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Abstract 
In this research, two stress-based finite element methods includ-
ing the curvature-based finite element method (CFE) and the 
curvature-derivative-based finite element method (CDFE) are 
developed for dynamics analysis of Euler-Bernoulli beams with 
different boundary conditions. In CFE, the curvature distribution 
of the Euler-Bernoulli beams is approximated by its nodal curva-
tures then the displacement distribution is obtained by its inte-
gration. In CDFE, the displacement distribution is approximated 
in terms of nodal curvature derivatives by integration of the cur-
vature derivative distribution. In the introduced methods, com-
pared with displacement-based finite element method (DFE), not 
only the required number of degrees of freedom is reduced, but 
also the continuity of stress at nodal points is satisfied. In this 
paper, the natural frequencies of beams with different type of 
boundary conditions are obtained using both CFE and CDFE 
methods. Furthermore, some numerical examples for the static 
and dynamic response of some beams are solved and compared 
with those obtained by DFE method. 
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1 INTRODUCTION 

Displacement-based finite element (DFE) method has extensively been used in computational solid 
mechanics. In this method, the displacement and slope are used as the nodal values in the modelling 
of beams. The main disadvantage of DFE is the discontinuity in the stress distribution. Further-
more, stress boundary conditions are not exactly satisfied which causes the inaccuracy of the ap-
proximated solution. To eliminate the mentioned problem, stress-based finite element (SFE) has 
been introduced (De Veubeke, 1965; De Veubeke, 1967). In this method, stress distribution is ap-
proximated by assumed stress function and the transverse deflections and slopes are obtained by 
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integration. Consequently, the considered method provides the continuities of not only transverse 
deflection but also stress at nodes. This technique was used for analyzing different problems, such as 
Kirchhoff plates (Morley, 1968; Punch and Atluri, 1986), plane elastic problems (Watwood and 
Hartz, 1968; Wieckowski et al., 1999) and elasto-plastic analysis (Wieckowski, 1995; Kuo et al., 
2006).  

Kuo et al. (2006) introduced CFE method for Euler- Bernoulli beam. In their work (Kuo et al., 
2006), a cantilever beam and a slewing beam were studied. After that, they used CFE (Kuo and 
Cleghorn, 2011) and SFE method (Kuo and Cleghorn, 2007) to study a four-bar mechanism and a 
flexible slider crank mechanism with small strain but large rigid body motion, respectively.  

Later, Farid and Cleghorn (2012) utilized CFE method for the first time to model the dynamics 
of a single-flexible-link spatial manipulator. They also obtained the dynamic equations of planar 
multi flexible-link manipulators and verified the results with the displacement finite element method 
(Farid and Cleghorn, 2014). Furthermore, an improved curvature-based finite element method was 
developed in (Chen et al., 2015) for the dynamic modelling of a high-speed planar parallel manipu-
lator with flexible links. Also, the method was used for solving a sliding beam problem (Kuo, 2015). 
The varying-length beam element was established for solving the considered problem.  

To the best of our knowledge, the CFE method has been used for the analysis of the problems 
in which the beams are considered to be clamped-free. The main scope of the present research is to 
extend the CFE and to introduce CDFE method for vibration analysis of Euler-Bernoulli beams 
with different boundary conditions.  

The paper is organized as follows: Section 2 introduces both stress-based finite element methods. 
In section 3, the shape functions of both CFE and CDFE methods are obtained for different bound-
ary conditions in order to approximate the deflection in each element.  In section 4, using La-
grange’s equation, equations of motion are obtained and the natural frequencies of beams are ob-
tained. Finally, in section 5, numerical examples related to the static and dynamic responses of 
some beams are investigated. 
 
2 STRESS-BASED FINITE ELEMENT METHODS 

In Figure 1, the Euler-Bernoulli beam divided into N element is depicted. The transverse deflection, 
slope and the nodal variable at the left end of the eth element are designated with 1

ew , 1
e and 1

ev , 

while those at the right end are shown with, 2 2,e ew   and 1
ev ,respectively. Also, the ith global nodal 

variable, iv  in each of CFE and CDFE methods are considered im and in , respectively.  

 

 

Figure 1: An Euler-Bernoulli beam element. 
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In sequence, the shape functions in each of the curvature and the curvature derivative-based fi-
nite element methods are obtained. 
 
2.1 Curvature-Based Finite Element Method (CFE) 

The curvature distribution in the eth element,  em  , can be linearly approximated as 
 

  1 1 2 2( ) ( ) e e em S m S m    (1) 
 

where, 1( )S   and 2 ( )S   are considered as 
 

1 2( ) 1 , ( )  S S     (2) 
 

in which 
 

1( ) /( )  e e ex x x x  (3) 
 

The slope in the eth element, e can be obtained by integrating Eq. (1).  
 

 
2 2

e e e
1 2 12 2

  
     

  

e
eh m m c

     (4)

 

where, e
1c  is a constant. Considering the slope of the first node as 0 , the constant can be written as 

 

1 0
1

1

c
h


 (5)

 

Using the continuity of slope between the first and the second element, the constant, 2
1c  is de-

rived as 
 

2
1 1 2 1 1 2 2 02

2
2

1 1 1 
2 2
     

c h h m h h m h
h

  (6)

 

In general, the constant 1
ec  for the eth element can be obtained in a similar way as 

 
e
1 1 1 1 2 2 2 3 32

2 1 1 1 2 0

1 1 1 1 1 1[ ( ) ( )
2 2 2 2 2

1 1 1( )
2 2 2   

    

    

e e e e e
e

e e e e e e e e

c h h m h h h h m h h h h m
h

h h h h m h h m h
 (7)

 
Integrating Eq. (4), the transverse deflection in the eth element can be obtained by the follow-

ing equation.  
 

 
2 3 3

e 2 e e e
1 2 1 22 6 6

  
      

  

e
ew h m m c c

     (8)
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In Eq. (8), e
2c  is a constant parameter determined by boundary conditions. Considering the 

continuity of deflection at the internal nodes, the constant is obtained as 
 

e 2 2 2 2 2 2 2
2 1 1 1 2 2 2 3 3 2 1 12

2 2 1 2 2 2 1 1
1 1 1 2 1 1 1 2

1 1 1 1 1 1 1 1 [ ( ) ( ) ( )
2 6 3 6 3 6 3

1 ]
6

  


 

      

    

e e e
e

e
e e e

c h m h h m h h m h h m
h

h m h c h c h c c

 (9)

 

Using Eqs. (7-9), the deflection of the eth element is approximated as 
 

   
1

e e e e
1 0 2 0

1





  
N

i i
i

w H m N N w    (10)

 

In the above relation,  e
iH  , 1

eN  and 2
eN  are the shape functions of the eth element obtained 

as  
For e =1 

 

2 3
2

1 1
1

2 6
 

  
 

H h
 

 (11-a)

 

For e = 3, 4, … , N   
 

2 1
e 11 1
1

2
   

3 2 2





  
e

e
k

k

h hh h
H h   (11-b)

 

For e = 1, 2, … , N  
 

2
e
e 1 6  ehH   (11-c)

 

For e = 2, 3, …, N  
 

2 2 3
21 1 ( )

6 2 2 6
    e e e e

e e

h h h
H h

   (11-d)

 

For e = 3, 4, …. , N  
 

2 2
e e 2 2 1 1 2 1

1
     

6 2 2 2
     



      
 

e e e e e
e e

h h h h h h
H h   (11-e)

 

For e = 4, 5, …. , N  
 

2 2
e e 3 3 2 2 3 2 3 2

2 1
       

6 2 3 2 2
       

 

           
   

e e e e e e e
e e e

h h h h h h h h
H h h   (11-f)

 

For 2,..., 1  i e N  
 

0eiH  (11-g)
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where, N  is the total number of elements. Also, 1
eN  and 2

eN  are derived as 
 

 1 1 2 1   e
e eN h h h h  (12-a)

 

2 1 eN  (12-b)
 

2.2 Curvature Derivative-Based Finite Element Method (CDFE) 

The curvature derivative distribution in the eth element,  en  , can be linearly approximated as 
 

  1 1 2 2( ) ( ) e e ev Sn nS    (13)
 

where, 1( )S  and 2 ( )S  are defined in Eq. (2). The curvature distribution in the beam can be ob-

tained by integrating Eq. (13). 
 

 
2 2

e e e
1 2 12 2

  
     

  

e
eh n n cm

    (14)

 

The slope and transverse deflection of the eth element can be obtained by integrating Eq. (14) 
as 
 

 
2 3 3

e 2 e
1 2

e
1 22 6 6

  
      

  
e

e eh n n c c
      (15)

 

 
3 4 4

3
2

e
12 2 3

e
1 246 24 2

  
       

  

e e e
e

ew h n n c c c
      (16) 

 

in which, 1
ec , 2

ec  and 3
ec  are the constant parameters obtained by the continuity of curvature, slope 

and deflection between elements. The constants 1
ec and 2

ec  are similar to the CFE method and the 

constant e
3c is derived given as 
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 (17)

 

The deflection of the eth element in the CDFE method can be written as 
 

   
1

01 2 0 3
1

0




   
N

e ee

i

e e
i iw H N m N Nn w   (18)
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in which, the shape functions  e
iH  are obtained as 

 

For e =1 
 

3 4
1 3
1 1 6 24

 
  

 
H h

 
 (19-a)

 

For e = 3, 4, …, N  
 

2 1
e 21 1

3
1 1

1 1
2

 + + ( 1))
438

(  
4 2








 
e

k
k

h h h h e
H h h   (19-b)

 

For e = 1, 2, … , N  
 

3
e 4
e 1 24  ehH   (19-c)

 

For e = 2, 3, …, N  
 

21 1 1
3 2 3 4

3 ( )
24 6 4 6 24
      e e e e

e e

h h h
H h

    (19-d)

 

For e = 3, 4, …. , N   
 

3 3 2 2 2
e 2 2e 2 e 1 e 2 1 e 2 e 1 2 1 1 2

1 24 8 6 6
  

4 4 13 6 2
         

         e e e e e
e

h h h h h h h h h h
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For e = 4, 5, …. , N  
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3
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   

        

        
   

e e e e e e e e
e

e e e e
e

h h h h h h h h h h h
H

h h h h
h
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 
 (19-f)

 

For 2,..., 1  i e N  
 

0eiH  (19-g)
 

Furthermore, 1
eN , 2

eN  and 3
eN  are derived as 

 

 
2

2
1 1 2 1

1 ( 1)
2 2


    e

e e

e
N h h h h   (20-a)

 

 12 2 1   e
e eN h h h h  (20-b)

 

3 1 eN  (20-c)
 

In the appendix, the first five shape functions in the CFE and CDFE methods are given.  
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3 BEAMS WITH DIFFERENT BOUNDARY CONDITIONS 

In this section, the unknown constants in Eqs, (10) and (18) are obtained by considering the 
boundary conditions. In CFE method, two of the boundary conditions are used to determine the 
constants 0  and 0w , the other boundary conditions are incorporated as constraints. In CDFE 

method, the constant 0m , 0  and 0w  are obtained by using three boundary conditions and the 

other one is imposed as constraint.  
Therefore, the deflection of the elements in the CFE and CDFE methods can be written in 

terms of nodal variables as 
 

   
1

1





 
N

e e
i i

i

w H v   (21)

 

In what follows, the shape functions,  e
iH   in the CFE and CDFE methods are obtained for 

different boundary conditions such as clamped-free, pinned-pinned, pinned-guided, clamped-pined, 
clamped-guided and clamped-clamped. 
 
3.1 Clamped Free (CFE) 

For the clamped free beam, the deflection and slope of the first node are zero and the boundary 
conditions are written as 
 

   1 10 0 0   w     (22)

 
Thus, 0  and 0w  are zero and the shape function e

iH  are obtained the same as e
iH . 

 
3.2 Clamped Free (CDFE) 

For the clamped free beam, the constants 0w , 0  and 0m  in Eq. (18), are obtained using the follow-

ing conditions 
 

     1 10 0 1 0     Nw m     (23)
 

Constants 0  and 0w  are zero and the following relation for 0m  is derived   

 

       0 1 1 2 2 1 1
1

1 [ 1  1 1 ]
1          

 
N N N

N N Nm H n H n H n
N

  


 (24)

 
Therefore, the shape functions can be presented in the form of Eq. (21), where e

iH  is obtained 

as  
 

   
1

1 1 1,2,
1

1 ..., 1    
 

e e e e
ii i N

H H N H i N
N




 (25) 
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3.3 Pinned-Pinned (CFE) 

In this case, the boundary conditions are given as 
 

   1 N0 1 0   w w   (26)
 

Considering the first boundary condition, constant 0w  is zero. Incorporating, the second bound-

ary condition, constant 0  is obtained as 
 

       0 1 1 2 2 1 1
1

1 [ 1  1 1 ]
1        


e e e

N Ne
H m H m H m

N
   


 (27)

 

By substituting Eq. (27), to Eq. (10), the deflection of the nodes is obtained in which the shape 
function, e

iH  is obtained as 
 

   
1

1
1 1 1,2,..., 1

1
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
e N N
i i

e
i e

H H N H i N
N




 (28)

 
3.4 Pinned-Pinned (CDFE) 

Since the deflection and the curvature at the left side of the beam are zero, constants 0w  and 0m  

are zero. Constant 0  can be obtained by considering zero deflection at the left side of the beam as 
 

       0 1 1 2 2 1 1
1

1 [ 1  1 1 ]
1        

 N
N

N
N N

N
H n H n H n

N
   


 (29)

 

In this case, the deflection of the beam can be written in the form of Eq. (21), where e
iH  is ob-

tained similar to the pined-pined beam in CFE method given in Eq. (28).  
 
3.5 Pinned-Guided (CFE) 

For the pinned-guided case, the boundary condition are written as 
 

   1 N0 1 0   w w   (30)
 

Considering the boundary conditions, the unknown parameter, 0w is zero and the parameter 0  

is derived as 
 

       0 1 1 2 2 1 1
1

1 1 1 1
1          

  


e e e
N Ne

H m H m H m
N

   


 (31)

 

Using Eqs. (31), and (10), the nodes’ displacement of the pinned-guided beam is derived where, 
e
iH  is obtained as 

 

   
1

1
1 1 1,2,..., 1

1
    

 
e
i e

e N N
i iH H N H i N

N



 (32)
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3.6 Pinned-Guided (CDFE) 

Considering the following conditions 
 

     1 1 N0 1 1 0     w m w    (33)
 

Constants 0w  and 0  are zero and 0m is derived obtained as 
 

       0 1 1 2 2 1 1
1

1 1 1 1
1          

  


N N N
N NN

H n H n H nm
N

  


 (34)

 

In this case, the shape functions can be derived as given in Eq. (32). 
 
3.7 Clamped-Pinned (CFE) 

Considering zero deflection and slope for the first node, the shape functions are obtained similar to 
the clamped free beam in the CFE method. The zero displacement at the right end is considered as 
a constraint where can be obtained by multiplying the matrix Γ  by the vector of curvature. The 
matrix Γ  is given as 
 

   1 11 1    Γ N N
NH H   (35)

 
3.8 Clamped-Pinned (CDFE) 

Using the following conditions  
 

     1 N0 1 1 0      Nw w w    (36)
 

Constants 0w  and 0  are zeros and 0m  is found as  
 

       0 1 1 2 2 1 1
1

1 1 1 1
1           

N N
N N
N

N
H n H H n

N
m n  

  (37)

 

By substituting Eq. (37), to Eq. (18), the deflection of the nodes is obtained in the form of Eq. 
(28). 
 
3.9 Clamped-Guided (CFE) 

In this case, the shape functions are similar to the clamped-free beam in CFE method. Also, the 
zeros slope at the right end of the beam is considered as a constraint. In this case, the matrix Γ  is 
defined as 
 

   1 11 1     Γ N N
NH H   (38)

 
3.10 Clamped-Guided (CDFE) 

In this case, the constants 0w , 0  and 0m  are obtained using the following conditions 
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     11 0 1 1 0      Nw w w    (39)
 

Constants 0w  and 0  are zero and 0m  is derived as  
 

       0 1 1 2 2 1 1
1

1 1 1 1
1          

  


N N N
N NN

H n H n H nm
N

  
  (40)

 

The shape functions are similar to Eq. (32). 
 
3.11 Clamped-Clamped (CFE) 

For beams with this boundary condition, the shape functions are similar to those of the clamped-
free beam in CFE method. Furthermore, the constraints are zero displacement and zero slope at the 
right end of the beam which can be obtained by multiplication the matrix Γ  to the curvature vec-
tor. In this case, matrix Γ  can be presented as  
 

     
     

N N N
1 2 N 1

1 2 1

1 1 1
1 1 1





   
       

Γ

N N N

N

H

H H

H H

H

  
  

 (41)

 
3.12 Clamped-Clamped (CDFE) 

In this case, the conditions are  
 

       11 0 1 0 1 0       N Nw w w w     (42)
 

Constants 0w  and 0  are zero and 0m  is obtained as  
 

       0 1 1 2 2 1 1
1

1 1 1 1
1           

N N
N N
N

N
H n H H n

N
m n  

  (43)

 

The zero slope at the right side of the beam is considered as a constraint which, can be obtained 
by multiplying matrix Γ  by curvature derivative vector  
 

     1 121 1 1       Γ N N N
NH H H    (44)

 

The shape functions can be seen in Eq. (28). 
 
4 FREQUENCY EQUATION 

In this section, using Lagrange’s equation and the assumed deflection of the eth element in terms of 
nodal curvatures and curvature derivatives in CFE and CDFE methods, respectively, the mass ma-
trix and stiffness matrix can be obtained. 
 
4.1 Mass Matrix 

The kinetic energy of the eth beam element can be written as 
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0

2
11 (

2
)


 

e
e w

d
t

T A   (45)

 

where, the density and the cross area of the beam are designated with constants   and A , respec-

tively. Using Eqs. (21) and (45), the kinetic energy can be rewritten as  
 

11 1
e

1 1 0

1
2

 

 

   
N N

e e
i j i j

i j

T A H H v v d   (46)

 

Thus, the components of the eth element mass matrix are 
 

1
e

0

  e e
ij i jm A H H d   (47)

 

Also, the kinetic energy of a beam carrying a concentrated mass, 0m  attached at the eth global 

node is given as 
 

1 1

0 
1 1

( ) (1 1)1
2

 

 

    
N N

e e
i j i

i j
jT m H H v v   (48)

 

Therefore, the corresponding components of the eth element mass matrix can be obtained as 
 

e
0 ( 1 1) ( )  e e

ij i jm m H H   (49)

 
4.2 Stiffness Matrix 

The potential energy of the eth element of the Euler beam can be written as 
 

21 2 e
e e

2
0

1
2

 
   


w
U EI d


 (50)

 

in which, eEI  is the flexural stiffness of the eth element. Considering the transverse deflection of 
the eth element, the component of the eth element stiffness matrix can be obtained as 
 

1
e e

0

   e e
ij i jk EI H H d  (51)

 

where, eiH  is the second derivative of e
iH . 

If linear and torsional springs with stiffness lk  and tk  are attached to the eth global node, the 

corresponding component of the stiffness matrix can be obtained as 
 

e ( ) ( )1 1 ( ) ( )1 1     e e e e
ij l i j t i jk k H H k H H     (52) 

 

Remark: The size of the total mass and stiffness matrices of the spring-mass-beam system is
( 1) ( 1)  e e . The ij  mponent of the assembled mass and stiffness matrix is obtained by summa-

tion of all the ij  component of elemental mass and stiffness matrices.  
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4.3 Load Vector 

The virtual work of a discrete load, kF  acting at the eth node can be written as  
 

 . 1 e
k kW F w    (53)

 

While the virtual displacement of each node is as 
 

   
1

1





 
N

e e
i i

i

w H v     (54)

 

Using Eqs. (53) and (54), the generalized force can be written as  
 

fk kF  (55)
 

where, the vector   is defined as 
 

 
 

 

1

1

2

1
1

1

 
    
 

  




e

e

e
N

H

H

H






 (56)

 

The generalized force vector associated to a concentrated moment, kM  at the eth node can be 

written as  
 

fk kM  (57)
 

where, the vector   for the moment is obtained as  
 

 
 

 

1

2

1

1
1

1

 
     
 

   




e

e

e
N

H

H

H






 (58)

 
Furthermore, it can be shown that the generalized force vector due to a continuous force,  f ξ  

and a continuous moment,  ξM  in the eth element can be obtained from Eqs. (59) and (60), re-

spectively.  
 

   

   

   

1

10
1

20

1

10

f ξ 1

f ξ 1

f ξ 1

  
 

   
 
 

  






f


e

e

f

e
N

H d

H d

H d

 

 

 

 (59)
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   

   

   

1

10
1

0 2

1

10

ξ 1

ξ 1

ξ 1

   
 

    
 
    






f


e

e

M

e
N

M H d

M H d

M H d

 

 

 

 (60)

 

The ith column of the assembled load vectors is obtained by summation the ith column of the 
elements. 
 
4.4 Natural Frequency 

Using the obtained assembled mass and stiffness matrices, the dynamic equation of a beam without 
constraint can be written as 
 

  fvM Kv  (61)
 

The natural frequencies of these beams can be obtained from the following eigenvalue relation 
 

2 0 K M  (62)

 
For the beams with constraints, by incorporating the constraints, the resulting differential alge-

braic equations can be written as 
 

0
0 0 00

        
         

        

M fK Γv v

p pΓ
 T

 (63)

 
in which, the vector of reaction force is presented by p . 

The natural frequencies for these beams can be obtained by solving the following equation 
 

2 0
0

0 00
   

    
  

MK Γ

Γ

T

  (64)

 
5 NUMERICAL EXAMPLES 

In this section, some numerical examples are presented and the results are verified using DFE 
method. For this purpose, the beams in the presented examples are assumed to be made of steel bar 
of 0.1 0.1m m  rectangular cross section for which 37800 / kg m  and 200 E GPA . Also, the 

length of the beam is considered to be 1  m . 
The first five natural frequencies of the beams with different boundary conditions are obtained 

with DFE, CFE and CDFE methods and are shown in Table 1. The number of elements in each 
case is determined. 
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type  1  2  3  4  5  

Clamped-
free 

exact 51.39 322.09 901.86 1767.29 2921.47 
DFE(10) 51.39 322.10 902.09 1768.98 2928.83 
DFE(20) 51.39 322.09 901.88 1767.42 2921.97
CFE(20) 51.39 322.09 901.88 1767.41 2922.04

CDFE(10) 51.39 322.09 901.87 1767.36 2922.38 
CDFE (20) 51.39 322.09 901.86 1767.30 2922.48 

Pinned-
pinned 

exact 144.27 577.08 1298.43 2308.32 3606.75 
DFE(10) 144.27 577.14 1299.12 2312.14 3620.99 
DFE(20) 144.27 577.08 1298.47 2308.57 3607.69
CFE(20) 144.27 577.08 1298.47 2308.59 3608.74

CDFE (10) 144.27 577.08 1298.45 2308.61 3609.16 
CDFE (20) 144.27 577.08 1298.43 2308.32 3606.74 

Pinned-
guided 

 

exact 36.06 324.60 901.68 1767.31 2921.47 
DFE(10) 36.06 324.61 901.92 1769.04 2929.13 
DFE(20) 36.06 324.61 901.96 1767.43 2922.03
CFE(20) 36.06 324.61 901.92 1767.21 2921.97

CDFE (10) 36.06 324.60 901.69 1767.39 2922.37 
CDFE (20) 36.06 324.60 901.68 1767.31 2921.48

Clamped-
pinned 

exact 225.37 730.36 1523.85 2605.88 3976.44 
DFE(10) 225.38 730.49 1524.97 2616.37 3995.44 
DFE(20) 225.37 730.37 1523.93 2606.27 3977.92 
CFE(20) 225.37 730.37 1523.92 2606.23 3977.70 

CDFE (10) 225.37 730.36 1523.89 2606.33 3979.89 
CDFE (20) 225.37 730.36 1523.85 2605.88 3976.47 

Clamped-
guided 

exact 81.76 441.83 1091.04 2028.80 3255.09 
DFE(10) 81.76 441.85 1091.45 2031.41 3265.66 
DFE(20) 81.76 441.83 1091.07 2028.98 3255.88
CFE(20) 81.76 441.83 1091.07 2028.96 3255.78

CDFE (10) 81.76 441.83 1091.05 2028.95 3256.43 
CDFE (20) 81.76 441.83 1091.04 2028.80 3255.10 

Clamped-
clamped 

exact 327.04 901.52 1767.32 2921.47 4364.17 
DFE(10) 327.05 901.74 1769.06 2929.18 4389.14 
DFE(20) 327.04 901.52 1767.44 2922.03 4366.14
CFE(20) 327.04 901.52 1767.43 2921.97 4365.80 

CDFE (10) 327.04 901.51 1767.43 2922.21 4369.31 
CDFE (20) 327.04 901.52 1767.32 2921.47 4364.15 

Table 1: Natural frequencies of the different beam using CFE, CDFE and DFE methods. 

 
 

Now, two examples for the static analysis of beams are presented. In the first example, deflec-
tion, slope and curvature distribution of a simply support beam caring a uniformly distributed load
 w 10 KN / m   is obtained using DFE, CFE and CDFE methods with different number of elements. 

The results are shown in Figures 2 to 4.  
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Figure 2: Deflection distribution of simply support beam using DFE, CFE and CDFE methods. 

 

 

Figure 3: Slope distribution of simply support beam using DFE, CFE and CDFE methods. 

 

 

Figure 4: Curvature distribution of simply support beam using DFE, CFE and CDFE methods. 
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For a clamped-clamped beam with uniformly distributed load w 10 KN / m  , deflection, slope 

and its curvature distributions are plotted in Figures 5 to 7. 
 

 

Figure 5: Deflection distribution of a clamped-clamped beam using DFE, CFE and CDFE methods. 

 

 
Figure 6: Slope distribution of a clamped-clamped beam using DFE, CFE and CDFE methods. 

 

 

Figure 7: Curvature distribution of a clamped-clamped beam using DFE, CFE and CDFE methods. 
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It can be seen from Figures 2 to 7 that the deflection and slope distribution in the DFE, CFE 
and CDFE methods with two elements have the same accuracy. The curvature distribution in 
CDFE with two elements is close to the results of DFE method with ten elements which confirm 
the effectiveness of the CDFE method in comparison with DFE method. 

Now, the dynamic response of an Euler-Bernoulli beam with CFE and CDFE methods are in-
vestigated. In the first example, midpoint deflection of a clamped free beam under a suddenly ap-
plied concentrated load  w 10 KN  at point  x 3 4    is shown in Figure 8. 

 
 

 

Figure 8: Midpoint deflection of a clamped-pined beam using CFE method. 

 
The second example is related to the dynamic response of a clamped free beam with a spring at 

its right end (  k 6000 KN / m  ). The deflection of the midpoint of the beam in the presence of a 

suddenly distributed uniform load  w 10 KN / m   is depicted in Figure 9.  

 
 

 

Figure 9: Midpoint deflection of the clamped-free beam using CDFE method. 
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As can be seen, CFE and CDFE methods have the same accuracies in comparison with DFE 
method. Since the number of nodal variables in CFE and CDFE methods is less than that of DFE 
method, the computational cost is reduced. Thus, the proposed methods are more efficient for dy-
namic analysis of beams and can be used for the dynamic analysis of different problems in solid 
mechanics.  
 
6 CONCLUSION 

This study focused on the dynamic analysis of Euler-Bernoulli beams using curvature and curvature 
derivative-based finite element methods. In curvature based finite element method (CFE) instead of 
interpolating displacement of Euler Bernoulli beam in usual displacement based finite element 
method (DFE), second derivative of displacement is interpolated. CFE method previously was used 
by a few researchers for dynamic analysis of clamped beams. In this research, CFE method was 
modified for static and dynamic analysis of beams with various boundary conditions.  

In addition, a new method called CDFE (curvature derivative-based finite element) which is 
somehow a modification of CFE, was proposed. CDFE method, which interpolates the derivative of 
curvature instead of curvature, was used for beams with different boundary conditions.  

The results were compared with those obtained by DFE method and the effectiveness of the 
CFE and CDFE methods was shown. In comparison with DFE method, the proposed methods have 
the following advantages: 

 The bending moment in CFE method and the bending moment and the shear stress at the 
internal nodes in CDFE method are continuous.  

 With fewer numbers of elastic degrees of freedom, CFE and CDFE methods are more accu-
rate than DFE method.  
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APPENDIX 

The first five Shape functions of Euler-Bernoulli beam for CFE and CDFE methods are presented 
in the following table.  
 

Element 1  Element 2 Element 3 Element 4 Element 5 
2 3

1 2
1 ( )

2 6
 H h

    2 2
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1 1( )
2 3
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1
4 0H   2

4 0H   
3

3 2
4 ( )

6
H h

  
2 3

4 2
4

1 1( )
2 6 2 6

   H h
    5 2

4 ( 1) H h   

1
5 0H   2

5 0H   3
5 0H  

3
4 2
5 ( )

6
H h

  
2 3

5 2
5

1 1( )
2 6 2 6

   H h
   

1
6 0H   2

6 0H   3
6 0H   4

6 0H  
3

5 2
6 ( )

6
H h



Table 2: Shape functions (CFE). 

 
Element 1  Element 2 Element 3 Element 4 Element 5 

3
1 3
1

4

( )
246

 H h
   

2
2 3

1
1 1( )

4 3 8
  H h

   
2

3 3
1

17( )
4 24

5
6

  H h
   

2
4 3
1

43( )
4 3 24

4
  H h

   
2

5 3
1

11 27( )
4 86

  H h
   

1 3
2

4

  
24

H h
  

42 3
2 3
2

1 1(  )
24 6 4 6 24

    H h
    

2
3 3
2

7( )
4 12

  H h
   

2
4 3
2

55( 3 )
4 12

  H h
   

2
5 3
2

55( 3 )
4 12

  H h
   

1
3 0H   2 3

3

4

(  )
24

H h
  

42 3
3 3
3

1 1(  )
24 6 4 6 24

    H h
    

2
4 3
3

14( )
4 24

  H h
   

2
5 3
3

25( 2 )
4 12

  H h
   

1
4 0H   2

4 0H   3 3
4

4

(  )
24

H h
  

42 3
4 3
4

1 1(  )
24 6 4 6 24

    H h
    

2
5 3
4

14( )
4 24

  H h
   

1
5 0H   2

5 0H   3
5 0H   4 3

5

4

(  )
24

H h
  

42 3
5 3
5

1 1(  )
24 6 4 6 24

    H h
    

1
6 0H   2

6 0H   3
6 0H   4

6 0H   5 3
6

4

(  )
24

H h


Table 3: Shape functions (CDFE). 


