear (M1)SSI - Nonlinear (M2)
Figure 16 Shear force along the frames height

 051015202530354045505560657075
-2.000 -1.500 -1.000 -500 0 500 Frame height (m)Bending Moment (kN.m)

SSI - Nonlinear (M1)SSI - Nonlinear (M2)
Figure 17 Bending moment along the frames height

arbitrarily. In the future this formulation should be extended for 3D representation in order

to provide more generality to the proposed methodology.

APPENDIX A – HIGH-ORDER ELEMENTS WITH LAGRANGE POLYNOMIALS

Both BEM and FEM formulation are implemented with high-order elements, assuming La-

grange polynomials for shape functions description. The Lagrange polynomials are given as

follows:

ϕl =
n

∏
i ≠ k
i = 1

( ξ − ξi
ξk − ξi

) (48)

where ϕl is the l shape function for each k node of a (n-1) order element. The ξ coordinates
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Figure 18 (a) Soil deformation in meters and (b) vertical stress component in kPa

assume values from -1 to +1 on dimensionless space. Therefore, it is possible to define any

point of the element from its ξ coordinates.

A numerical subroutine based on equation (48) is implemented in both BEM and FEM

computational codes to generate all shape functions of discrete elements. The user must only

introduce the desired order for the discrete elements and the number of points for Gaussian

quadrature.

 

Figure 19 Curved element in dimensionless coordinates
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anteparo ŕıgido. dissertação (mestrado), 2008.

[15] J.B. PAIVA and M.H. ALIABADI. Boundary element analysis of zoned plates in bending. Comput Mech, 25:560–6,
2000.

[16] J.B. PAIVA and M.H. ALIABADI. Bending moments at interfaces of thin zoned plates with discrete thickness by
the boundary element method. Eng Anal Boundary Elem, 28:747–51, 2004.

[17] D.B. RIBEIRO and J.B. Paiva. An alternative multi-region bem technique for three-dimensional elastic problems.
Engineering Analysis with Boundary Elements, 33:499–507, 2009.

[18] R.A. SOUZA and J.H.C. REIS. Interação solo-estrutura para edifcios sobre fundações rasas. Acta Sci. Technol.,
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