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1D	analysis	of	laminated	composite	and	sandwich	plates	using	a	new	
fifth‐order	plate	theory	

Abstract	
In	the	present	study,	a	new	fifth‐order	shear	and	normal	deformation	theory	
ሺFOSNDTሻ	 is	 developed	 for	 the	 analysis	 of	 laminated	 composite	 and	
sandwich	 plates	 under	 cylindrical	 bending.	 The	 theory	 considered	 the	
effects	 of	 transverse	 shear	 and	 normal	 deformations.	 To	 account	 for	 the	
effect	 of	 transverse	 shear	 deformation,	 in‐plane	 displacement	 uses	
polynomial	 shape	 function	 expanded	 up	 to	 fifth‐order	 in‐terms	 of	 the	
thickness	 coordinate.	 Transverse	 displacement	 uses	 derivative	 of	 shape	
function	 to	 account	 for	 the	 effect	 of	 transverse	 normal	 deformations.	
Therefore,	the	present	theory	involves	six	independent	unknown	variables.	
The	 theory	 satisfies	 traction	 free	 boundary	 conditions	 at	 top	 and	bottom	
surfaces	of	the	plate	and	does	not	require	the	shear	correction	factor.	The	
principle	 of	 virtual	 work	 is	 used	 to	 obtain	 the	 variationally	 consistent	
governing	 differential	 equations	 and	 associated	 boundary	 conditions.	
Analytical	solutions	for	simply	supported	boundary	conditions	are	obtained	
using	 Navier’s	 solution	 technique.	 Non‐dimensional	 displacements	 and	
stresses	obtained	using	the	present	theory	are	compared	with	existing	exact	
elasticity	solutions	and	lower	and	higher‐order	theories	to	prove	the	efficacy	
of	 the	present	 theory.	The	comparison	shows	 that	 the	displacements	and	
stresses	predicted	by	the	present	theory	are	in	good	agreement	with	those	
obtained	by	using	the	exact	solution.	

Keywords	
Fifth‐order,	shear	deformation,	normal	deformation,	 laminated,	sandwich,	
bending.	

1	INTRODUCTION	

The	 demand	 for	 high‐strength,	 high‐modulus	 and	 low	 density	 composite	 materials	 have	 generated	 an	
increased	number	of	applications	in	many	industries	such	as	in	aircraft,	spacecraft,	civil	engineering,	mechanical	
engineering,	marine	and	many	more.	

The	 development	 of	 plate	 theory	 has	 a	 long	 history.	 Many	 well‐known	 engineers,	 scientists,	 and	
mathematicians	have	made	their	contribution	in	the	development	of	beam,	plate	and	shell	theories	such	as	Jacob	
ሺIIሻ	Bernoulli,	Leonard	Euler,	Joseph‐Louis	Lagrange	Simeon	Denis	Poisson,	Claude‐Louis	Navier	and	Gustav	Robert	
Kirchhoff.	The	historical	review	of	the	development	of	beam,	plate	and	shell	theories	is	given	in	Timoshenko	and	
Woinowsky‐Krieger		ሺ1959ሻ,	Todhunter	and	Pearson	ሺ1960ሻ	and	Carrera	et	al.	ሺ2011ሻ.	

Well‐known	 exact	 elasticity	 solutions	 for	 one	 dimensional	 and	 two	 dimensional	 bending	 of	 laminated	
composite	 and	 sandwich	 plates	 are	 developed	 by	 Pagano	 ሺ1969,	 1970a,	 1970bሻ.	 These	 solutions	 serves	 as	
benchmark	solutions	for	the	comparison	of	results	obtained	by	using	analytical	or	numerical	solutions	based	on	
approximate	 plate	 theories.	 Exact	 elasticity	 solutions	 are	 mathematically	 difficult	 and	 computationally	 more	
cumbersome.	This	led	to	the	development	of	analytical	and	numerical	solution	based	on	approximate	plate	theories.	
The	 simplest	 plate	 theory,	 based	 on	 the	 displacement	 field,	 is	 the	 classical	 plate	 theory	 ሺCPTሻ	 developed	 by	
Kirchhoff	ሺ1850ሻ	in	the	nineteenth	century.	But,	since	shear	deformation	effect	is	neglected	by	the	CPT	it	cannot	be	
applied	for	the	analysis	of	thick	plates	where	shear	deformation	effect	 is	more	pronounced.	Mindlin	ሺ1951ሻ	has	
considered	the	effect	of	transverse	shear	deformation	for	the	first	time	in	his	first‐order	shear	deformation	theory	
ሺFSDTሻ.	The	FSDT	suffers	from	the	drawback	of	constant	shear	strain	condition	through	the	thickness	of	the	plate.	
Also	 it	 requires	 shear	 correction	 factor	 to	properly	 account	 the	 strain	 energy	due	 to	 shear	deformation.	These	
limitations	of	CPT	and	FSDT	led	to	the	development	of	higher‐order	shear	deformation	theories.	The	development	
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of	various	higher‐order	plate	 theories	and	the	solution	techniques	are	recently	reviewed	by	Sayyad	and	Ghugal	
ሺ2015aሻ.	

Reddy	ሺ1984ሻ	has	developed	a	simple	higher‐order	shear	deformation	theory	ሺHSDTሻ	for	laminated	composite	
beams	 and	 plates.	 This	HSDT	 is	 further	 used	 by	many	 researchers	 for	 the	 solution	 of	 various	 solid	mechanics	
problems.	Kant	and	Kommineni	ሺ1994ሻ	have	established	a	refined	higher‐order	shear	deformation	theory	for	linear	
and	geometrically	non‐linear	behavior	of	fiber	reinforced	angle	ply	laminated	composite	and	sandwich	plates	based	
on	 finite	element	 formulation	using	a	Lagrangian	approach.	Soldatos	and	Watson	ሺ1997ሻ	and	Shu	and	Soldatos	
ሺ2000ሻ	developed	the	hyperbolic	shear	deformation	theory	for	the	cylindrical	bending	of	cross‐ply	and	angle‐ply	
laminates.	

Chakrabarti	and	Sheikh	ሺ2005ሻ	have	developed	a	finite	element	model	for	the	bending	analysis	of	soft	core	
sandwich	plates.	A	study	of	global‐local	higher‐order	theories	for	laminated	composite	plates	is	performed	by	Zhen	
and	Wanji	 ሺ2007ሻ	 by	 presenting	 the	 general	 formulas	 of	 nth	 order	 global	 local	 higher‐order	 theory.	 Fares	 and	
Elmarghany	 ሺ2008ሻ	 have	 presented	 a	 refined	 zig‐zag	 nonlinear	 FSDT	 of	 laminated	 composite	 plates	 using	 the	
Galerkin	method.	 Ferreira	 et	 al.	 ሺ2011ሻ	 applied	 the	Carrera’s	 unified	 formulation	 ሺCUFሻ	 for	predicting	 the	 free	
vibration,	 static	 deformation	 and	 buckling	 behavior	 of	 thin	 and	 thick	 cross‐ply	 laminated	 plates.	 Carrera	 and	
Zappino	ሺ2016ሻ	proposed	several	models	based	on	1D,	2D	and	3D	kinematics	for	free	vibrations	of	shell	structures	
using	Lagrange	polynomials.	Pagani	et	al.	ሺ2016ሻ	have	developed	refined	computational	model	based	on	layer‐wise	
approach	using	CUF	for	the	analysis	of	laminated	structures.	Sarangan	and	Singh	ሺ2016ሻ	have	presented	higher‐
order	closed	form	solutions	for	the	static,	buckling	and	free	vibration	analysis	of	laminated	composite	and	sandwich	
plates	based	on	new	shear	deformation	theories	using	Navier’s	closed	form	solution	technique.	Kant	and	Shiyekar	
ሺ2008ሻ	obtained	Navier	type	closed	form	solutions	for	the	cylindrical	bending	of	piezoelectric	laminates	subjected	
to	 electro‐mechanical	 loading	 using	 higher‐order	 shear	 and	 normal	 deformation	 theory.	 Sayyad	 and	 Ghugal	
ሺ2015bሻ	applied	a	nth	order	shear	deformation	theory	for	the	cylindrical	bending	of	composite	laminates.	Ghugal	
and	Sayyad	ሺ2011ሻ	presented	trigonometric	shear	and	normal	deformation	theory	for	the	free	vibration	of	thick	
isotropic	square	and	rectangular	plate	which	was	further	extended	by	Sayyad	and	Ghugal	ሺ2016ሻ	for	the	cylindrical	
bending	of	multilayered	composite	laminates	and	sandwiches.	A	critical	review	of	literature	on	bending,	buckling	
and	 free	 vibration	 analysis	 of	 shear	 deformable	 isotropic,	 laminated	 composite	 and	 sandwich	 beams	 based	 on	
equivalent	single	layer	theories,	layerwise	theories,	zig‐zag	theories	and	exact	elasticity	solution	has	recently	been	
presented	by	Sayyad	and	Ghugal	ሺ2017aሻ.	Sayyad	and	Ghugal	ሺ2017bሻ	have	also	developed	a	displacement	based	
unified	shear	deformation	theory	for	the	analysis	of	shear	deformable	advanced	composite	beams	and	plates.	

1.1	The	plate	under	consideration	for	the	present	study	

A	cross‐ply	laminated	composite	plate	made	of	orthotropic	fibrous	composite	material	having	length	‘a’	and	
width	‘b’	in	the	in	the	x	and	y	directions	respectively	is	considered	as	shown	in	Figure	1.	The	y	direction	of	the	plate	
is	assumed	to	be	infinitely	long	compared	to	other	two	dimensions,	therefore,	strains	in	the	y	direction	are	assumed	
to	be	zero	ሺ 0y yz   ሻ.	The	thickness	of	the	plate	is	measured	in	z‐direction	and	at	zൌ0,	the	mid	plane	of	the	

plate	is	located.	The	plate	under	consideration	consists	of	N	number	of	layers	bonded	together.	The	plate	is	carrying	
an	out	of	plane	load	qሺxሻ,	acting	on	its	top	surface.	i.e.	  / 2z h  .	
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Figure	1:	Geometry	and	co‐ordinate	system	of	the	layered	plate	deform	in	cylindrical	bending	

2	FIFTH‐ORDER	SHEAR	AND	NORMAL	DEFORMATION	THEORY	

Through‐thickness	 distributions	 of	 transverse	 shear	 and	 normal	 stresses	 for	 composite	 laminates	 are	
important	for	delamination	type	failure.	Therefore,	it	is	essential	to	understand	and	calculate	transverse	shear	and	
normal	stress	through	the	thickness	of	the	plate	accurately	ሺCarrera	2005ሻ.	However,	in	a	whole	variety	of	higher‐
order	plate	theories	existing	in	the	literature	very	few	researchers	have	considered	the	effect	of	transverse	normal	
stress	for	developing	refined	plate	theory	in	view	of	minimizing	the	number	of	unknown	variables.	 In	the	well‐
known	theory	of	Reddy	ሺ1984ሻ,	thickness	coordinate	is	expanded	up	to	third‐order	in	the	in‐plane	displacement	
field	and	the	effect	of	transverse	normal	deformation	is	neglected.	

The	present	theory	is	built	upon	classical	plate	theory	having	following	important	features.	
1ሻ	The	present	theory	considers	the	effects	of	transverse	shear	and	normal	deformations  0z  .	

2ሻ	The	axial	displacement	in	the	x	direction	consists	of	extension,	bending	and	shear	components.	The	extension	

 0u 	and	bending	  bu 	components	are	analogues	to	the	classical	plate	theory	whereas	the	shear	

component	  su 	contains	polynomial	shape	function	expanded	up	to	fifth‐order	in	terms	of	the	thickness	

coordinate	ሺz/hሻ.	Hence	the	theory	is	designated	as	the	fifth‐order	shear	and	normal	deformation	theory	
ሺFOSNDTሻ.	

0 b su u u u   	 ሺ1ሻ	
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3ሻ	The	transverse	displacement	w	in	z‐	direction	is	assumed	to	be	a	function	of	x	and	z	coordinates	to	include	the	
effect	of	transverse	normal	deformations	  0z  .	
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4ሻ	The	theory	enforces	the	parabolic	variation	of	the	transverse	shear	stress	across	the	thickness	of	the	plate.	
Thus,	the	theory	obviates	the	need	of	the	shear	correction	factor.	

5ሻ	The	body	forces	are	not	considered	in	the	analysis.	

2.1	Kinematics	of	the	present	theory	

Based	 on	 the	 aforementioned	 assumptions	 and	 features,	 the	 displacement	 field	 of	 the	 present	 theory	
ሺFOSNPTሻ	can	be	expressed	as	

       
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	 ሺ4ሻ	

where	u	and	w	are	 the	x	and	z‐directional	displacements	of	 any	point	on	 the	plate,	 u0	 and	w0	are	 the	 in‐plane	
displacements	of	mid‐plane	in	x	and	z‐directions	respectively;	 andx x  	are	rotations	of	the	normal	to	the	middle	

plane	about	y	axis	which	account	the	effect	of	transverse	shear	deformation.	 andz z  	represent	higher‐order	

transverse	cross‐sectional	deformation	modes	i.e.	effect	of	transverse	normal	deformations.	The	non‐zero	strain	
components	associated	with	the	present	displacement	field	are	obtained	by	using	the	linear	theory	of	elasticity.	
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2.2	Constitutive	Equations	

The	constitutive	equations	for	the	kth	lamina	are	given	by	
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where ijQ are	the	reduced	elastic	constants	in	x‐z	plane,	 x 	is	the	normal	stress	along	x‐direction,	 z is	the	stress	

acting	along	z‐direction	and	 xz 	is	shear	stress	along	z‐direction.	The	following	relationship	between	the	reduced	
elastic	constants	and	the	engineering	elastic	constants	are	used.	
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where	 1 3E ,E 	are	Young’s	moduli,	 13G 	is	the	shear	modulus	and	 12 21 13 31 23 32, , , , ,      	are	Poisson’s	ratios;	

the	subscripts	1,	2,	3	correspond	to	x,	y,	z	directions	of	Cartesian	coordinate	systems,	respectively.	

2.3	Governing	Equations	and	Boundary	Conditions	

Variationally	consistent	governing	differential	equations	and	associated	boundary	conditions	are	derived	by	
using	 the	 principle	 of	 virtual	 work.	 For	 the	 plate	 under	 consideration,	 the	 principle	 of	 virtual	 work	 takes	 the	
following	form.	
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where 	 is	 the	 virtual	 displacement	 i.e.	 infinitesimal	 change	 in	 the	 position	 coordinates	 of	 the	 points	 under	
consideration.	qሺxሻ	represents	transverse	load	acting	on	the	top	surface	of	the	plate.	By	substituting	virtual	strain	
from	Eq.	ሺ5ሻ	into	the	Eq.	ሺ8ሻ	one	can	obtain	
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where	 xN 	represents	the	axial	force	resultant;	 b
xM ,	 s

xM 	represent	bending	moment	and	higher	order	moment	

resultants;	 1 2,xz xzQ Q 	represent	shear	force	resultants	due	to	shear	deformation;	and	 1 2,s s
z zQ Q 	represent	shear	force	

resultants	due	to	normal	deformations.	
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where	


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The	governing	equations	can	be	derived	from	Eq.	ሺ9ሻ	by	integrating	the	displacement	variables	by	parts	and	
setting	the	coefficients	of	 0 0, , , , andx x z zu w      	to	zero	separately,	and	the	following	equations	can	be	

obtained:	
2 3 2 2

0 0
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where	the	extension,	bending,	bending‐extension,	bending‐twisting	stiffnesses	used	in	the	equations	ሺ12ሻ	‐ሺ17ሻ	can	
be	obtained	as	
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The	boundary	conditions	along	edges	ሺx	ൌ	0,	x	ൌ	aሻ	are	of	the	following	form:	

1

2

0 0 0

1 2

0 or 0; 0 or / 0; / 0 or 0; 0 or 0
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sb b
x x x x x
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	 ሺ19ሻ	

2.4	Closed	form	solutions	

For	a	simply	supported	laminated	composite	plate,	the	kinematic	boundary	conditions	are	given	below:	

1 2
0 0, 0, 0, 0, 0s sb

x xw N M M M     	 ሺ20ሻ	

To	determine	the	unknown	displacement	variables,	the	Navier’s	solution	technique	is	implemented.	To	satisfy	
the	aforementioned	boundary	conditions	the	displacements	and	rotations	are	assumed	in	Fourier	trigonometric	
form	
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where , , , , andm m xm xm zm zmu w     are	 the	unknowns	 to	be	determined.	According	 to	Navier’s	 solution	scheme,	

transverse	load	is	also	expanded	in	Fourier	trigonometric	form	
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m x
q x q

a





   
 

 	 ሺ22ሻ	

where	 mq 	is	the	coefficient	of	Fourier	series	expansion	and	m	is	the	positive	integer.	For	sinusoidal	load,	 0mq q 	

and	mൌ1.	Substitution	of	Eqs.	ሺ21ሻ	and	ሺ22ሻ	into	governing	equations	ሺ12ሻ	through	ሺ17ሻ	leads	to	the	following	form	
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	 ሺ23ሻ	

where	ሾKijሿ	are	the	elements	of	stiffness	matrix	



N.	S.	Naik	et	al.	
1D	analysis	of	laminated	composite	and	sandwich	plates	using	a	new	fifth‐order	plate	theory	

Latin	American	Journal	of	Solids	and	Structures,	2018,	15ሺ1ሻ,	e09	 8/17	

2 2 3 3 2 2 2 2

11 11 12 11 13 11 14 11 15 132 3 2 2

4 4 3 3 3 3 2 2

16 13 22 11 23 11 24 11 25 134 3 3 2

, , , ; ,

, , , ,s s s s

m m m m m
K A K B K C K D K I

aa a a a

m m m m m
K J K A K C K D K I

a a a a a

    

    

                         
        

                     
        

2 2 2 2 2 2

26 13 33 111 155 34 211 2552 2 2

35 113 155 36 113 255 45 213 255

,

, , ,

, ,

s ss sss ss sss

ss sss ss sss ss sss

m m m
K J K C C K C C

a a a

m m m m m m
K I C K J C K I C

a a a a a a

  

     




      
             

      

                        
         

2 2 2 2

46 213 155 56 255 233 66 155 1332 2

,

, ,ss sss sss sss sss sss

m m m m
K J D K C I K D J

a a a a

   


 
 

                   
       

	ሺ24ሻ	

After	knowing	the	values	of	unknown	displacement	variables	 0 0 , ,, , andx x z zu w     	from	Eq.	ሺ23ሻ,	one	can	

obtain	 all	 the	 displacements	 and	 stress	 components	within	 the	 laminated	 composite	 plate	 using	 equations	 ሺ4ሻ	
through	ሺ6ሻ.	

2.5	Estimation	of	transverse	shear	stress	and	normal	stress	

Through‐thickness	 distributions	 of	 transverse	 shear	 and	 normal	 stresses	 for	 composite	 laminates	 are	
important	for	delamination	type	failure.	The	evaluation	of	transverse	shear	stresses	from	the	constitutive	relations	
leads	 to	 discontinuity	 at	 the	 inter	 face	 of	 two	 adjacent	 layers	 of	 a	 laminate	 and	 thus	 violates	 the	 equilibrium	
conditions.	Thus,	 elasticity	 equilibrium	equation	neglecting	 the	body	 force	 is	 used	 to	derive	 expression	 for	 the	
transverse	stress	in	the	kth	lamina	of	composite	laminate.	

1k

k

h k
k x
xz

h

dz C
x




 
  

 	 ሺ25ሻ	

From	 equation	 ሺ25ሻ	 the	 transverse	 stress	 ሺ xz ሻ	 can	 be	 evaluated	 through	 integration	with	 respect	 to	 the	

laminate	 thickness	 coordinate	 ሺzሻ.	 The	 in‐plane	 stress	 ሺ x ሻ	 obtained	 by	 using	 equation	 ሺ4ሻ	 is	 substituted	 in	

equation	ሺ25ሻ.	The	constants	of	integrations	ሺCሻ	can	be	determined	by	substituting	the	boundary	conditions.	It	is	
expected	that	this	procedure	will	produce	an	accurate	transverse	shear	stresses.	

3.0	NUMERICAL	RESULTS	AND	DISCUSSION	

Aluminum	alloy	and	fibrous	composite	materials	are	being	used	increasingly	for	numerous	space	applications.	
3.1	Aluminum	alloy:	Aluminum	is	one	of	the	most	widely	used	metals	in	modern	aircraft	construction.	It	is	vital	

to	the	aviation	industry	because	of	its	high	strength	to	weight	ratio	and	its	comparative	ease	of	fabrication.	The	
outstanding	characteristic	of	aluminum	is	its	light	weight.	Aluminum	melts	at	the	comparatively	low	temperature	
of	12500F.	It	is	nonmagnetic	and	is	an	excellent	conductor.	Following	material	properties	ሺAluminum	3003‐H14ሻ	
are	used	for	numerical	study.	

Material	1	ሺKrishna	Murty,	1984ሻ:	 1 2 3 12 13 2369 and 26E E E E GPa G G G G GPa        	
3.2	 Fibrous	 composite	 materials:	 Engineers	 are	 interested	 in	 these	 materials	 because	 of	 their	 favorable	

mechanical	 characteristic	 of	 high	 strength/high	 stiffness	 to	 weight	 ratio	 and	 potential	 for	 zero	 or	 near‐zero	
coefficient	of	thermal	expansion.	The	use	of	high	modulus	Graphite‐Epoxy	composite	parts	for	space	applications	
is	already	well	 established.	Using	Graphite‐Epoxy	parts	 for	 space	vehicles	and	structures	has	many	advantages	
including:	1ሻ	Critical	weight	savings	2ሻ	Improved	control	of	thermal	distortions	3ሻ	Increased	structural	stiffness.	
Following	properties	of	Graphite‐Epoxy	composite	material	are	used	for	the	numerical	study.	

Material	 2	 ሺPagano,	 1969ሻ:	 1 2 3 12 13172.5 , 6.9 , 3.45E GPa E E GPa G G GPa     ,	

23 12 13 231.38 , 0.25G GPa       	

Material	 3	 ሺKant	 and	 Swaminathan,	 2000ሻ:	 1 2 3131.1 , 6.9E GPa E E GPa   ,	

12 13 23 12 13 233.588 , 3.088 , 0.32, 0.49G G GPa G GPa         	
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Material	 4	 ሺKapuria	 et	 al.,	 2004ሻ: 1 2 30.2208 , 0.2001 , 2760E MPa E MPa E MPa   ,	

12 23 31 12 13 2316.56 , 455.4 , 545.1 , 0.99, 0.00003G MPa G MPa G MPa         	
For	the	validity	of	the	present	theory,	following	examples	are	solved	for	the	numerical	study.	

aሻ	Cylindrical	bending	of	two‐layer	ሺ00/900ሻ	antisymmetric	cross‐ply	laminated	composite	plates.	ሺFigure	2aሻ	
bሻ	Cylindrical	bending	of	three‐layer	ሺ00/900/00ሻ	symmetric	cross‐ply	laminated	composite	plates.	ሺFigure	2bሻ	
cሻ	Cylindrical	bending	of	three‐layer	ሺ00/core/00ሻ	symmetric	sandwich	plates.	ሺFigure2Cሻ	
	

	

	
Figure	2:	Simply	supported	laminated	plates	subjected	to	sinusoidal	load	

	

Displacements	and	stresses	for	laminated	composite	and	sandwich	plates	under	cylindrical	bending	obtained	
by	using	the	present	theory	ሺFOSNDTሻ	are	presented	in	Tables	1‐4	and	compared	with	the	those	obtained	by	using	
the	 classical	 plate	 theory	 ሺCPTሻ,	 FSDT	of	Mindlin	 ሺ1951ሻ,	HSDT	of	Reddy	 ሺ1984ሻ,	 sinusoidal	 shear	 and	normal	
deformation	 theory	 of	 Sayyad	 and	 Ghugal	 ሺ2016ሻ.	 Exact	 elasticity	 solution	 developed	 by	 Pagano	 ሺ1969ሻ	 is	
considered	 as	 a	 benchmark	 solution	 for	 comparison.	 The	 displacements	 and	 stresses	 are	 calculated	 at	 typical	
important	locations	and	presented	in	the	following	non‐dimensional	form.	
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The	through‐the‐thickness	profiles	for	in‐plane	displacement	ሺu ሻ,	in‐plane	normal	stress	ሺ x ሻ	and	transverse	

shear	stress	ሺ xz ሻ	for	laminated	and	sandwich	plates	subjected	to	a	sinusoidal	load	are	plotted	in	Figures	3	through	

14.	
High‐strength	aluminum	alloy	is	an	important	airframe	material	since	1920s.	Therefore,	the	present	theory	is	

tested	 for	 the	 plate	made	 of	 aluminum	 alloy	 ሺmaterial	 1ሻ.	 Comparison	 of	 non‐dimensional	 displacements	 and	
stresses	of	aluminum	alloy	plate	subjected	to	sinusoidal	load	are	tabulated	in	Table	1.	For	the	comparison	purpose,	
numerical	results	by	using	HSDT	of	Reddy	ሺ1984ሻ,	FSDT	of	Mindlin	ሺ1951ሻ	and	CPT	are	obtained.	The	numerical	
results	are	presented	for	thick	ሺa/h	ൌ	4ሻ,	moderately	thick	ሺa/h	ൌ	10ሻ	and	thin	plates	ሺa/h	ൌ	100ሻ.	From	Table	1,	
it	 is	pointed	out	 that	numerical	results	obtained	by	using	 the	present	 theory	and	HSDT	of	Reddy	ሺ1984ሻ	are	 in	
excellent	agreement	with	each	other	whereas	FSDT	and	CPT	underestimate	the	displacements	and	stresses	due	to	
neglect	of	shear	and	normal	deformations.	

The	 comparison	 of	 non‐dimensional	 displacements	 and	 stresses	 for	 the	 two‐layer	 ሺ00/900ሻ	 laminated	
composite	 plates	 is	 shown	 in	 Table	 2.	 The	 plate	 is	 subjected	 to	 a	 sinusoidal	 load	 ሺFigure	 2aሻ	 and	made	 up	 of	
orthotropic	material	2.	Both	the	layers	are	of	equal	thickness	i.e.	h/2.	Through‐the‐thickness	distributions	of	in‐
plane	displacement	and	stresses	are	plotted	in	Figures	3‐5	and	variation	of	transverse	displacement	with	respect	
to	a/h	ratio	is	plotted	in	Figure	6.	Exact	elasticity	solutions	presented	by	Pagano	ሺ1969ሻ	are	taken	as	basis	for	the	
comparison	of	numerical	results	obtained	by	using	the	present	theory	ሺFOSNDTሻ,	HSDT	of	Reddy	ሺ1984ሻ,	SSNPT	of	
Sayyad	and	Ghugal	ሺ2016ሻ,	FSDT	of	Mindlin	ሺ1951ሻ	and	CPT.	HSDT,	FSDT	and	CPT	do	not	consider	the	effect	of	
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transverse	normal	deformation	ሺεzൌ0ሻ	whereas	the	present	theory	and	SSNPT	considers	the	effect	of	transverse	
normal	 deformation	 ሺεz്0ሻ.	 It	 can	 be	 observed	 from	 Table	 2	 that	 the	 present	 theory	 shows	 considerable	
improvement	in	the	in‐plane	displacement	and	stresses	compared	to	those	obtained	by	using	HSDT	and	SSNPT.	The	
percentage	error	predicted	using	the	present	theory	is	less	in	many	cases	as	compared	to	HSDT,	SSNPT,	FSDT	and	
CPT.	This	is	in	fact	due	to	inclusion	of	fifth	order	term	in‐terms	of	the	thickness	coordinate	in	the	displacement	field.	
Figures	4	and	5	shows	stresses	are	always	maximum	in	00	layer	and	minimum	in	900	layers.	The	transverse	shear	
stress	 ሺ xz ሻ	 which	 is	 an	 important	 indicator	 to	 the	 onset	 of	 delamination	 are	 obtained	 using	 equations	 of	
equilibrium	 to	 ascertain	 the	 continuity	 at	 the	 layer	 interface.	 Through‐the‐thickness	 distribution	 of	 transverse	
displacement	is	not	uniform	when	itis	obtained	using	the	present	theory	and	SSNPT	whereas	it	is	uniform	when	
obtained	by	using	HSDT,	FSDT	and	CPT.	

Table	 3	 compares	numerical	 values	 of	 non‐dimensional	 displacements	 and	 stresses	 obtained	by	using	 the	
present	theory	and	other	higher‐order	theories	for	three‐layer	ሺ00/900/00ሻ	symmetric	laminated	composite	plate	
subjected	 to	a	 sinusoidal	 load	 ሺsee	Figure	2bሻ.	The	plate	 is	made	of	material	2	and	overall	 thickness	 is	equally	
distributed	among	all	the	layers	i.e.	h/3.	The	examination	of	Table	3	reveals	that	present	results	are	in	excellent	
agreement	 with	 those	 obtained	 by	 using	 the	 exact	 elasticity	 solution	 of	 Pagano	 ሺ1969ሻ.	 In	 this	 problem	 also	
considerable	improvement	in	the	results	 is	observed	due	to	refinement	of	the	polynomial	shape	function.	Large	
percentage	error	is	observed	when	these	quantities	are	obtained	by	using	FSDT	and	CPT	due	to	neglect	of	shear	
and	normal	deformations.	Through‐the‐thickness	distributions	of	in‐plane	displacement	and	stresses	are	plotted	
in	Figures	7‐9.	Variation	of	transverse	displacement	with	respect	to	a/h	ratios	is	plotted	in	Figure	10.	

Table	 4	 compares	 the	 numerical	 values	 of	 non‐dimensional	 displacement	 and	 stresses	 of	 three‐layer	
ሺ00/core/900ሻ	 symmetric	 sandwich	 plate	 subjected	 to	 a	 sinusoidal	 load	 ሺsee	 Figure	 2cሻ.	 Thickness	 of	 top	 and	
bottom	face	sheets	is	0.1h	each	whereas	thickness	of	middle	soft	core	is	0.8h.	Face	sheets	of	the	plate	are	made	of	a	
fibrous	composite	material	3	whereas	the	core	is	made	of	material	4.	For	the	sandwich	plates	in	cylindrical	bending,	
the	exact	elasticity	solution	is	not	available	in	the	literature;	hence	present	results	are	compared	with	published	
results.	Present	results	are	in	good	agreement	with	the	HSDT	of	Reddy	ሺ1984ሻ	and	SSNPT	of	Sayyad	and	Ghugal	
ሺ2016ሻ.	 Figure	 10	 shows	 variation	 of	 transverse	 displacement	with	 respect	 to	 aspect	 ratio	 for	 the	 three‐layer	
ሺ00/900/00ሻ	symmetric	laminated	composite	plate	subjected	to	sinusoidal	load.	Figures	11‐13	plots	the	through‐
the‐thickness	 distributions	 of	 in‐plane	 displacement,	 in‐plane	 normal	 stress	 and	 transverse	 shear	 stress.	 The	
examination	 of	 Figure	 12	 reveals	 that	 the	 in‐plane	 normal	 stress	 developed	 in	 the	 middle	 core	 is	 very	 small	
compared	to	that	in	top	and	bottom	face	sheets.	This	is	in	fact	due	to	core	material	is	soft	compared	to	material	of	
face	sheets.	The	transverse	shear	stress	 is	obtained	using	equations	of	equilibrium	of	 the	theory	of	elasticity	 to	
ascertain	the	stress	continuity	at	the	layer	interface.	Variation	of	transverse	displacement	with	respect	to	a/h	ratios	
is	plotted	in	Figure	14.	

	
Table	1.	Comparison	of	In‐Plane	Displacement,	Transverse	Displacement,	In‐Plane	Normal	Stress	and	Transverse	Shear	

Stress	for	Aluminum	Alloy	Plate	Subjected	to	Sinusoidal	Load	under	Cylindrical	Bending	

a/h	 Theory	 maxu maxw max
x max

xz 	

4	 FOSNDT	 11.165800 12.8280 10.0468 1.8964	
HSDT	 11.398300 13.0150 10.0233 1.8953	
FSDT	 11.061100 13.0194 9.72680 1.9099	
CPT	 11.061100 11.0577 9.72680 1.9099	

10	 FOSNDT	 173.23530 11.3061 61.2064 4.7708	
HSDT	 173.67450 11.3253 61.0897 4.7688	
FSDT	 172.82960 11.3253 60.7928 4.7746	
CPT	 172.83010 11.0577 60.7927 4.7746	

100	 FOSNDT	 173010.00 11.0169 6091.10 47.763	
HSDT	 172858.81 11.0072 6080.28 47.751	
FSDT	 172793.18 11.0036 6079.82 47.736	
CPT	 172830.12 11.0577 6079.27 47.746	

FOSNDT:	Present,	HSDT:	Reddy	ሺ1984ሻ,	FSDT:	Mindlin	ሺ1951ሻ,	CPT:	Kirchhoff	ሺ1850ሻ	
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Table	2.	Comparison	of	In‐Plane	Displacement,	Transverse	Displacement,	In‐Plane	Normal	Stress	and	Transverse	Shear	
Stress	for	Two‐Layer	ሺ00/900ሻ	Antisymmetric	Laminated	Composite	Plate	Subjected	to	Sinusoidal	Load	under	

Cylindrical	Bending.	
a/h	 εz	 Model maxu 	 %

Error
maxw %

Error
m ax
x %

Error
max
xz 	 %

Error
4	 ്0	 FOSNDT 1.6721	 ‐

7.877
4.5159 ‐4.351 333.231 ‐10.663	 2.9531	 ‐9.3740

	 ്0	 SSNPT 1.7155	 ‐
10.67

4.3904 ‐1.451 333.855 ‐12.740	 2.9900	 ‐10.740

	 0	 HSDT 1.7071	 10.13 4.4444 ‐2.698 333.606 ‐10.829	 2.9770	 ‐10.259
	 0	 FSDT 1.4176	 8.541 4.7900 ‐10.68 227.905 7.0731	 2.9468	 ‐9.1400
	 0	 CPT 1.4176	 8.541 2.6188 39.48 227.905 7.0731	 2.9468	 ‐9.1400
	 ്0	 Elasticity	 1.5500	 0.000 4.3276 0.000 330.029 0.000 2.7000	 0.0000
10	 ്0	 FOSNDT 22.326	 4.680 2.8766 2.715 1176.72 ‐0.982	 7.2910	 0.1232
	 ്0	 SSNPT 22.892	 2.267 2.9066 1.701 1180.66 ‐3.234	 7.3879	 ‐1.204
	 0	 HSDT 22.886	 2.292 2.9159 1.386 1180.20 ‐2.971	 7.3780	 ‐1.068
	 0	 FSDT 22.150	 5.434 2.9662 ‐0.31 1174.40 0.342 7.3670	 ‐0.917
	 0	 CPT 22.150	 5.434 2.6188 11.43 1174.40 0.342 7.3670	 ‐0.917
	 ്0	 Elasticity	 23.423	 0.000 2.9569 0.000 1175.00 0.000 7.3000	 0.0000

FOSNDT:	Present,	SSNPT:	Sayyad	and	Ghugal	ሺ2016ሻ,	HSDT:	Reddy	ሺ1984ሻ,	FSDT:	Mindlin	ሺ1951ሻ,	CPT:	Kirchhoff	ሺ1850ሻ,	Elasticity:	Pagano	ሺ1969ሻ	

	

Table	3.	Comparison	of	In‐Plane	Displacement,	Transverse	Displacement,	In‐Plane	Normal	Stress	and	Transverse	Shear	
Stress	for	Three‐Layer	ሺ00/900/00ሻ	Symmetric	Laminated	Composite	Plate	Subjected	to	Sinusoidal	Load	under	

Cylindrical	Bending	
a/h	 εz	 Model	 maxu 	 %	Error maxw %

Error
max
x %	

Error	
max
xz %

Error
4	 ്0	 FOSNDT	 0.9544	 ‐0.463 2.7794 3.727 19.013 ‐5.92	 1.5241 ‐6.580
	 ്0	 SSNPT	 0.8885	 6.473 2.7342 5.292 17.575 2.087	 1.5278 ‐6.839
	 0	 HSDT	 0.8640	 9.052 2.6985 6.529 17.006 5.259	 1.5565 ‐8.840
	 0	 FSDT	 0.5124	 46.06 2.4094 16.54 10.085 43.81	 1.7690 ‐23.70
	 0	 CPT	 0.5124	 46.06 0.5097 82.34 10.085 43.81	 1.7690 ‐23.70
	 ്0	 Elasticity	 0.9500	 0.000 2.8870 0.000 17.950 0.000	 1.4300 0.0000
10	 ്0	 FOSNDT	 9.3314	 ‐1.593 0.8990 ‐1.011 73.633 ‐2.983	 4.2510 0.0235
	 ്	 SSNPT	 8.9765	 2.270 0.8802 1.101 70.856 0.900	 4.3214 ‐1.680
	 0	 HSDT	 8.9197	 2.888 0.8738 1.820 70.230 1.775	 4.3342 ‐1.981
	 0	 FSDT	 8.0057	 12.83 0.8136 8.584 63.033 11.84	 4.4226 ‐4.061
	 0	 CPT	 8.0057	 12.83 0.5097 42.73 63.033 11.84	 4.4226 ‐4.061
	 ്0	 Elasticity	 9.1850	 0.000 0.8900 0.000 71.500 0.000	 4.2500 0.000

FOSNDT:	Present,	SSNPT:	Sayyad	and	Ghugal	ሺ2016ሻ,	HSDT:	Reddy	ሺ1984ሻ,	FSDT:	Mindlin	ሺ1951ሻ,	CPT:	Kirchhoff	ሺ1850ሻ,	Elasticity:	Pagano	ሺ1969ሻ	

	

Table	4.	Comparison	of	In‐Plane	Displacement,	Transverse	Displacement,	In‐Plane	Normal	Stress	and	Transverse	Shear	
Stress	for	Three‐Layer	ሺ00/Core/900ሻ	Symmetric	Laminated	Composite	Plate	Subjected	to	Sinusoidal	Load	under	

Cylindrical	Bending	
a/h	 εz Model	 maxu maxw max

x max
xz 	

4	 ്0	 FOSNDT	 1.9096 8.6150 28.8295 1.4005	
	 ്0	 SSNPT	 1.8901 8.4532 28.9670 1.3841	
	 0	 HSDT	 1.9081 8.5369 28.6061 1.3855	
	 0	 FSDT	 1.3295 5.4694 19.9320 1.4089	
	 0	 CPT	 1.3295 1.3225 19.9320 1.4089	
10	 ്0	 FOSNDT	 22.203 2.4914 133.100 3.5242	
	 ്0	 SSNPT	 22.092 2.4739 133.754 3.5122	
	 0	 HSDT	 22.235 2.4889 133.340 3.5128	
	 0	 FSDT	 20.773 1.9860 124.575 3.5223	
	 0	 CPT	 20.773 1.3225 124.575 3.5223	

100	 ്0	 FOSNDT	 20781.0 1.3337 12433.0 35.285	
	 ്0	 SSNPT	 20680.2 1.3272 12477.5 35.220	
	 0	 HSDT	 20.788.4 1.3342 12466.4 35.222	
	 0	 FSDT	 20773.2 1.3291 12457.3 35.221	
	 0	 CPT	 20773.2 1.3225 12457.3 35.221	

FOSNDT:	Present,	SSNPT:	Sayyad	and	Ghugal	ሺ2016ሻ,	HSDT:	Reddy	ሺ1984ሻ,	FSDT:	Mindlin	ሺ1951ሻ,	CPT:	Kirchhoff	ሺ1850ሻ	
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Figure	3:	Through	thickness	variation	of	in‐plane	displacement	ሺu ሻ	at	ሺxൌ0,	zሻ	for	two‐layer	ሺ00/900ሻ	antisymmetric	

laminated	composite	plate	subjected	to	sinusoidal	load.	ሺa/hൌ4ሻ	

	
Figure	4:	Through	thickness	variation	of	in‐plane	normal	stress	ሺ x ሻ	at	ሺxൌa/2,	zሻ	for	two‐layer	ሺ00/900ሻ	

antisymmetric	laminated	composite	plate	subjected	to	sinusoidal	load	ሺa/hൌ4ሻ	

	
Figure	5:	Through	thickness	variation	of	transverse	shear	stress	ሺ xz ሻ	at	ሺxൌ0,	zሻ	for	two‐layer	ሺ00/900ሻ	antisymmetric	

laminated	composite	plate	subjected	to	sinusoidal	load	ሺa/hൌ4ሻ	
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Figure	6:	Variation	of	transverse	displacement	ሺw ሻ	with	respect	to	aspect	ratio	for	two‐layer	ሺ00/900ሻ	antisymmetric	

laminated	composite	plate	subjected	to	sinusoidal	load.	

	
Figure	7:	Through	thickness	variation	of	in‐plane	displacement	ሺu ሻ	at	ሺxൌ0,	zሻ	for	three‐layer	ሺ00/900/00ሻ	symmetric	

laminated	composite	plate	subjected	to	sinusoidal	load.	ሺa/hൌ4ሻ	

	
Figure	8:	Through	thickness	variation	of	in‐plane	normal	stress	ሺ x ሻ	at	ሺxൌa/2,	zሻ	for	three‐layer	ሺ00/900/00ሻ	

symmetric	laminated	composite	plate	subjected	to	sinusoidal	load	ሺa/hൌ4ሻ	
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Figure	9:	Through	thickness	variation	of	transverse	shear	stress	ሺ xz ሻ	at	ሺxൌ0,	zሻ	for	three‐layer	ሺ00/900/00ሻ	symmetric	

laminated	composite	plate	subjected	to	sinusoidal	load.	ሺa/hൌ4ሻ	

	

	
Figure	10:	Variation	of	transverse	displacement	ሺw ሻ	with	respect	to	aspect	ratio	for	three‐layer	ሺ00/900/00ሻ	symmetric	

laminated	composite	plate	subjected	to	sinusoidal	load	

	

	
Figure	11:	Through	thickness	variation	of	in‐plane	displacement	ሺu ሻ	at	ሺxൌ0,	zሻ	for	three‐layer	ሺ00/core/00ሻ	

symmetric	sandwich	plate	subjected	to	sinusoidal	load.	ሺa/hൌ4ሻ	
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Figure	12:	Through	thickness	variation	of	in‐plane	normal	stress	ሺ x ሻ	at	ሺxൌa/2,	zሻ	for	three‐	layer	ሺ00/core/00ሻ	

symmetric	sandwich	plate	subjected	to	sinusoidal	load.	ሺa/hൌ4ሻ	

	

	
Figure	13:	Through	thickness	variation	of	transverse	shear	stress	ሺ xz ሻ	at	ሺxൌ0,	zሻ	for	three‐layer	ሺ00/core/00ሻ	

symmetric	sandwich	plate	subjected	to	sinusoidal	load.	ሺa/hൌ4ሻ	

	

	
Figure	14:	Variation	of	transverse	displacement	ሺw ሻ	with	respect	to	aspect	ratio	for	three‐layer	ሺ00/core/900ሻ	

symmetric	sandwich	plate	subjected	to	sinusoidal	load.	
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4.0	CONCLUSIONS	

A	new	fifth‐order	shear	and	normal	deformation	theory	for	the	cylindrical	bending	of	 laminated	composite	
and	sandwich	plates	have	been	developed	in	this	paper.	To	account	for	the	effect	of	transverse	shear	deformation,	
in‐plane	 displacement	 uses	 polynomial	 shape	 function	 expanded	 up	 to	 fifth‐order	 in‐terms	 of	 the	 thickness	
coordinate.	 The	 present	 theory	 involves	 six‐degrees‐of‐freedom.	 The	 theory	 satisfies	 traction	 free	 boundary	
conditions	at	top	and	bottom	surfaces	of	the	plate	and	does	not	required	the	shear	correction	factor.	For	simplicity,	
this	theory	is	applied	for	the	analysis	of	laminated	composite	and	sandwich	plates	deformed	in	cylindrical	bending.	
Non‐dimensional	displacements	and	stresses	obtained	using	the	present	theory	are	compared	with	existing	exact	
elasticity	solutions	and	lower	and	higher‐order	theories.	From	the	comparison	of	numerical	results,	it	is	concluded	
that	 the	 present	 theory	 is	 in	 good	 agreement	with	 exact	 elasticity	 solution	 of	 Pagano	 and	 shows	 considerable	
improvement	 in	 the	numerical	results	obtained	by	using	higher‐order	shear	deformation	 theory	of	Reddy.	This	
validate	that	the	effect	of	transverse	shear	and	normal	deformations	both	plays	important	role	in	the	analysis	of	
laminated	composite	structures.	
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