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Abstract	
Based	 on	 transfer	 matrix	 theory	 and	 precise	 integration	 method,
precise	 integration	 transfer	matrix	method	 ሺPITMMሻ	 is	 advanced	 to	
research	free	vibration	characteristics	of	the	conical	shells.	The	influ‐
ences	 of	 the	 boundary	 conditions,	 the	 shell	 thickness	 and	 the	 semi‐
vertex	conical	angle	on	vibration	characteristics	are	discussed.	Based	
on	Flügge	thin	shell	theory	and	transfer	matrix	method,	field	transfer	
matrix	of	conical	shells	is	obtained.	According	to	the	boundary	condi‐
tions	 at	 ends	 of	 the	 conical	 shell,	 natural	 frequencies	 of	 the	 conical	
shell	are	solved	by	precise	integration	method.	The	approach	of	stud‐
ying	 free	 vibration	 characteristics	 of	 the	 conical	 shells	 is	 obtained.	
Contrast	 of	 natural	 frequencies	 from	 the	 paper	 and	 previous	 litera‐
ture,	the	method	of	the	paper	is	confirmed.	On	this	basis,	the	effects	of	
the	 boundary	 conditions,	 the	 shell	 thickness	 and	 the	 semi‐vertex	
conical	angle	on	vibration	characteristics	are	presented.	
	
Keywords	
Conical	shells,	Precise	integration,	Transfer	matrix,	Vibration;	Natural	
frequency	
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1	 INTRODUCTION	

In	the	field	of	modern	military	defense,	cylindrical	shells	and	conical	shells	are	basically	simplified	model	of	many	
weapons	and	equipment,	such	as:	aircraft,	missiles,	submarines	and	so	on.	The	studies	of	free	vibration	characteris‐
tics	of	cylindrical	shells	are	comprehensive.	Initially,	Kana	DD	ሺ1968ሻ,	Bolotin	VV	ሺ1964ሻ	and	Koutunvov	VB	ሺ1993ሻ	
investigated	cylindrical	shell	 through	classical	 thin	shell	 theories	ሺsuch	as:	Donnell	equations,	Kennard	equations,	
Flügge	equations	and	Sander‐Koiter	equationsሻ.	Harari,	Sandman	Laulagnet	and	so	on	were	representative	scholars	
in	the	field.	Initially,	Rayleigh	ሺ1945ሻ	did	pioneering	study	of	free	vibration	characteristics	of	cylindrical	shell.	Re‐
search	of	free	vibration	characteristics	of	cylindrical	shell	is	made	general	comments	in	Leissa	ሺ1973ሻ	literary	work.	
The	method	of	studying	free	vibration	characteristics	of	conical	shell	is	developing.	Free	vibration	characteristics	of	
conical	 shell	 at	 simply‐simply	 boundary	 condition	 is	 examined	 through	 Statistical	 Energy	Analysis	 by	 Crenwelge	
ሺ1969ሻ,	Talebitooti	ሺ2010ሻ	and	Li	F.	M	ሺ2009ሻ	analyze	free	vibration	characteristics	of	conical	shell	by	Rayleigh‐Ritz	
method.	kp‐Ritz	method	is	used	to	consider	conical	shell	in	Liew	paper	ሺ2005ሻ.	Guo	ሺ1994ሻ	applies	multiple	factor	
method	 to	discuss	 free	vibration	characteristics	of	 conical	 shells	Unlike	cylindrical	 shell,	 section	 radius	of	 conical	
shell	will	vary	 in	 the	axial	direction,	which	 increases	complexity	and	difficulty	 in	studying	of	 conical	 shell.	 So	 far,	
approximate	solution	of	natural	frequencies	of	conical	shell	is	merely	obtained.	The	paper	applies	a	new	method	to	
analyze	 the	 free	vibrational	characteristics	of	 the	conical	 shells,	which	 is	different	 from	the	approach	 in	previous	
literature.	The	method	is	referred	to	as	PITMM.	Based	on	Flügge	thin	shell	theory,	equations	of	motion	for	cylindrical	
and	conical	can	be	derived.	Coefficient	matrix	in	the	equations	of	motion	for	cylindrical	and	conical	is	calculated	used	
precise	integration	method.	To	absorb	matrix	assembly	thought	from	FEM,	total	transfer	matrix	of	the	conical	shell	
is	constructed.	According	to	the	boundary	conditions,	natural	frequencies	of	the	conical	shell	are	solved.	Then,	the	
paper	presents	the	contrast	of	natural	frequencies	from	the	paper	and	previous	literature,	FEM,	and	describes	the	
effects	of	the	boundary	conditions,	the	shell	thickness	and	the	semi‐vertex	conical	angle	on	free	vibrational	charac‐
teristics	of	the	conical	shell.	
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2	 EQUATIONS	OF	MOTION	

2.1	Equations	of	Motion	for	Cylindrical	Shell	

The	shell	deformation	is	expounded	by	thin	shell	theory	that	is	based	on	linear	assumptions.	To	obtain	precise	results,	
relatively	accurate	Flügge	shell	theory	is	used	in	the	paper.	The	force	balance	equation	is	obtained	by	analyzing	cylin‐
drical	shell	micro‐element	stress.	In	this	paper,	equations	are	based	on	the	kinetic	theory.	So,	many	terms	include	time	
items.	With	the	purpose	of	facilitate	the	writing	and	derivation,	dynamic	response	time	items	 i te  	is	omitted	in	writing	
hereinafter.	Cylindrical	shell	coordinates	system	ሺ ,	 ,	xሻ	and	displacement	positive	direction	are	shown	in	Figure	1.	
	

	
Figure	1:	Coordinate	system	of	cylindrical	shell.	

	
On	the	ground	of	Flügge	shell	theory	ሾ11ሿ,	force	balance	equation	of	cylindrical	shell	is	given:	
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Among	of	them,	Kevin‐Kirchhoff	membrane	forces,	shear	and	all	internal	forces	are	
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Where	 K ,	 D 	are	respectively	bending	rigidity	and	membrane	rigidity	
3
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The	relationship	of	radial	displacement	and	slope	is	
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There	are	sixteen	unknown	quantities	in	above	equations.	To	eliminate	eight	unknown	quantities	 N ,	 xN  ,	 xN ,	
M ,	 xM  ,	 xM  ,	 xQ ,	Q 	eight	 unknown	 quantities	 u ,	 v ,	 w ,	 ,	 xN ,	 xM ,	 xV ,	 xS 	are	 retained,	 which	 is	 sectional	
state	vector	elements	of	cylindrical	shell.	All	quantities	are	processed	into	dimensionless	quantities	and	expanded	to	
trigonometric	series	along	the	circumferential	direction.	
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Where	 n 	is	circumferential	modal	number.	Other	dimensionless	quantities	and	dimensionless	frequency	parameter	
are	
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Through	complicated	simplifying,	first‐order	matrix	differential	equation	of	cylindrical	shell	is	obtained.	
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Where	  T
( ) x x x xu v w M V S N Z 	is	 state	 vector	 of	 cylindrical	 shell.	 ( , , )u v w 	are	 respectively	

dimensionless	quantities	 of	 axial	 displacementሺ x directionሻ,	 circumferential	 displacement	 ሺdirectionሻ	 and	 radial	
displacement	ሺdirectionሻ	 is	a	dimensionless	slope,	

xN is	a	dimensionless	membrane	force,	
xM is	a	dimension‐

less	 bending	 moment,	 ሺ
xV ,

xS ሻ	 are	 dimensionless	 Kelvin‐Kirchhoff	 shear	 force	 and	 shear	 force,	 E and	  	are	
Young’s	modulus	and	Poisson’s	ratio.	 ( )Z 	is	 the	shell	element’s	state	vector	and	also	a	 function	of	dimensionless	
variables .	 ( )U 	is	coefficient	matrix	of	differential	equation	of	cylindrical	shell,	and	is	an	eight‐order	square	matrix.	
There	are	22	non‐zero	elements	in ( )U ,	see	Appendix	A.	
	
2.2	Equations	of	Motion	for	Conical	Shell	

In	cylindrical	coordinate	system,	generatrix	direction	and	radial	direction	of	conical	are	defined	as	coordinate	direc‐
tion.	The	position	of	any	points	on	conical	shell	can	be	described	as	ሺ s ,	ሻ.	 s 	is	length	from	the	top	point	of	the	coni‐
cal	to	any	points	on	conical	shell	along	generatrix	direction.		is	angle	of	the	point	along	circumferential	direction	in	
cylindrical	coordinate	system.	The	coordinate	system	of	conical	shell	is	seen	in	Figure	2.	
	

	
Figure	2:	Coordinate	system	of	conical	shell.	

	
Force	Analysis	of	conical	shell	ሺTrie	T.	1982ሻ,	force	balance	equations	of	conical	shell	are	given	

	

2( )1 1
0

sin
s ssN N N

h u
s s s s

   
 

 
   

 
ሺ31ሻ

	

21 1
0

sin tan
s sN N N Q

h v
s s s s s

     
  
 

    
 

ሺ32ሻ

	

2( )1 1
0

tan sin
sN sQ Q

h w
s s s s

   
  

 
   

 
ሺ33ሻ

	

Among	of	them,	Kevin‐Kirchhoff	membrane	forces,	shear	and	all	internal	forces	are	
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The	relationship	of	radial	displacement	and	slope	of	conical	shell	satisfies	
	

w

s
 



ሺ43ሻ

	

All	quantities	are	processed	into	dimensionless	quantities	and	expanded	to	trigonometric	series	along	the	cir‐
cumferential	direction.	
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Where	 bending	 rigidity	 is	
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212(1 )
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,	 Young’s	 modulus	 and	 Poisson’s	 ratio	 is	 E 	and	 .	n	is	 circumferential	

modal	number.	 =1 	and	 =0 are	respectively	symmetric	or	antisymmetric	modal.	 R 	is	radius	at	the	larger	end	of	
the	conical.	h	is	thickness	of	the	conical.	Other	dimensionless	quantities	are	presented	as	
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s ,	 startL ,	 endL 	are	described	as	Figure	2.	  ,	  ,		are	 respectively	material	density,	 circular	 frequency	and	dimen‐
sionless	 frequency	 parameter.	 There	 are	 sixteen	 unknown	 quantities	 in	 above	 equations.	 To	 eliminate	 eight	 un‐
known	 quantities	M ,	 sM  ,	 sM  ,	 sN  ,	 sN ,	Q ,	 N ,	 sQ eight	 unknown	 quantities	 u ,	 v ,	 w ,	,	 sM ,	 sV ,	 sN ,	 sS  	are	
retained,	which	 is	sectional	state	vector	elements	of	conical	shell.	Then,	 first‐order	matrix	differential	equation	of	
conical	shell	is	obtained.	
	

       ( )
( ) ( ) ( ) ( )

d

d


   


  U

Z
Z F p ሺ56ሻ

	

Where	    ( ) , , , , , , ,
T

s s s su v w M V N S       Z is	 state	 vector	 of	 conical	 shell.	 ( )U 	is	 variable	 coefficient	 matrix,	

   ( ) ( ) F p 	is	exciting	loads.	Non‐zero	elements	in	 ( )U 	are	shown	in	Appendix	B.	

3	 SOLUTIONS	TO	EQUATIONS	OF	MOTION	

Assuming	that	the	exciting	loads	are	zero	in	Eqs	ሺ30ሻ	and	ሺ56ሻ,	the	equations	of	motion	are	simplified	to	
	

   ( )
( ) ( )

cy

cy cy

d

d


 


 U

Z
Z ሺ57ሻ

	

   ( )
( ) ( )co

co co

d

d


 


 U

Z
Z ሺ58ሻ

	

Obviously,	Eqs	ሺ57ሻ	and	ሺ58ሻ	are	respectively	the	equations	of	motion	for	cylindrical	and	conical	shell,	which	are	
dealt	with	as	following	
	

   ( )
( ) ( )

d

d


 


 U

Z
Z ሺ59ሻ

	

 
 

1 1

( )
( )

( )

d
d

 

 


 


 U

Z

Z
ሺ60ሻ

	

1

1

ln ( ) ( )d







   UZ ሺ61ሻ

	

11

( )
ln ( )

( )
d





  


 
 

 
U

Z

Z
ሺ62ሻ

	

1

1( ) exp( ( ) ) ( )d




    UZ Z ሺ63ሻ

	

In	the	following	chapters,	the	solution	of	the	coefficient	matrix	
1

exp( ( ) )d




 U 	solved	by	precise	integration	meth‐

od	is	presented.	
	
3.1	Relationship	of	State	Vector	for	Cylindrical	Shell	
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In	the	numerical	calculation,	cylindrical	shell	is	divided	into	series	of	segment.	Nodes	coordinate	of	segment	is k ,	

ሺkൌ0,	 1,	 2…ሻ.	 Any	 coordinate	 of	 contiguous	 nodes	 is	 k 	and 1k  ,	 where 1k k      .	 Coefficient	 matrix	 ( )U 	for	
cylindrical	shell	is	independent	of	 .	Thus,	coefficient	matrix	in	Eq.ሺ63ሻ	can	be	written	as	
	

1

exp( ( ) )
k

k

e d






 


   UU ሺ64ሻ

	

Assuming	
	

 2

0( ) exp
s

e     U H ሺ65ሻ
	

Where	
2s


H U ,	 s 	is	recommended	to	take	20.	  exp H 	can	be	expressed	in	terms	of	Taylor	series	by	

	

  8 8
1

exp
!

k

a
k k





    H
H I I T ሺ66ሻ

	

Where	 8I 	is	eight‐order	unit	matrix.	To	take	into	account	that	 aT 	is	a	small	amount	relative	to	the	 8I ,	if	using	addi‐
tion	theorem	directly	to	add	 8I 	and	 aT ,	mantissa	will	appear	error	because	of	computer	rounding	errors,	then,	lead	
to	loss	of	precision.	Therefore,	the	paper	use	addition	theorem	to	calculate aT .	
	

   
11 22 2

0 8 8 8( ) 2
ss

a a a a


            I T I T I T T ሺ67ሻ
	

By	assuming	 aT 	as	
	

22a a a T T T ሺ68ሻ
	

After	the	s	times	circulating	assignment	of	Eq.	ሺ68ሻ,	Eq.	ሺ67ሻ	can	be	written	as	
	

0 8( ) ae      U I T ሺ69ሻ
	

Assuming	 segment	 coefficient	matrix	 1k e 
  UT ,	 the	 relationship	 of	 the	 state	 vector	 of	 each	 node	 can	 be	 de‐

scribed	as	
	

1 1 0( ) ( ) Z T Z ሺ70ሻ
	

2 2 1( ) ( ) Z T Z ሺ71ሻ
	

  
  

1 1( ) ( )k k k  Z T Z

ሺ72ሻ

	

  
  

1( ) ( )n n n  Z T Z

ሺ73ሻ

	
3.2	Relationship	of	State	Vector	for	Conical	Shell	

To	facilitate	the	numerical	calculation,	conical	shells	are	dispersed	into	series	segments	along	generatrix	direction.	
Eq.	ሺ63ሻ	can	be	written	as	
	

1

0
1 0( ) exp ( ) ( )d




       Z U Z ሺ74ሻ

	

2

1
2 1( ) exp ( ) ( )d




       Z U Z ሺ75ሻ

	

  


ሺ76ሻ



C.	Wu	and		F.	Pang	
Free	Vibration	Characteristics	of	the	Conical	Shells	Based	on	Precise	Integration	Transfer	Matrix	Method	

Latin	American	Journal	of	Solids	and	Structures,	2018,	15ሺ1ሻ,	e03	 8/17	

1

1( ) exp ( ) ( )
j

j
j jd




   


    Z U Z

	

  
  

1
1( ) exp ( ) ( )

n

n
n nd




   




    Z U Z

ሺ77ሻ

	

Assuming	
	

1

1 exp ( )
j

j
j d




 


    T U ሺ78ሻ

	

Eqs.	ሺ75ሻ‐ሺ78ሻ	can	be	described	as	
	

1 1 0( ) ( ) Z T Z ሺ79ሻ
	

2 2 1( ) ( ) Z T Z ሺ80ሻ
	

  
  

1 1( ) ( )j j j  Z T Z

ሺ81ሻ

	

  
  

1( ) ( )n n n  Z T Z

ሺ82ሻ

	

Coefficient	matrix	 ( )U for	conical	shell	is	dependent	of	 .	Therefore,	transfer	matrix	
1

exp ( )
j

j

d



  

   U 	can’t	be	

calculated	like	transfer	matrix	for	cylindrical	shell.	The	paper	calculates	transfer	matrix	 1jT 	for	conical	shell	by	pre‐

cise	 integration.	 Segments	  	of	 conical	 shell	 are	 divided	 into	 precise	 integral	 step	  ሺ
s

 
  ሻ.	 s 	is	 recom‐

mended	to	take	5.	For	the	segment	 1j j   	of	conical	shell,	 integral	step	node	is	  1 /k j j j jk s k           ,	

0,1,..,k s .	In	a	precise	integral	step,	assuming	  1 / 2k k    ,	 ( )U 	can	be	recognized	to	be	constant	coefficient	

matrix,	 which	 is	 independent	 of	 .	 Variable	 coefficient	 matrix	 1jT 	in	 segment	  	of	 conical	 can	 be	 calculated	

through	constant	coefficient	matrix	of	integral	steps	tired	multiplying	
	

    1
1 1 1

1 1 1

= exp ( )( ) exp ( )
s s s

k
j k k k k j

k k k

     
  

  

     T U U T ሺ83ሻ

	

Constant	coefficient	matrix	  1
1 exp ( )k

j k 
  T U of	precise	integral	step	can	be	solved	like	reference	method	for	

solving	 e U 	in	character	3.1.	
	
3.3	Solutions	for	Coefficient	Matrix	of	the	Conical	Shell	

Illustration	for	the	conical	shell	is	seen	in	Figure	3,	 	is	semi‐vertex	conical	angle.	 R is	larger	end	radius	of	conical	
shell.	

sL is	length	from	the	top	point	of	the	conical	to	the	smaller	endof	conical	shell	along	generatrix	direction.	
eL is	

length	from	the	top	point	of	the	conical	to	the	larger	end	of	conical	shell	along	generatrix	direction.	The	length	of	
conical	is co e sL L L  ,	The	thickness	of	the	conical	shell	is	h.	
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Figure	3:	Illustration	for	the	conical	shell.	

	
According	to	character	3.2,	the	state	vectors	of	segment	nodes	from	the	conical	shell	satisfy	

	

1 1 0( ) ( ) Z T Z ሺ84ሻ
	

2 2 1( ) ( ) Z T Z ሺ85ሻ
	

  
  

1 1( ) ( )j j j  Z T Z

ሺ86ሻ

	

  
  

1( ) ( )n n n  Z T Z

ሺ87ሻ

	

Eqs.	ሺ84ሻ‐ሺ89ሻ	can	be	written	in	term	of	matrix	as	follows	
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 
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	 ሺ88ሻ

	

All	kinds	of	boundary	conditions	at	ends	of	the	conical	shell	are	given	by	ሺNote:	F	is	free	end.	S	is	simply	sup‐
ported	end.	C	is	clamped	end.ሻ	

Boundary	condition	F‐F:	 0x x x xM V S N    	
	

 T0 0 0 0
0( ) 0 0 0 0u v w Z ሺ89ሻ

	

 T

n( ) 0 0 0 0n n n nu v w Z ሺ90ሻ
	

Boundary	condition	S‐S:	 0x xv w M N    	
	

 T
0 0 0 0

0( ) 0 0 0 0x xu V S  Z ሺ91ሻ
	

 T

n( ) 0 0 0 0n n n n
x xu V S  Z ሺ92ሻ



C.	Wu	and		F.	Pang	
Free	Vibration	Characteristics	of	the	Conical	Shells	Based	on	Precise	Integration	Transfer	Matrix	Method	

Latin	American	Journal	of	Solids	and	Structures,	2018,	15ሺ1ሻ,	e03	 10/17	

	

Boundary	condition	C‐C:	 0u v w     	
	

 T
0 0 0 0

0( ) 0 0 0 0 x x x xM V S N Z ሺ93ሻ
	

 T

n( ) 0 0 0 0 n n n n
x x x xM V S N Z ሺ94ሻ

	

Boundary	condition	F‐S:	
	

 T0 0 0 0
0( ) 0 0 0 0u v w Z ሺ95ሻ

	

 T

n( ) 0 0 0 0n n n n
x xu V S  Z ሺ96ሻ

	

Boundary	condition	F‐C:	
	

 T0 0 0 0
0( ) 0 0 0 0u v w Z ሺ97ሻ

	

 T

n( ) 0 0 0 0 n n n n
x x x xM V S N Z ሺ98ሻ

	

Boundary	condition	S‐F	
	

 T
0 0 0 0

0( ) 0 0 0 0x xu V S  Z ሺ99ሻ

 T

n( ) 0 0 0 0n n n nu v w Z ሺ100ሻ
	

Boundary	condition	S‐C	
	

 T
0 0 0 0

0( ) 0 0 0 0x xu V S  Z ሺ101ሻ
	

 T

n( ) 0 0 0 0 n n n n
x x x xM V S N Z ሺ102ሻ

	

Boundary	condition	C‐F	
	

 T
0 0 0 0

0( ) 0 0 0 0 x x x xM V S N Z ሺ103ሻ
	

 T

n( ) 0 0 0 0n n n nu v w Z ሺ104ሻ
	

Boundary	condition	C‐F	
	

 T
0 0 0 0

0( ) 0 0 0 0 x x x xM V S N Z ሺ105ሻ
	

 T

n( ) 0 0 0 0n n n n
x xu V S  Z ሺ106ሻ

	

According	to	the	given	boundary	condition	at	ends	of	the	conical	shell,	rows	number	where	elements	of	state	
vector	are	zero	is	found.	Then,	to	delete	corresponding	columns	of	coefficient	matrix,	Eq.	ሺ88ሻ	can	be	written	as	
	 
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	 ሺ107ሻ

	

Since	the	state	vector	can’t	all	be	zero	vectors,	determinant	of	coefficient	matrix	must	be	zero.	The	follow	equa‐
tion	is	obtained.	
	



C.	Wu	and		F.	Pang	
Free	Vibration	Characteristics	of	the	Conical	Shells	Based	on	Precise	Integration	Transfer	Matrix	Method		

Latin	American	Journal	of	Solids	and	Structures,	2018,	15ሺ1ሻ,	e03	 11/17	



 

1

2

3

1

8 ,8

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 ... 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 ... 0 0

0 0 0 0 0 0

i

n n n













P



T I

T I

T I

T I

T I

	 ሺ108ሻ

Natural	frequency	of	the	conical	shell	is	the	only	unknown	quantity	in	the	matrix.	Natural	frequency	is	obtained	
through	 solving	 frequency	 characteristic	 Eq.ሺ108ሻ.	 Substitution	 of	 natural	 frequency	 into	 Eq.ሺ107ሻ,	 Proportional	
relationship	of	state	vectors	can	be	obtained.	Then,	modes	of	conical	shell	will	be	acquired	in	the	given	boundary	
condition.	
	
4	 CONFIRMATION	OF	PITMM	AND	NUMERICAL	ANALYSIS	

4.1	Confirmation	of	PITMM	

4.1.1	Results	Contrast	of	PITMM	and	Previous	Literature	

To	verify	the	validity	of	the	PITMM	that	is	used	to	research	on	free	vibrational	characteristics	of	the	conical	shells,	
the	results	from	PITMM	are	compared	with	the	results	from	reference	ሾ13ሿ.	

Geometry	parameter	of	the	conical	shells	is: 20L m ,	 0.2h m ,	 20R m ,	 030  .Where	Lis	the	length	of	conical	
shell.	 1R is	radius	of	 the	smaller	end	of	conical	shell.	 R is	 larger	end	radius	of	conical	shell.	  is	 the	semi‐vertex	

angle.	
1

2= ( / )hR D   is	 dimensionless	 frequency	 parameter.	 The	 material	 parameter	 are	 Poisson’s	 ratio	 0.3 ,	

Young’s	 modulus	 11 22.11 10 /E N m  ,	 Density	 37800 /kg m  .	 The	 boundary	 condition	 of	 the	 conical	 shells	 are	
respectively	simply	‐simply,	clamped‐clamped,	free‐	free.	

Axial	modal	number	mൌ1,	circumferential	modal	number	nൌ1:10,	natural	 frequency	of	 the	conical	 shells	are	
presented	in	Table.1‐3.	the	values	of	natural	frequency	from	PITMM	agree	well	with	the	references	ሾ13ሿ.	
	
4.1.2	Results	Contrast	of	PITMM	and	FEM	

Contrast	of	the	results	from	PITMM	and	FEM,	the	validity	of	PITMM	advanced	by	the	paper	is	further	verified,	which	
is	examined	in	Figure	4.	It	can	be	observed	from	Figure	4	that	the	results	from	PITMM	match	almost	perfectly	with	
the	results	from	FEM.	The	results	of	PITMM	and	FEM	only	appear	slight	difference	at	nൌ1,	nൌ10.	Therefore,	PITMM	
given	by	the	paper	can	accurately	calculate	natural	frequencies	for	the	conical	shells.	Furthermore,	PITMM	is	abso‐
lutely	unlimited	to	the	boundary	conditions	at	ends	of	the	conical	shells.	
	

Modal	number	 Natural	frequency  ሺHZሻ
m	 n	 	 Reference	ሾ13ሿ PITMM Relative	deviation	
1	 1	 	 29.9129	 29.3296 ‐1.95%	
	 2	 	 26.8326	 26.7380 ‐0.35%	
	 3	 	 18.0585	 17.8254 ‐1.29%	
	 4	 	 12.7885	 12.7324 ‐0.44%	
	 5	 	 11.0225	 11.1634 1.28%	
	 6	 	 11.2995	 11.3225 0.20%	
	 7	 	 12.8908	 12.4141 ‐3.69%	
	 8	 	 15.3580	 15.4831 0.81%	
	 9	 	 18.2627	 18.0296 ‐1.28%	
	 10	 	 21.4599	 21.8944 2.02%	

Table	1:	Frequency	for	the	conical	shells	in	simply‐simply	boundary	condition.	
Modal	number	 Natural	frequency  ሺHZሻ
m	 n	 	 Reference	ሾ13ሿ PITMM Relative	deviation	
1	 1	 	 37.9421	 37.8789 ‐0.16%	
	 2	 	 28.2925	 27.6930 ‐2.11%	
	 3	 	 21.5622	 21.6901 0.59%	
	 4	 	 17.4600	 17.3930 ‐0.38%	
	 5	 	 15.1097	 15.0056 ‐0.69%	
	 6	 	 14.5112	 14.5282 0.12%	
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	 7	 	 15.2266	 15.3239 0.64%	
	 8	 	 17.2558	 17.2338 ‐0.13%	
	 9	 	 20.0146	 20.6211 3.03%	
	 10	 	 23.3577	 23.4859 0.55%	

Table	2:	Frequency	for	the	conical	shells	in	clamped‐clamped	boundary	condition.	
	
	

Modal	number	 Natural	frequency  ሺHZሻ
m	 n	 	 Reference	ሾ13ሿ PITMM Relative	deviation	
1	 1	 	 37.6501	 37.4014 ‐0.66%	
	 2	 	 0.4311	 0.4375 1.48%	
	 3	 	 1.4162	 1.4732 4.09%	
	 4	 	 2.5699	 2.5873 0.68%	
	 5	 	 4.0152	 4.0197 0.11%	
	 6	 	 5.7521	 5.7113 ‐0.71%	
	 7	 	 7.4893	 7.3211 ‐2.24%	
	 8	 	 9.6646	 9.6310 ‐0.35%	
	 9	 	 11.9858	 11.6183 ‐3.06%	
	 10	 	 14.5985	 14.1648 ‐2.97%	

Table	3:	Frequency	for	the	conical	shells	in	free‐free	boundary	condition.	
	
	

	

Figure	4:	mൌ1,nൌ1:10	contrast	of	frequency	parameter	  		
from	PITMM	and	FEM	in	different	boundary	conditions.	

4.2	Numerical	Analysis	

4.2.1	Effect	of	Boundary	Conditions	on	the	Free	Vibrational	Characteristic	

The	influences	of	boundary	conditions	on	free	vibrational	characteristics	of	the	conical	shell	are	shown	in	Figure	5.	
In	five	different	boundary	conditions	of	the	clamped‐clamped,	simply‐simply,	free‐free,	clamped‐free,	free‐clamped,	
corresponding	 to	 axial	modal	 number	mൌ1,	 the	 values	 of	 natural	 frequency	 varying	with	 circumferential	modal	
number	n	are	plotted.	It	can	be	seen	that	the	natural	frequency	curve	is	relatively	flat	and	initially	decreases,	then	
increase	after	nൌ4	in	clamped‐clamped,	simply‐simply,	free‐free,	clamped‐free	boundary	condition.	In	clamped‐free	
boundary	conditions,	the	natural	frequency	curve	intensely	vary	with	n	and	reach	the	minimum	value	at	nൌ2.	After	
nൌ2,	the	curve	rise.	In	simply‐simply,	free‐free,	clamped‐free,	free‐clamped	boundary	conditions,	almost	all	the	val‐
ues	of	natural	frequency	less	than	the	values	in	clamped‐clamped	boundary	condition.	
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Figure	5:	mൌ1,nൌ1:10	effects	of	the	boundary	condition	on	natural	frequency.	

	
4.2.2	Effect	of	Shell	Thickness	on	the	Free	Vibrational	Characteristic	

Figure	6	presents	the	influence	of	the	shell	thickness	h	of	the	conical	shell	on	the	frequency	parameter	in	clamped‐
clamped	boundary	condition.	With	 the	 increasing	of	 the	shell	 thickness,	 the	 frequency	parameter	slowly	 increase	
corresponding	 to	 circumferential	modal	 number	nൌ0,	 however,	 the	 frequency	parameter	 rapidly	 increase	 corre‐
sponding	 to	nൌ5.	 In	 the	all,	 the	 frequency	parameter	of	 the	conical	shell	 increase	with	 the	 increasing	of	 the	shell	
thickness.	
	
4.2.3	Effect	of	Semi‐Vertex	Angle	on	the	Free	Vibrational	Characteristic	

When	the	influence	of	semi‐vertex	conical	angle	on	the	frequency	parameter	is	investigated,	the	structural	parame‐
ter	 for	 the	 conical	 shells	 are: 0.2R m ,	 0.002h m ,	 0.2coL m ,	 0 00 90   .	 The	material	 parameter	 are	 Poisson’s	

ratio	 0.3 ,	 Young’s	 modulus	 11 22.11 10 /E N m  ,Density	 37800 /kg m  .	 Figures	 7‐9	 present	 the	 effect	 of	 the	
semi‐vertex	 conical	 angle	 on	 the	 frequency	 parameter	 for	 the	 conical	 shells	 in	 simply‐simply,	 clamped‐simply,	
clamped‐clamped	boundary	conditions.	The	conical	shell	is	recognized	as	cylindrical	shell	and	circular	plate	at	the	
extreme	semi‐vertex	conical	angle	 00  	and	 090  .	The	values	of	frequency	parameter	for	the	conical	shells	are	
corresponded	to	axial	modal	number	mൌ1.	In	Figure	7‐9	of	simply‐simply,	clamped‐simply	and	clamped‐clamped	
boundary	 conditions,	nൌ1,	 frequency	parameter	 initially	 slowly	 increase	and	 then	 rapidly	decrease	after 002  .	
Frequency	parameters	reach	the	maximum	value	at 002  .	Corresponding	to	nൌ2:5,	The	curves	of	frequency	pa‐
rameter	gradually	drop	in	simply‐simply,	clamped‐simply	and	clamped‐clamped	boundary	conditions	Overall,	in	the	
three	different	boundary	 conditions,	when 080  ,	 the	 values	of	 frequency	parameter	 respectively	 tend	 towards	
fixed	values	corresponding	to	nൌ1:5.	
	
	

	

Figure	6:	mൌ1,nൌ0:5	effects	of	shell	thickness	on	frequency	parameter	  	in	C‐C	boundary	condition.	
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Figure	7:	mൌ1,nൌ1:5	frequency	parameter	  	varying	with	semi‐vertex	angle	in	S‐S	boundary	condition.	

	

	

Figure	8:	mൌ1,nൌ1:5	frequency	parameter	  	varying	with	semi‐vertex	angle	in	C‐S	boundary	condition.	

	

	

Figure	9:	mൌ1,nൌ1:5	frequency	parameter	  	varying	with	semi‐vertex	angle	in	C‐C	boundary	condition.	

	
5	 CONCLUSIONS	

A	new	method	that	is	PITMM	is	advanced	in	the	paper	to	research	the	free	vibrational	characteristics	of	the	conical	
shells.	Based	on	traditional	transfer	matrix	and	precise	integration	methods,	PITMM	is	constructed.	The	method	not	
only	retains	the	traditional	transfer	matrix	methods’	advantages	of	formula	regularity	and	easily	programming,	but	
also	obtains	the	high	accuracy	from	the	precise	integration	methods.	The	accuracy	of	results	solved	by	PITMM	rises,	
which	can	be	observed	from	the	results	contrast	of	previous	paper,	FEM,	and	PITMM.	Based	on	PITMM,	the	effects	of	
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boundary	conditions,	the	shell	thickness	and	semi‐vertex	conical	angle	on	free	vibrational	characteristics	of	the	con‐
ical	shells	are	examined.	

Based	on	the	characteristics	of	PITMM,	the	method	can	also	be	extended	to	solve	the	free	vibrational	problem	
about	variable	thickness	cylindrical	shell,	reinforced	cone	shells	and	other	rotating	body	structure.	
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APPENDIX	A.	COEFFICIENT	MATRIX	 ( )U 	OF	CYLINDRICAL	SHELL	
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APPENDIX	B.	COEFFICIENT	MATRIX	 ( )U 	OF	CONICAL	SHELL	
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