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Abstract	
An	adaptation	of	 the	 conventional	Lanczos	algorithm	 is	proposed	 to	
solve	 the	 general	 symmetric	 eigenvalue	 problem	 K	 ൌ	 λKG	 in	 the	
case	when	 the	 geometric	 stiffness	matrix	KG	 is	 not	 necessarily	 posi‐
tive‐definite.	The	only	requirement	for	the	new	algorithm	to	work	is	
that	matrix	K	must	be	positive‐definite.	Firstly,	 the	algorithm	 is	pre‐
sented	 for	 the	standard	situation	where	no	shifting	 is	assumed.	Sec‐
ondly,	 the	algorithm	is	extended	to	 include	shifting	since	 this	proce‐
dure	 may	 be	 important	 for	 enhanced	 precision	 or	 acceleration	 of	
convergence	 rates.	Neither	 version	of	 the	 algorithm	 requires	matrix	
inversion,	 but	 more	 resources	 in	 terms	 of	 memory	 allocation	 are	
needed	by	the	version	with	shifting.	
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1	 INTRODUCTION	

One	 of	 the	 most	 efficient	 methods	 for	 extracting	 eigenpairs	 ሺeigenvalues	 and	 eigenvectorsሻ	 was	 proposed	 by	
Lanczos	ሺLanczos,	1950ሻ.	Lanczos	algorithm	is	considered	today	to	be	the	most	efficient	ሺif	not	the	most	efficientሻ	
numerical	method	for	computing	extreme	eigenvalues	and	associated	eigenvectors	ሺPaige,	1971;	Paige,	1972ሻ	 for	
large	problems.	The	finite	arithmetic	of	computers	introduce	some	difficulties	in	the	procedure	since	it	may	lead	to	
loss	of	orthogonality	of	the	eigenvectors	being	computed.	However,	the	loss	of	orthogonality	can	be	treated	through	
corrective	schemes	ሺParlett	and	Scott,	1979ሻ	already	available.	

In	structural	modal	analysis	the	eigenvalue	problem	to	be	solved	is	usually	not	 in	the	standard	form	A	ൌ	λ,	
where	A	is	a	symmetric	matrix.	Because	of	inertial	effects,	in	addition	to	the	stiffness	matrix	K,	there	is	always	a	mass	
matrix	M	involved,	such	that	the	eigenvalue	problem	is	stated	as	K	ൌ	λM,	known	as	the	generalized	form.	In	modal	
analyses	the	stiffness	matrix	is	guaranteed	to	be	positive	semi‐definite,	whereas	the	mass	matrix	is	positive‐definite	
ሺEricsson	and	Ruhe,	1980;	Ramaswamy,	1980;	Bathe	1996ሻ.	Nevertheless,	the	traditional	linearized	buckling	analy‐
sis	requires	computation	of	a	geometric	stiffness	matrix	KG,	which	is	dependent	on	the	prebuckling	stress	distribu‐
tion	 ሺZienkiewicz,	1991ሻ.	 In	 the	 linearized	buckling	analysis	matrix	KG	 replaces	matrix	M.	However,	 the	positive‐
definiteness	 of	 KG	 is	 not	 guaranteed	 what	 brings	 apparently	 unsurmountable	 an	 obstacle	 to	 the	 conventional	
Lanczos	algorithm	applied	to	the	generalized	eigenproblem.	Jones	and	Patrick	ሺJones	and	Patrick,	1989ሻ	propose	the	
use	of	a	spectral	 transformation	 to	solve	buckling	eigenproblems,	but	 it	relies	on	a	shifted	operator	and	does	not	
address	the	basic	difficulty	of	taking	the	square	root	of	a	possibly	negative	number,	except	by	taking	preventive	ac‐
tion	 of	 selecting	 appropriate	 initial	 guess	 vectors	 that	must	 be	preconditioned.	However,	 if	 KG	 is	 indefinite,	 their	
method	crashes.	

Given	the	incapacity	of	the	conventional	Lanczos	algorithm	to	handle	indefinite	matrices	KG	this	work	proposes	
an	adaptation	of	the	algorithm	to	compute	eigenvalues	ሺcritical	loadsሻ	in	linearized	buckling	problems.	The	strategy	
consists	basically	in	relying	on	the	positive‐definiteness	of	K,	despite	the	fact	that	KG	is	indefinite.	Initially,	a	version	
of	the	adapted	algorithm	is	proposed	without	shifting	that	is	sufficient	to	obtain	the	lowest	positive	eigenvalues	usu‐
ally	sought.	Subsequently,	a	version	of	the	algorithm	with	shifting	is	proposed	in	order	to	either	enhance	precision	
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or	accelerate	rates	of	convergence.	It	is	shown	that	the	version	with	shifting	requires	more	computer	resources	in	
terms	of	memory	allocation.	
	
2	 THE	ADAPTED	LANCZOS	ALGORITHM	

The	generalized	linear	eigenvalue	buckling	problem	is	
	

۹૖ ൌ ۹۵૖ߣ ሺ1ሻ
	
where	K	is	the	stiffness	matrix,		is	the	eigenvector,	λ	is	the	eigenvalue	and	KG	is	the	geometric	stiffness	matrix.	K	is	
symmetric	and	positive‐definite.	KG	 is	 symmetric	but	may	not	be	positive‐definite.	 In	classical	 linearized	buckling	
analysis	when	there	is	only	compressive	prebuckling	loads	matrix	KG	can	be	assumed	to	be	positive‐definite.	How‐
ever,	this	is	not	always	the	case.	Structural	components	subject	to	shear	loads	invariably	lead	to	indefinite	KG	matri‐
ces.	Two	simple	examples	of	 these	situation	are	panels	subject	 to	shear	and	closed	box	beams	subject	 to	 torsion,	
both	of	which	consist	of	practical	cases	encountered	in	aircraft	wing	design.	Nonetheless,	even	compressive	loads	
may	 result	 in	 indefinite	KG	matrices.	Almeida	and	Hansen	 ሺ2000ሻ	 investigated	 rectangular	 composite	plates	with	
circular	 cutouts	and	observed	 local	buckling	modes	related	 to	negative	eigenvalues.	The	absolute	values	of	 those	
negative	eigenvalues	were	high	in	comparison	to	the	positive	eigenvalues.	Even	though	these	negative	eigenvalues	
are	not	of	practical	relevance,	they	cripple	the	traditional	Lanczos	algorithm	that	will	eventually	be	required	to	com‐
pute	 the	square	root	of	a	negative	number	as	will	be	shown.	Figure	1	presents	 the	 traditional	Lanczos	algorithm	
proposed	by	Bathe	ሺBathe,	1996ሻ	to	solve	the	generalized	eigenvalue	posed	in	Eq.	ሺ1ሻ.	
	

	
Figure	1:	Algorithm	1.	

	
The	algorithm	in	Fig.	1	generates	a	sequence	of	vectors	i,	at	least	theoretically,	orthonormal	to	KG.	As	q	in	algo‐

rithm	1	increases,	the	symmetric	tridiagonal	matrix	
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will	 possess	 eigenvalues	 that	 converge	 to	 the	 inverse	 of	 the	 eigenvalues	 of	 the	 original	 problem.	 In	 theory,	 it	 is	
shown	that,	when	q	is	exactly	the	dimension	of	the	eigenvalue	problem,	matrix	T	given	in	Eq.	ሺ2ሻ	will	have	eigenval‐
ues	that	are	exactly	the	inverse	of	those	of	the	original	eigenproblem.	

Observe	that,	 in	step	3	of	algorithm	1,	matrix	products	 like	TKG	must	be	computed	and,	subsequently,	 their	
square	roots	must	be	taken.	In	the	case	of	buckling	problems	KG	is	indefinite,	therefore,	TKG	may	be	negative,	fatal‐
ly	crippling	the	algorithm.	If	one	insists	in	using	the	conventional	algorithm	and	takes,	instead,	the	square	root	of	the	
absolute	value	of	TKG	 ,	the	algorithm	flies	off	and	converges	to	absolutely	meaningless	results.	If	the	inverted	ei‐
genvalue	problem	KG = υK	is	solved	instead,	where	υ	ൌ	1/λ,	matrix	products	of	the	form	TK	would	be	computed	
and,	because	K	is	positive‐definite,	 it	would	lead	necessarily	to	a	positive	number.	Since	the	conventional	Lanczos	
algorithm	 computes	 approximated	 values	 to	 the	 lowest	 eigenvalues,	 the	 lowest	 υ’s	 are	 obtained	 and	 they	 corre‐
spond	to	the	highest	λ’s	ሺrecall	that	υ	ൌ	1/λሻ.	Hence,	solving	the	inverted	eigenproblem	is	not	an	option	if	the	lowest	
λ’s	are	to	be	obtained.	

1. Arbitrarily choose starting vector  and normalize it with respect to matrix KG, i.e., compute γ = 
(TKG)1/2 and subsequently x1 = /γ. 
 
2. Define β1 = 0 and 0 = 0. 
 
3. For i = 1, 2,..., q − 1 do 
 ۹૖ഥ௜ାଵ ൌ ۹ீ૖௜ 
௜ߙ  ൌ ૖ഥ௜ାଵ

் ۹۵૖௜ 
 ૖෩௜ାଵ ൌ ૖ഥ௜ାଵ െ ௜૖௜ߙ െ  ௜૖௜ିଵߚ
௜ାଵୀሺ૖෩௜ାଵߚ 

் ۹۵૖෩௜ାଵሻଵ/ଶ 
 ૖௜ାଵ ൌ ૖෩௜ାଵ/ߚ௜ାଵ 
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The	fundamental	aspect	to	be	noted	in	proposing	a	new	variant	of	the	Lanczos	algorithm	is	to	realize	that,	since	
K	is	positive‐definite,	its	inverse,	Kെ1,	is	also	positive‐definite.	One	can	therefore	define	the	transformation	
	

૖ ൌ ۹ିଵܠ ሺ3ሻ
	

that	is	always	unique	because	K	is	positive‐definite,	therefore	invertible.	Substitution	of	Eq.	ሺ3ሻ	into	Eq.	ሺ1ሻ	and	pre‐
multiplication	by	ሺKGሻെ1	yields	
	

۹ீ
ିଵܠ ൌ ܠ۹ି૚ߣ ሺ4ሻ

	

There	is	apparently	one	inconsistency	in	Eq.	ሺ2ሻ:	KG	is	indefinite	and	may	be	singular,	such	that	ሺKGሻെ1	may	not	
even	 exist.	 Let	 us	 forget	 this	 inconsistency	 for	 now	 and	 employ	 the	 conventional	 Lanczos	 algorithm	 to	 the	
eigenproblem	posed	in	Eq.	ሺ4ሻ.	
	
	

	
Figure	2:	Algorithm	2	

	
The	difficulty	of	having	to	take	the	square	root	of	a	negative	number	is	now	resolved	since	the	product	xTKെ1x	

results	in	a	positive	number.	However,	the	algorithm	presented	in	Fig.	2	is	apparently	highly	awkward	because	both	
Kെ1	and	ሺKGሻ	െ1	are	required.	If	one	carefully	examines	the	algorithm	it	will	be	clear	that	inversions	are	unnecessary.	
The	inverse	of	KG	is	required	only	in	the	evaluation	of	۹ீ

ିଵܠത௜ାଵ ൌ ۹ିଵܠ௜	that	can	also	be	recast	as	ܠത௜ାଵ ൌ ۹ீ۹ିଵܠ௜.	
Therefore,	ሺKGሻ	െ1	is	not	actually	needed.	As	for	Kെ1,	notice	that	only	products	of	the	form	K−1x	are	required.	These	
can	be	more	effectively	evaluated	if	recast	as	K	ൌ	x.	Numerical	solution	of	this	system	is	achieved	through	tradi‐
tional	LU	decomposition	of	K	ሺCrout,	Cholesky,	etc.ሻ.	Before	beginning	algorithm	2,	matrix	K	can	be	LU	decomposed	
and,	since	it	is	symmetric,	only	L	must	be	stored.	Refinement	of	algorithm	2	results	in	algorithm	3	presented	in	Fig.	
3.	

Vector	v	is	only	auxiliary.	Computation	of	v	in	step	5	ሺܞ ൌ ۹ିଵܠ෤௜ାଵሻ,	is	obtained	through	solution	of	the	system	
ܞ۹ ൌ 	way	effective	particularly	A	decomposed.	LU	been	already	has	K	matrix	since	troublesome	not	is	which	෤௜ାଵ,ܠ
of	selecting	the	starting	vector	1	is	to	make	it	equal	to	the	main	diagonal	of	matrix	K.	Since	the	transformation	pro‐
posed	in	Eq.	ሺ3ሻ	was	adopted,	the	eigenvectors	of	the	original	and	transformed	problems	are	related	by	i	ൌ	Kെ1xi.	

The	eigenproblem	with	shifting	is	posed	in	Eq.	ሺ5ሻ	
	

ሺ۹ െ ۹ீሻ૖ߪ ൌ ۹ீ૖ߤ ሺ5ሻ
	

where	σ	is	the	shift	and	the	eigenvalues	µ	to	be	determined	satisfy	µ	ൌ	λ	െ	σ.	If	the	transformation	proposed	in	Eq.	
ሺ3ሻ	is	used	in	Eq.	ሺ5ሻ,	pre‐multiplication	by	ሺKGሻെ1	leads	to	
	

۹ீ
ିଵሺ۹ െ ܠ۹ீሻ۹ିଵߪ ൌ ܠ۹ିଵߤ ሺ6ሻ

1. Arbitrarily choose starting vector x and normalize it with respect to matrix K1, i.e., compute 
γ = (xT K1x)1/2 and subsequently x1 = x/γ. 
 
2. Define β1 = 0 and x0 = 0. 
 
3. For i = 1, 2,..., q − 1 do 
 ۹ீ

ିଵܠത௜ାଵ ൌ ۹ିଵܠ௜ 
௜ߙ  ൌ ത௜ାଵܠ

் ۹ିଵܠ௜ 
෤௜ାଵܠ  ൌ ത௜ାଵܠ െ ௜ܠ௜ߙ െ  ௜ିଵܠ௜ߚ
෤௜ାଵܠ௜ାଵୀሺߚ 

் ۹ିଵܠ෤௜ାଵሻଵ/ଶ 
௜ାଵܠ  ൌ  ௜ାଵߚ/෤௜ାଵܠ
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Figure	3:	Algorithm	3	

	
The	 particularly	 complicated	 matrix	 product	 ۹ீ

ିଵሺ۹ െ 	۹ீሻ۹ିଵߪ is	 purposely	 not	 computed.	 Both	 Kെ1	 and	
ሺKGሻെ1	in	this	product	are	not	actually	evaluated	in	the	algorithm	proposed	in	Fig.	4.	However,	matrix,	ሺK	െ	σKGሻ,	is	
now	present	and	it	must	be	LU	decomposed.	The	adapted	Lanczos	algorithm	with	shifting	is:	
	
	

 
Figure	4:	Algorithm	4	

In	algorithm	4	it	is	suggested	that	the	two	sequences	of	eigenvectors	xi	and	i	are	stored.	This	procedure	pre‐
cludes	the	necessity	to	solve	systems	of	the	form	K	ൌ	x.	However,	if	computer	memory	is	scarce,	then	either	x	or		
only	may	be	stored.	Storing	 the	sequence	of	i	makes	more	sense	since	 these	are	 the	eigenvectors	of	 the	original	
eigenvalue	problem.	Computer	memory	may	also	become	an	issue	because,	in	addition	to	K	and	KG,	matrix	K	െ	σKG	
decomposed	must	also	be	stored.	Another	source	of	hardship	may	be	the	decomposition	of	K	െ	σKG.	If	the	shift	σ	is	
near	one	of	the	eigenvalues	of	the	problem	stated	in	Eq.	ሺ1ሻ,	K	െ	σKG	may	become	singular,	therefore	not	invertible.	
	
3	 NUMERICAL	EXAMPLES	

A	simple	eigenvalue	problem	was	proposed	by	Ramaswamy	ሺ1980ሻ:	find	all	the	eigenvalues	of	Eq.	ሺ1ሻ	for	matrices	K	
and	KG	given	by	
	

1. Choose 1 and compute x1 = K1. 
 
2. Decompose K = LU 
 
3. Compute γ = (x1

TK1x1)1/2 = (x1
T1)1/2 

 
4. x1 = x1/γ, v = 1/γ, 1 = 0, x0 = 0. 
 
5. For i = 1, 2,..., q − 1 do 
ത௜ାଵܠ  ൌ  ܞ۹ீ
௜ߙ  ൌ ത௜ାଵܠ

்  ܞ
෤௜ାଵܠ  ൌ ത௜ାଵܠ െ ௜ܠ௜ߙ െ  ௜ିଵܠ௜ߚ
ܞ  ൌ ۹ିଵܠ෤௜ାଵ 
෤௜ାଵܠ௜ାଵୀሺߚ 

்  ሻଵ/ଶܞ
௜ାଵܠ  ൌ  ௜ାଵߚ/෤௜ାଵܠ
ܞ  ൌ  ௜ାଵߚ/ܞ

1. Choose 1 and compute x1 = K1. 
 
2. Decompose (K  KG) = LU 
 
3. Compute γ = (x1

T1)1/2 
 
4. x1 = x1/γ, 1 = 1/γ, 1 = 0, x0 = 0 = 0. 
 
5. For i = 1, 2,..., q − 1 do 
 ሺ۹ െ ۹ீሻ૖ഥ௜ାଵߪ ൌ ۹ீ૖௜ 
ത௜ାଵܠ  ൌ ۹૖ഥ௜ାଵ 
௜ߙ  ൌ ത௜ାଵܠ

் ૖௜ 
 ૖෩௜ାଵ ൌ ૖ഥ௜ାଵ െ ௜૖௜ߙ െ  ௜૖௜ିଵߚ
෤௜ାଵܠ  ൌ ത௜ାଵܠ െ ௜ܠ௜ߙ െ  ௜ିଵܠ௜ߚ
෤௜ାଵܠ௜ାଵୀሺߚ 

் ૖෩௜ାଵሻଵ/ଶ 
 ૖௜ାଵ ൌ ૖෩௜ାଵ/ߚ௜ାଵ 
௜ାଵܠ  ൌ  ௜ାଵߚ/෤௜ାଵܠ



A.R.	Faria	/	Adaptation	of	the	Lanczos	Algorithm	for	the	Solution	of	Buckling	Eigenvalue	Problems	

Latin	American	Journal	of	Solids	and	Structures,	2018,	15ሺ1ሻ,	e02	 5/7	

۹ ൌ

ۏ
ێ
ێ
ێ
ۍ
1 0 0
0 3 0
0 0 5

0 0
0 0
0 0

0 0 0
0 0 0

4 0
0 ے2

ۑ
ۑ
ۑ
ې

and ۹ீ ൌ

ۏ
ێ
ێ
ێ
ۍ
1 0 0
0 1 0
0 0 െ1

0 0
0 0
0 0

0 0 0
0 0 0

1 0
0 ے1

ۑ
ۑ
ۑ
ې

ሺ7ሻ

	

Since	 KG	 is	 indefinite,	 this	 simple	 problem	 helps	 illustrating	 the	 obstacles	 encountered	 by	 the	 conventional	
Lanczos	algorithm	presented	in	Fig.	1.	The	starting	vector	is	chosen	as	
	

૖ ൌ ሼ1/√5 1/√5 1/√5 1/√5 1/√5ሽ் ሺ8ሻ
	

Blunt	application	of	algorithm	1,	requires,	 in	 the	 first	 iteration,	evaluation	of	β22	ൌ	െ0.1181,	halting	the	algo‐
rithm.	Stubbornly	taking	the	square	root	of	the	absolute	value	of	ሺ૖෩௜ାଵ

் ۹۵૖෩௜ାଵሻଵ/ଶ	to	compute	βi൅1	does	not	help;	it	
does	not	fix	the	algorithm.	In	this	simple	example	this	procedure	would	lead	to	the	wrong	set	of	eigenvalues	1.3409,	
0.3819,	0.8515,	0.0392	and	0.0809.	On	the	other	hand,	algorithm	3	produces	the	correct	eigenvalues	and	eigen‐
vectors	placed	columnwise:	
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If	one	makes	the	geometric	stiffness	matrix	KG	indefinite	by,	for	instance	assuming	that	
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then	the	new	variant	of	the	Lanczos	algorithm	delivers	the	solution	
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Notice	the	"infinite"	eigenvalue	obtained	numerically	ሺ4.76611016ሻ	and	the	correct	eigenvector	associated	to	it	
ሺcolumn	4ሻ.	

A	more	practical	example	consists	of	a	40	cm	ൈ	40	cm	square	composite	plate	whose	laminate	is	just	a	single	
layer	of	T300‐5208	graphite/epoxy	ሺproperties	in	Tab.	1ሻ	of	0.15	mm	thickness.	The	single	layer	is	oriented	accord‐
ing	to	angle	θ	as	shown	in	Fig.	5.	Simply	supported	boundary	conditions	are	imposed	along	the	four	edges	and	pure	
shear	loading	is	applied.	
	

Property Value	
Longitudinal	modulus	of	elasticity	E1 154.0	GPa	
Transverse	modulus	of	elasticity	E2 11.13	GPa	

In‐plane	Poisson	ratio	12 0.304	
In‐plane	shear	modulus	G12 6.98	GPa	

Transverse	shear	modulus	G13 ൌ	G12 6.98	GPa	
Transverse	shear	modulus	G23 3.36	GPa	

Table	1:	Mechanical	properties	of	the	T300‐5208	graphite/epoxy.	
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Figure	5:	Single	ply	composite	square	plate.	

	
The	composite	plate	is	modeled	with	a	4ൈ4	mesh	of	bicubic	elements	ሺFaria,	2000ሻ,	and	the	stiffness	and	geo‐

metric	stiffness	matrices	are	computed.	The	Lanczos	algorithm	3	for	θ	ൌ	45o	leads	to	the	critical	loads	20.91	N/m	
ሺlowest	positive	eigenvalueሻ	and	3.17	N/m	ሺhighest	negative	eigenvalueሻ.	Along	the	plate	diagonal,	where	x	ൌ	y,	
the	pure	shear	load	induces	compressive	normal	stresses.	Therefore,	a	high	critical	buckling	load	is	expected	ሺ20.91	
N/mሻ.	When	the	layer	angle	is	θ	ൌ	െ45o	the	critical	loads	become	3.17	N/m	ሺlowest	positive	eigenvalueሻ	and	20.91	
N/m	ሺhighest	negative	eigenvalueሻ.	

Figure	6	shows	how	the	lowest	positive	eigenvalue	ሺλposሻ	and	highest	negative	eigenvalue	ሺλnegሻ	vary	with	the	
layer	angle	θ.	λpos	and	λneg	have	the	same	absolute	values	for	θ	ൌ	0o	and	θ	ൌ	േ90o.	The	maximum	|λ|	is	obtained	for	θ	
ൌ	േ45o.	If	the	plate	is	required	to	equally	support	either	positive	or	negative	shear	loads	then	the	optimal	strategy	
would	be	to	choose	θ	ൌ	0o	or	θ	ൌ	90o.	
	

	
Figure	6:	Critical	load	variation.	

	
4	 CONCLUSIONS	

A	deeper	investigation	of	the	Lanczos	algorithm	applied	to	the	solution	of	the	eigenvalue	problem	stated	in	Eq.	ሺ3ሻ	
reveals	that	the	principal	contribution	to	vector	xi+1	is	from	i,	where	i	is	the	eigenvector	related	to	the	ith	least	ei‐
genvalue	 in	 absolute	 value.	Hence,	 vector	x2	 consists	mostly	of	1;	 vector	x3	 consists	mostly	of	2;	 so	on	 so	 forth,	
where	the	eigenvalues	are	ordered	such	that	 |λ1| < |λ2| < ... < |λn|.	Thus,	one	expects	 that	the	procedure	converges	
quickly	 to	 the	 least	eigenvalues	 in	absolute	value	and	related	eigenvectors.	 If	a	structure	 is	subject	 to	 loadings	 in	
either	direction	ሺpositive	or	negativeሻ,	the	relevant	critical	buckling	load	is	the	one	associated	to	the	least	eigenvalue	
in	absolute	value.	Therefore,	it	is	clear	that	eigensolvers	of	practical	relevance	must	be	able	to	compute	eigenvalues	
of	either	sign.	
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