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Abstract 
A new fifth-order shear and normal deformation theory (FOSNDT) 
is developed for the static bending and elastic buckling analysis of 
functionally graded beams. The properties of functionally graded 
material are assumed to vary through the thickness direction 
according to power-law distribution (P-FGM). The most important 
feature of the present theory is that it includes the effects of 
transverse shear and normal deformations. Axial and transverse 
displacements involve polynomial shape functions to include the 
effects of transverse shear and normal deformations. A polynomial 
shape function expanded up to fifth-order in terms of the thickness 
coordinate is used to account for the effects of transverse shear and 
normal deformations. The kinematics of the present theory is based 
on six independent field variables. The theory satisfies the traction 
free boundary conditions at top and bottom surfaces of the beam 
without using problem dependent shear correction factor. The 
closed-form solutions of simply supported FG beams are obtained 
using Navier’s solution procedure and non-dimensional results are 
compared with those obtained by using classical beam theory, first 
order shear deformation theory and other higher order shear 
deformation theories. It is concluded that the present theory is 
accurate and efficient in predicting the bending and buckling 
responses of functionally graded beams. 
 
Keywords 
Functionally graded beam, transverse shear deformation, transverse 
normal deformation, bending, buckling. 

 
 
A New Fifth-Order Shear and Normal Deformation Theory  
for Static Bending and Elastic Buckling of P-FGM Beams 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 INTRODUCTION 

Today great emphasis is being placed on developing new materials or material systems tailored for 
specific applications. Currently the main focus of the researcher is to develop new composite 
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materials due to enormous benefits like improvements in material performance, ability to support 
optimized structural designs, continued lowering of manufacturing costs, and the ability to perform 
reliably in service. The traditional composite material is incapable to employ under the high-
temperature environments and may fail due to delamination or stress concentration. A functionally 
graded material (FGM) is a novel class of material having unique characteristics and can be used 
alternatively to overcome the delamination failure that usually occurs in laminated composites. 
FGM have received major attention as a heat-shielding advanced structural material in various 
engineering applications like automobile, aircraft, aerospace projects and defense 
industry.Functionally graded materials (FGMs) are those in which the volume fraction of two or 
more materials is varied continuously as a function of position along certain directions of the 
structure (normally in thickness direction). The FG materials are generally ceramic and metal 
constituents. The ceramic constituent provides high-temperature resistance due to its low thermal 
conductivity; whereas the ductile metal constituent prevents fracture caused by stresses due to the 
high temperature gradient in a very short span of time and provides stronger mechanical 
performance. 

Functionally graded material is the first time developed in 1984 by a group of material 
scientists in Japan during a space plane project in the form of thermal barrier material which can 
withstand a huge temperature fluctuation across a very thin cross-section. Development in FG 
material and its applications can be found in the literature by Koizumi (1993, 1997), Muller et al. 
(2003) and Birman and Byrd (2006, 2007). Rasheedat et al. (2012) discussed the various processing 
techniques and interdisciplinary applications of FGM. The more information on beams and plates 
made of FGM is found in Jha et al. (2013) and Swaminathan et al. (2014). 

The well-known elasticity solution for simply supported functionally gradient beams subjected 
to sinusoidal loading was developed by Sankar (2001). Material properties are assumed to vary 
according to an exponential law. Further, few more researchers have presented research on elasticity 
solutions for functionally graded beams Zhong and Yu (2007), Daouadji et al. (2013), Chu et al. 
(2015). 2D elasticity solutions for thick functionally graded beams are analytically very difficult and 
computationally cumbersome. Therefore, several analytical and numerical methods have been 
proposed by researchers to analyze the FG beams accurately using approximate lower and higher 
order shear deformation theories. 

The classical beam theory (CBT) developed by Bernoulli- Euler is the simplest beam theory for 
the analysis of thin beams. But, since the shear deformation effect is neglected in this theory, it is 
not suitable for the analysis of thick FG beams. When the FG beam is thick,   the classical beam 
theory underestimates displacements and stresses. In 1921, Timoshenko has developed a theory in 
which the first order variation of axial displacement is assumed. Therefore, it is called as the first 
order shear deformation theory (FSDT) or Timoshenko beam theory (TBT). The FSDT does not 
satisfy the zero transverse shear stress conditions on the top and bottom surfaces of the beam. This 
theory also required a shear correction factor to properly account the strain energy due to shear 
deformation effect. Therefore, to predict the accurate bending response of thick FG beams, higher-
order shear deformation theories have been proposed by many researchers. The detailed review of 
these theories along with their displacement model is recently presented by Sayyad and Ghugal 
(2015,2017a).  
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Reddy (1984) developed well known third order parabolic shear deformation theory for the 
analysis of composite beams, plates and shells. Benatta et al. (2008) presented a static analysis of 
functionally graded shear deformable beams considering three point bending. Li et al. (2010) 
developed the higher order shear deformation theory for bending of functionally graded beams and 
proved that the displacements and stresses are depend on the gradient variation of material 
properties. Pendhari et al. (2010) developed a simple mixed semi analytical model for 2D stress 
analysis of functionally graded beams subjected to transverse load and compared the results with 
those obtained by using Navier’s closed form solution.  Giunta et al. (2010, 2011) proposed several 
higher order refined theories based on the Carrera’s unified formulation for the analysis of 
functionally graded beams. Thai and Vo (2012) studied static bending and free vibration of 
functionally graded beams based on various higher-order shear deformation beam theories and 
Navier’s solution technique.Li and Batra (2013) applied CBT and FSDT for the buckling analysis of 
functionally graded beams of various boundary conditions. Nguyen et al. (2013) presented bending 
and free vibration of functionally graded beams using FSDT. Vo et al. (2014) presented static and 
free vibration analysis of functionally graded beams using refined shear deformation theory. 
Bourada et al. (2015) developed a new trigonometric shear and normal deformation theory for 
bending and free vibration of functionally graded beams. Simsek (2016) presented buckling of bi-
directional functionally graded Timoshenko beams with different boundary conditions using Ritz 
method. Recently, Sayyad and Ghugal (2017b) developed a unified shear deformation theory for 
bending of functionally graded plates and beams and obtained closed form solutions using Navier’s 
solution technique.  

In the present study, a fifth-order shear and normal deformation theory is developed for the 
bending and buckling analysis of functionally graded beams subjected to transverse and axial 
loadings. The most important feature of the present theory is that it includes for the effects of 
transverse shear and normal deformations. A polynomial shape function expanded up to fifth-order 
in terms of the thickness coordinate is used to account the effects of transverse shear and normal 
deformations. The kinematics of the present theory are based on six independent field variables. 
The theory satisfies the traction free boundary conditions at top and bottom surfaces of the beam 
without using problem dependent shear correction factor. The closed-form solutions of simply 
supported FG beams are obtained using Navier’s solution procedure and non-dimensional results 
are compared with those obtained by using classical beam theory, first order shear deformation 
theory and other higher order shear deformation theories.  
 
2 FORMULATION OF THE PRESENT THEORY 

A simply supported FG beam as shown in Fig.1 is considered for the variational formulation and 
analytical solution. The beam has the length L in x-direction and the overall thickness h in z-
direction. The width of the beam in y-direction is considered as a unity. The origin is assumed at 
the left end of the beam. The top surface of the beam is made of metal and the bottom surface is 
made of ceramic. 
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Figure 1: Geometry and coordinates of P-FGM beam under consideration 

 
2.1 Novelty of the Present Theory 

The transverse shear and normal deformations play an important role in predicting the accurate 
structural behaviour of beams and plates made of advanced composite materials. Therefore, any 
refinements of classical beam theories are generally meaningless, unless the effects of transverse 
shear and normal strains are both taken into account. This is also discussed by Carrera (2005) and 
Carrera et al. (2011). In the view of this, the present theory is having following important features. 

1) The most important feature of the present theory is that it includes the effects of transverse 
shear and normal deformations.  

2) The axial displacement in the x direction consists of extension, bending and shear 
components. The axial displacement is expressed in terms of polynomial shape function 
expanded up to the fifth-order in terms of the thickness coordinate.  

3) The transverse displacement is a function of both x and z coordinates. Hence the theory is 
designated as the fifth-order shear and normal deformation theory.  

4) The theory contains six independent unknown variables.  
5) The theory enforces the parabolic variation of the transverse shear stress across the thickness 

of the beam. Thus, the theory obviates the need for the shear correction factor. 
 
2.2 Kinematics 

Based on the above features, the displacement field of the present theory is as follows: 
 

       

       

2 4
0

0 2 4

2 4

0 2 4

4 16, 1 1
3 5

, 1 4 1 16

x x

z z

dw z zu x z u x z z x z x
dx h h

z zw x z w x x x
h h

 

 

   
        

   

   
       

   

 (1)

 

whereu and w are the axial and transverse displacements of any point of the beam; 0u and w0 are 

the x-directional and z-directional displacements of a point on the mid-axis of the beam. The 
present form of transverse displacement gives bending and shear components separately to 
understand the effect of transverse normal deformations. x and x  are the shear slopes associated 



S.M. Ghumare and A.S. Sayyad / A New Fifth-Order Shear and Normal Deformation Theory for Static Bending and Elastic Buckling…     1897 

Latin American Journal of Solids and Structures 14 (2017) 1893-1911 

with the transverse shear deformation whereas z  and z  are the shear slopes associated with the 

transverse normal deformations.  Third order and fifth-order polynomial functions are assigned 
according to the shearing stress distribution through the thickness of the beam in such a way that 
shear stress vanishes at top and bottom surfaces of the beam. 

The nonzero strain components associated with the present theory are obtained using linear 
theory of elasticity. 
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2.3 Material Gradation and Constitutive Relation 

The properties of functionally graded materials vary continuously due to gradually change in the 
volume fraction of the constituent materials. In the present study, the material properties of FG 
beam are assumed to vary continuously through the thickness of the beam according to a power law 
distribution. 
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Where E is the Young’s modulus. Subscripts c and m represent the ceramic and metallic 
constituents respectively. P is the power law index, which governs the volume fraction gradation. 
The variation of volume fraction through the thickness of a beam is shown in Fig. 2. The value of P 
is equal to zero represents a fully ceramic phase, whereas infinite P indicates a fully metallic phase. 
Through thickness distribution of Young’s modulus is linear for P=1 and non-linear for P=2, 5 and 
10.  The poisons ratio is assumed to be constant since the effect of variation of poisons ratio (μሻ on 
the bending response of FG beam is very small. 
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Figure 2: Variation of Young’s modulus through the thickness of a  

P-FGM beam for various values of the power law index. 

 
The linear constitutive relations at a point of the functionally graded beam can be written as 

 

   
   

 

11 13

13 33

55

0
0

0 0

x x

z z

xz xz

Q z Q z

Q z Q z

Q z

 
 
 

    
        

    
    

 (5)

 

Where 
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2.4 Governing Differential Equations 

The six variationally consistent governing differential equations of the present theory are obtained 
using the principle of virtual displacements.  
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where the symbol denotes the variational operator. Substituting strains from Eq. (2) into the Eq. 
(7) one can write 
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where xN is the resultant axial force, b
XM is the resultant moment due to bending, 1S

XM and 2S
XM are 

the resultant moment due to shear deformation and 1
xzQ , 2

xzQ , 1 2,S S
z zQ Q are the resultant shear 

forces. Integrating Eq. (8) by parts and setting the coefficients of 0 0 x x z zu , w , , , ,      equals 

to zero, the following governing differential equations are obtained 
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The boundary conditions obtained at 0x   and x L are of the following form 
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Substitution of stress resultants from Eq. (9) into Eq. (10) leads to the following form of 
governing differential equations in-terms of unknown displacement variables. 
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2.5 Analytical Solutions 

A functionally graded beam simply supported at its edges 0x  and x L  is considered for the 
analytical solutions. Analytical solution for the bending analysis of simply supported functionally 
graded beams is obtained using Navier’s solution technique. According to Navier’s technique, the 
displacement variables are expanded into a single trigonometric series. 
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where , , , , ,m m xm xm zm zmu w     are unknown coefficients and /m L  . The transverse load q(x) 

acting on the top surface of the beam is also expanded in a single trigonometric series. 
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Where 
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Substituting the trigonometric form of 0 0, , , , ,x x z zu w      and ( )q x from Eqs. (25)-(27) into 

governing equations (18)-(23), the analytical solutions can be obtained from the following  equation.  
 

    K f   (28)
 

where [K] is the stiffness matrix,  f is the force vector and   is the vector of unknowns 

coefficients. The elements of the    ,K  and  f  are as follows, 
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3 NUMERICAL RESULTS AND DISCUSSION 

In the section static bending and elastic buckling problems are presented and discussed to verify the 
accuracy of the present theory. For numerical results, the P-FGM beam made of metal (Aluminum: 
Em= 70 GPa and μm= 0.3) and ceramic (Alumina: Ec= 380GPa, μc= 0.3) is considered. The 
material properties of P-FGM beam varying continuously in the thickness direction according to the 
power-law distribution. Displacements and stresses are presented in the following non-dimensional 
form 
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3.1 Bending of P-FGM Beam 

Table 1 shows non-dimensional bending ( bw ) and shear components ( sw ) of transverse 

displacement (w ) for FG beams subjected to a sinusoidal load. The numerical results are obtained 
for various values of the power law index and aspect ratios. From Table 1 it reveals that shear 
component of transverse displacement is decreases with increase in aspect ratio. This is in fact due 
to, shear deformation is more pronounced in thick beams than the slender beams. Also, the 
transverse displacement is increases with an increase in power law index which is due to decrease in 
stiffness of the beam.  

Table 2 shows a comparison of maximum non-dimensional displacements and stresses of FG 
beam subjected to a sinusoidal load for various values of the power law index (P) and (L/h) ratio 5.  
Present results are compared with the parabolic shear deformation theory of Reddy (1984), a 
unified shear deformation theory of Sayyad and Ghugal (2017b), first order shear deformation of 
Timoshenko (1921) and classical beam theory of Bernoulli-Euler. The axial and transverse 
displacements obtained by using the present theory are in close agreement with those obtained by 
using other refined theories. It is observed that displacements are increased with an increase in 
power law index. The displacements are maximum when p = ∞ (fully metal beam) and minimum 
when p = 0 (fully ceramic beam). This is due to the fact that an increase in the power law index 
increases the flexibility of FG beam. Classical beam theory underestimates the displacements 
compared to first order and higher order theories due to neglect of transverse shear deformation 
effect. Figure 3 shows through the thickness distribution of axial stress, whereas variation of 
transverse displacement for various aspect ratios is plotted in Figure 4. The variation of axial stress 
through the thickness of the beam is plotted in Figure 5, which reveals that the axial stress is 
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compressive in nature when the beam is of fully metal and tensile when it is of fully ceramic. The 
variation of axial stress is non-linear through the thickness for P = 1, 5, 10 and linear for P = 0 and 
∞. It is also pointed out that the axial stresses in metal and ceramic beams are identical. The Fig. 6 
shows through the thickness distribution of transverse shear stress, which is zero at top and bottom 
surfaces, but not maximum at the center of the cross-section due to continuous variation of material 
properties through the thickness of the beam. 
 

L/h P bw  sw  b sw w w   

5 0(Ceramic) 2.4590 0.0289 2.4879 
 1 4.7964 0.0488 4.8452 
 2 6.1203 0.0377 6.1580 
 5 7.5004 0.0448 7.5452 
 10 8.4273 0.0830 8.5103 
  (Metal) 13.310 0.1568 13.467 

10 0 (Ceramic) 2.3171 0.0810 2.3981 
 1 4.5640 0.0137 4.5777 
 2 5.7659 0.0103 5.7762 
 5 6.8961 0.0120 6.9082 
 10 7.7207 0.0241 7.7448 
  (Metal) 12.578 0.0441 12.622 

100 0 (Ceramic) 2.2712 0.0008 2.2719 
 1 4.4888 0.0016 4.4904 
 2 5.6497 0.0010 5.6507 
 5 6.6969 0.0016 6.6985 
 10 7.4900 0.0018 7.4918 
  (Metal) 12.329 0.0004 12.329 

Table 1: Non–dimensional bending and shear components of transverse  
displacement of P-FGM beams subjected to sinusoidal load. 
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Figure 3: Through thickness variation of non-dimensional axial displacement (u ) of  

simply supported P-FGM beam subjected to sinusoidal load (L/h=5). 
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P Theory Model 
u  

(-h/2)

w  
(0) 

 x  
(h/2) 

xz  
(0) 

0 (Ceramic) Present ( 0)z   FOSNDT 0.7202 2.4808 3.0999 0.5474 

 Reddy (1984) ( 0z  ) PSDT 0.7251 2.5020 3.0916 0.4769 

 Sayyad and Ghugal (2017b) ( 0)z   TSDT 0.7259 2.5016 3.0949 0.4920 

 Sayyad and Ghugal (2017b) ( 0)z   HSDT 0.7247 2.5003 3.0899 0.4739 

 Sayyad and Ghugal (2017b) ( 0)z   ESDT 0.7280 2.4974 3.1039 0.4871 

 Timoshenko (1921) ( 0)z   FSDT 0.7129 2.5023 3.0396 0.3183 

 Bernoulli-Euler ( 0)z   CBT 0.7129 2.2693 3.0396 --- 

1 Present ( 0)z   FOSNDT 1.7131 4.8452 4.7667 0.5225 

 Reddy [1984] ( 0z  ) PSDT 1.7793 4.9458 4.7856 0.5243 

 Sayyad and Ghugal (2017b) ( 0)z   TSDT 1.7806 4.9451 4.7912 0.5331 

 Sayyad and Ghugal (2017b) ( 0)z   HSDT 1.7517 4.9257 4.7165 0.6025 

 Sayyad and Ghugal (2017b) ( 0)z   ESDT 1.7819 4.9432 4.7964 0.5430 

 Timoshenko (1921) ( 0)z   FSDT 1.7588 4.8807 4.6979 0.5376 

 Bernoulli-Euler ( 0)z   CBT 1.7588 4.5528 4.6979 --- 

5 Present ( 0)z   Present 2.7339 7.5452 6.3352 0.5026 

 Reddy (1984) ( 0z  ) PSDT 2.8644 7.7723 6.6057 0.5314 

 Sayyad and Ghugal (2017b) ( 0)z   TSDT 2.8671 7.7792 6.6172 0.5144 

 Sayyad and Ghugal (2017b) ( 0)z   HSDT 2.8641 7.7715 6.6047 0.5332 

 Sayyad and Ghugal (2017b) ( 0)z   ESDT 2.8697 7.7830 6.6281 0.5022 

 Timoshenko (1921) ( 0)z   FSDT 2.8250 7.5056 6.4382 0.9942 

 Bernoulli-Euler ( 0)z   CBT 2.8250 6.8994 6.4382 --- 

10 Present ( 0)z   FOSNDT 2.8969 8.5103 7.8979 0.4431 

 Reddy (1984) ( 0z  ) PSDT 2.9989 8.6530 7.9080 0.4226 

 Sayyad and Ghugal (2017b) ( 0)z   TSDT 3.0022 8.6561 7.9195 0.4392 

 Sayyad and Ghugal (2017b) ( 0)z   HSDT 2.9986 8.6527 7.9070 0.4211 

 Sayyad and Ghugal (2017b) ( 0)z   ESDT 3.0054 8.6547 7.9301 0.4558 

 Timoshenko (1921) ( 0)z   FSDT 2.9488 8.3259 7.7189 1.2320 

 Bernoulli-Euler ( 0)z   CBT 2.9488 7.5746 7.7189 --- 

 (Metal) Present ( 0)z   FOSNDT 3.9097 13.505 3.0999 0.5474 

 Reddy (1984) ( 0)z   PSDT 3.9363 13.582 3.0916 0.4769 

 Sayyad and Ghugal (2017b) ( 0)z   ESDT 3.9444 13.574 3.0980 0.5072 

 Timoshenko (1921) ( 0)z   FSDT 3.8702 12.552 3.0396 0.3183 

 Bernoulli-Euler ( 0)z   CBT 3.8702 12.319 3.0396 ---- 

Table 2: Comparison of axial displacement u  at (x = 0), transverse deflection w  at (x = L/2), normal stress  x  
at (x = L/2) and transverse shear stress xz  at (x = 0) in P-FGM beams (L = 5h) subjected to sinusoidal load. 
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Figure 4: Variation of non-dimensional transverse displacement (w ) of simply  

supported P-FGM beam subjected to sinusoidal load using various aspect ratios. 
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Figure 5: Through thickness variation of non-dimensional bending stress ( x ) of  

simply supported P-FGM beam subjected to sinusoidal load (L/h=5). 
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Figure 6: Through thickness variation of non-dimensional transverse shear stress ( xz ) of  

simply supported functionally graded beam subjected to sinusoidal load (L/h=5). 
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Comparison of maximum non-dimensional displacements and stresses of FG beam subjected to 
a uniformly distributed load for various values of the power law index is presented in Table 3.  The 
present results are compared with those obtained by using other higher order theories. It is 
observed that displacements and stresses are increased with an increase in power law index. This is 
due to the fact that an increase of the power law index increases the flexibility of FG beam. 
Displacements and stresses predicted by using the present theory are in excellent agreement with 
those obtained by using other higher order beam theories. Through thickness distributions of axial 
displacement, bending stress and transverse shear stress are plotted in Figures 7, 9 and 10 
respectively, whereas variation of transverse displacement with respect to L/h ratio is shown in Fig. 
8. 
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Figure 7: Through thickness variation of non-dimensional axial displacement (u ) of  

simply supported P-FGM beam subjected to uniformly distributed load (L/h=5). 
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Figure 8: Variation of non-dimensional transverse displacement (w ) of simply  

P-FGM beam subjected to uniformly distributed load using various aspect ratios. 
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P Theory Model 
u  

(-h/2)

w  
(0) 

 x  

(h/2) 
xz  

(0) 

0 (Ceramic) Present ( 0)z   FOSNDT 0.9260 3.1395 3.7931 0.7325 

 Reddy (1984) ( 0z  ) PSDT 0.9397 3.1654 3.8028 0.7305 

 Sayyad and Ghugal (2017b) ( 0)z   TSDT 0.9409 3.1649 3.8061 0.7524 

 Sayyad and Ghugal (2017b) ( 0)z   HSDT 0.9391 3.1633 3.8010 0.7246 

 Sayyad and Ghugal (2017b) ( 0)z   ESDT 0.9441 3.1598 3.8152 0.7438 

 Timoshenko (1921) ( 0)z   FSDT 0.9210 3.1657 3.7501 0.4922 

 Bernoulli-Euler ( 0)z   CBT 0.9210 2.8783 3.7501 ---- 

1 Present ( 0)z   FOSNDT 2.2161 6.1335 5.8674 0.8024 

 Reddy (1984) ( 0z  ) PSDT 2.3037 6.2594 5.8850 0.8031 

 Sayyad and Ghugal (2017b) ( 0)z   TSDT 2.3036 6.2586 5.8906 0.8152 

 Sayyad and Ghugal (2017b) ( 0)z   HSDT 2.2618 6.2361 5.8150 0.8811 

 Sayyad and Ghugal (2017b) ( 0)z   ESDT 2.3074 6.2563 5.8958 0.8288 

 Timoshenko (1921) ( 0)z   FSDT 2.2722 6.1790 5.7960 0.8313 

 Bernoulli-Euler ( 0)z   CBT 2.2722 5.7746 5.7960 ---- 

5 Present ( 0)z   Present 3.5388 9.5411 7.7638 0.7709 

 Reddy (1984) ( 0z  ) PSDT 3.7098 9.8281 8.1127 0.8114 

 Sayyad and Ghugal (2017b) ( 0)z   TSDT 3.7138 9.8367 8.1242 0.7836 

 Sayyad and Ghugal (2017b) ( 0)z   HSDT 3.7095 9.8271 8.1117 0.8144 

 Sayyad and Ghugal (2017b) ( 0)z   ESDT 3.7176 9.8414 8.1351 0.7633 

 Timoshenko (1921) ( 0)z   FSDT 3.6496 9.4987 7.9430 1.5373 

 Bernoulli-Euler ( 0)z   CBT 3.6496 8.7508 7.9430 ---- 

10 Present ( 0)z   FOSNDT 3.7514 10.760 9.7170 0.6596 

 Reddy (1984) ( 0z  ) PSDT 3.8861 10.938 9.7146 0.6451 

 Sayyad and Ghugal (2017b) ( 0)z   TSDT 3.8910 10.942 9.7261 0.6691 

 Sayyad and Ghugal (2017b) ( 0)z   HSDT 3.8857 10.937 9.7137 0.6432 

 Sayyad and Ghugal (2017b) ( 0)z   ESDT 3.8956 10.940 9.7367 0.6929 

 Timoshenko (1921) ( 0)z   FSDT 3.8096 10.534 9.5231 1.9050 

 Bernoulli-Euler ( 0)z   CBT 1.8096 9.6072 9.5231 ---- 

 (Metal) Present ( 0)z   FOSNDT 5.0210 17.110 3.7984 0.8232 

 Reddy (1984) ( 0)z   PSDT 5.1012 17.183 3.8028 0.7305 

 Sayyad and Ghugal (2017b) ( 0)z   ESDT 5.1133 17.173 3.8084 0.7741 

 Timoshenko (1921) ( 0)z   FSDT 5.0000 15.912 3.7501 0.4922 

 Bernoulli-Euler ( 0)z   CBT 5.0000 15.625 3.7501 --- 

Table 3: Comparison of axial displacement u  at (x = 0), transverse deflection w  at (x = L/2), normal stress  x at  

(x = L/2) and transverse shear stress xz  at (x = 0) in P-FGM beams (L = 5h) subjected to uniformly distributed load. 
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Figure 9: Through thickness variation of non-dimensional bending stress ( x ) of simply  

supported functionally graded beam subjected to uniformly distributed load (L/h=5). 
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Figure 10: Through thickness variation of non-dimensional transverse shear stress ( xz ) of simply  

supported functionally graded beam subjected to uniformly distributed load (L/h=5). 

 
3.2 Buckling of P-FGM beam  

In this section, elastic buckling response of functionally P-FGM beam is investigated using the 
present theory. Non-dimensional critical buckling load obtained using the present theory is 
compared with that of other higher order shear deformation theories and tabulated in Table 4. 
From Table 4, it is point out that the critical buckling load decreases with increase in power law 
index. This is due to the fact that an increase of the power law index decreases the stiffness of P-
FGM beam (see Figure 11). Present results are compared with those presented by Li and Batra 
(2013), Nguyen et al. (2013) and Vo et al. (2014). The examination of Table 4 reveals that the 
present results are in excellent agreement with those presented by other researchers.  
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   Power law index 
L/h Theory Model 0(Ceramic) 1 2 5 10  (Metal) 

5 Present ( 0)z   FOSNDT 49.4448 25.3494 19.8659 16.2105 14.4279 9.1082 

 Li and Batra (2013) PSDT 48.8350 24.6870 19.2450 16.0240 14.4270 ---- 
 Nguyen et al.(2013) FSDT 48.8350 24.6870 19.2450 16.0240 14.4270 ---- 
 Vo et al.(2014) HSDT 48.8372 24.6898 19.2479 16.0263 14.4286 ---- 
 Vo et al. (2014) FSDT 48.8401 24.6911 19.1605 15.7400 14.1468 ---- 

10 Present ( 0)z   FOSNDT 52.4734 26.6399 21.0870 17.6309 15.7480 9.6662 

 Li and Batra (2013) PSDT 52.3090 26.1710 20.4160 17.1920 15.6120 ---- 
 Nguyen et al.(2013) FSDT 52.3090 26.1710 20.4160 17.1940 15.6120 ---- 
 Vo et al.(2014) HSDT 52.3085 26.1728 20.4187 17.1959 15.6134 ---- 
 Vo et al (2014) FSDT 52.3082 26.1727 20.3963 17.1118 15.5291 ---- 

Table 4: Comparison of Non-dimensional critical buckling load (Fcr) o simply  
supported P-FGM beams with various values of power law index (P). 
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Figure 11: The variation of non-dimensional critical buckling load with respect  

to the power law index for simply supported P-FGM beam. 

 
4 CONCLUSIONS  

A fifth-order shear and normal deformation theory is developed in the present study for the static 
bending and elastic buckling of FG beam. The theory shows fifth-order variation of axial 
displacement and a fourth order variation of transverse displacement. The theory satisfies the 
traction free boundary conditions at top and bottom surfaces of the beam without using problem 
dependent shear correction factor. Variationally consistent governing differential equations and 
associated boundary conditions are obtained using the principle of virtual work.  Analytical 
solutions are obtained for a simply supported boundary condition using Navier’s technique. Effects 
of transverse shear and normal deformations on the bending of FG beams are investigated. From 
the numerical results and discussion following conclusions are made.  
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1) Since shear deformation is more pronounced in thick beam, shear component of transverse 
displacement decreases with increase in aspect ratio.   

2) An Increase in the power law index decreases the stiffness of the beam. Therefore, 
displacements are increased with an increase in the power law index. 

3) The variation of axial stress is non-linear through the thickness for P = 1, 5, 10 and linear for 
P = 0 and ∞. Axial stress is compressive in nature when the beam is of fully metal and 
tensile when it is of fully ceramic. 

4) The transverse shear stress is not maximum at the center of the cross-section due to 
continuous variation of material properties through the thickness of the beam. 

5) From the buckling response of the functionally graded beam, it is observed that the critical 
buckling load decreases with an increase in power law index and increases with increase in 
L/h ratio.  
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