
1952 

Abstract 
In this paper, a geometrically nonlinear analysis of functionally 
graded material (FGM) shells is investigated using Abaqus software. 
A user defined subroutine (UMAT) is developed and implemented in 
Abaqus/Standard to study the FG shells in large displacements and 
rotations. The material properties are introduced according to the 
integration points in Abaqus via the UMAT subroutine. The predic-
tions of static response of several non-trivial structure problems are 
compared to some reference solutions in order to verify the accuracy 
and the effectiveness of the new developed nonlinear solution proce-
dures. All the results indicate very good performance in comparison 
with references. 
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Geometric nonlinear; Functionally graded shells; Numerical imple-
mentation. 
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1 INTRODUCTION 

Functionally Graded Materials (FGMs) are the heterogeneous composite materials in which the ma-
terial properties are gradually varied along one, two or three directions as a function of the position 
coordinates. The most known FGMs are composed of transition alloys from metal at one surface to 
ceramic at the opposite surface (Yang and Shena 2003; Woo and Merguid 2001; GhannadPour and 
Alinia 2006). Thanks to the low thermal conductivity of ceramic (Hasselman and Youngblood 1978; 
Niino and Maeda 1990), this kind of FGMs was introduced as high thermal resistant materials for 
applications such as nuclear reactors, chemical plants, heat engine components and aerospace vehicles.  
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Several research works are obtainable in literature to analyze the linear mechanical behavior of 
FG shell structures (Tornabene 2009; Mantari and Monge 2016; Lee et al. 2009). Typically, FG shell 
structures were presented using: (i) Kirchhoff-Love theory, Chi and Chung (2006), where the shear 
strains are assumed zero, which is not acceptable for FG shell; (ii) the First-order Shear Deformation 
Theory (FSDT) (Praveen and Reddy 1998; Thai and Kim 2015), which gives a correct overall assess-
ment. Notice that the shear correction factors should be incorporated to adjust the transverse shear 
stiffness; (iii) the High-order Shear Deformation Theory (HSDT) (Neves et al. 2012; Wali et al. 2014, 
2015; Frikha et al. 2016) in which the equations of motion are more complicated to obtain than those 
of the FSDT; among other theories. 

It is certainly plausible that linear finite element (FE) models cannot be able to accurately predict 
the structural response presenting large elastic deformations and finite rotations. Indeed, according 
to Yu et al. (2015), several practical problems of FG structures require a geometrically non-linear 
formulation, such as the post-buckling behavior of structures used in aeronautical, aerospace as well 
as in mechanical and civil engineering. In such cases, it becomes crucial to develop efficient and 
accurate nonlinear FE models. 

It is well known that analytical solutions of shell problems are very limited. Hence, most of 
reference solutions are previously reported numerical solutions. Particularly, for FE geometric non-
linear analysis of FG shells, several research papers are surveyed (Praveen and Reddy 1998; Reddy 
2000; Kattimani and Ray 2015; Duc et al. 2017; Arciniega and Reddy 2007a, 2007b; Alinia and 
Ghannadpour 2009; Phung-Van et al. 2014; Kim et al. 2008; Hajlaoui et al. 2017; Frikha and Dammak 
2017; Asemi et al. 2014 and Ansari et al. 2016). In these references, a number of theoretical formula-
tion and finite element models based on von Karman, Kirchhoff-Love, FSDT and HSDT theories 
were proposed to study the geometrically non-linear behavior of FGMs Structures. 

Hosseini Kordkheili and Naghdabadi (2007) derived a FE formulation for the geometrically non-
linear thermoelastic analysis of FGM plates and shells using the updated Lagrangian approach. Later, 
Zhao and Liew (2009) conducted a geometrically non-linear analysis of FGM shells under mechanical 
and thermal loading using the element-free kp-Ritz method. The formulation was based on the mod-
ified version of Sander’s non-linear shell theory, accounting for transverse shear strains, rotational 
inertia, and moderate rotations in the von Karman assumption. The arc-length method, combined 
with the modified Newton–Raphson approach, was employed to trace the full load–displacement path. 
Recently, Moita et al. (2016) has introduced a non-linear formulation for general FGM plate-shell 
type structures. The formulation relayed on geometric and material non-linear behavior. Using the 
Newton–Raphson incremental-iterative method, the incremental equilibrium path was obtained, and 
in case of snap-through occurrence the automatic arc-length method was used. 

One can notice that, applied to FGM, the studies of the non-linear behavior of plates and shells 
were limited generally to a von-Karman assumption that only takes into account membrane forces, 
which is limited to moderately small deformations (Reddy 2000; Phung-Van et al. 2014).  

Moreover, some studies analyze FGM structures using the well-known commercial finite element 
software package ABAQUS to employ its significant capabilities (Hosseini Tehrani and Talebi 
(2012)). Since no such type of FGM element is available in the software element library of ABAQUS, 
in these studies, the FGM layer is divided into a large number of isotropic layers to have the best 
smoothing of the FGM material properties (Etemadi et al. 2015; Mao et al. 2013). Each layer is 
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meshed with 5 to 10 elements. The main limitation of this method is the expensive CPU time and 
the non-continuous segmented distribution of material properties.  

In the other front of the development of numerical methods, authors used the commercial software 
ABAQUS for geometrically non-linear analysis of isotropic shells, Sze et al. (2004). To the best 
knowledge of the authors, there are no further accessible documents in literature dealing with 
ABAQUS implementation of geometric non-linear behavior of FGM shells. This is the main motiva-
tion for the present work, which introduces an alternative method to analyze the geometric non-linear 
static response of FG shells. The material properties are introduced according to the integration points 
via the implementation of the user-material UMAT subroutine into ABAQUS software. This article 
introduces several non-trivial examples for the validation of the static response of geometrical non-
linear shell elements. All the results indicate very good performance in comparison with references. 
 
2 MATERIAL PROPERTIES 

In this study, the shell structure is considered to be a mixture between metal and ceramic constituents. 
The material properties of the FG shell are functions of volume fractions of constituent materials. 
The Young’s modulus ( )E z  of the functionally graded shell can be expressed as: 
 

     m c m cE z E E E V z    (1)
 

where mE  and cE  represent Young’s modulus of the metal and ceramic, respectively. The ceramic 

volume fraction  cV z  follows the four-parameters power law distribution, Tornabene (2009):  
 

   / / /
1 1: 1
2 2

nc

ca b c n
z zFGM V z a b
h h

                 
 (2)

 

where the volume fraction index n  0 n  . By using Eqs.1 and 2, when 0 ,n  the materiel is 

fully ceramic and when n , the homogeneous metal is recovered. The parameters a, b and c are 
the material variation profile through the FG shell thickness. 
 
3 NON-LINEAR ANALYSIS THEORY 

In this section, the geometry and kinematics of non-linear FSDT shell model are briefly described. 
The reference surface of the shell is assumed to be smooth, continuous and differentiable. Initial and 
current configurations of the shell, are denoted by 0C  and tC , respectively. Variables associated to 

0C  (resp. tC ) are denoted by upper-case letters (resp. lower-case). Vectors will be denoted by bold 

letters. 
 
3.1 Kinematic Assumptions 

For the development of non-linear theory, we consider a material point (q) and (p) of the shell domain, 
in the configurations tC  and 0C . Here (p) is located on the reference surface of the shell and (q) is 
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located at a distance z on the shell director D . The position vector of (q), in tC  and 0C , are given 

respectively by  

     1 2 1 2 1 2, , , ,q pS S z S S z S S X X D  (3)

 

       1 2 1 2 1 2 1 2, , , , ,q pS S z S S z S S S S x x d  (4)

 
Where  / 2 , / 2z h h   is the thickness coordinate of the shell, d and D are the director vectors in 

the deformed and reference configuration respectively (Fig. 1) and   is the stretching parameter. 
The   parameter depends on the actual state of deformation gradient and calculated in the mid-
surface (z=0). We assume that pX  and qX  are functions of curvilinear surface coordinates  S . In 

the above,  1 2,S S  are local surface coordinates that are orthogonal, Fig. 2. Parameterizations of the 

shell material points are carried out in terms of curvilinear coordinates (ξ1, ξ2, ξ3=z). The strain tensor 
can be decomposed in in-plane and transverse shear strains as  
 

3 .
e z  

 

  


 
  a d

 , , 1, 2    (5) 

 
where we have neglected derivatives of   with respect to  S , a are the local orthonormal shell 

direction in deformed state and 3 , e  and   are transverse shear strains, membrane and bending 

and given by 
 

 1
2

e a A     ,   1
2

b B      (6) 

 
where A  and a  are the components of the metric tensor in the reference and deformed configu-

ration respectively,  
 

, ,.p pA   X X  , , ,.p pa   x x  (7) 

 
where we use the notation    ,. . / S


   . B  and b  are the curvature tensors in the reference and 

deformed configuration respectively  
 

, , , ,. .p pB     X D X D  ,   , , , ,. .p pb     x d x d  (8) 

 
In matrix notation, the membrane, bending and shear strains vectors are given by 
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Figure 1: The initial and current configuration of shell structure  

 

 

Figure 2: Shell reference surface. 

 
3.2 Weak Form and Linearization 

The weak form of equilibrium equations is given as 
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  3 3int ij ijV V
W dV e z dV                  (10) 

 

where   are the in-plane stresses and 3  are the transverse shear stresses. 

Performing the integration through the thickness of the shell, the weak form becomes 
 

  0extA
W . . . dA W       e N M T   (11)

 

where extW  is the external virtual work. e ,   and   are the variations of the membrane, bending 

and shear strains vectors. N, M and T are the membrane, bending and shear stresses resultants witch 
are expressed as 
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The stress resultants and strain fields in Eqs. (11) and (12) can be grouped to form the generalized 
resultant stresses and generalized strains as  
 

 
   
  

N
R M

T
   ,  

 
   
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e
 


 (13)

 

Using Eqs. (12) and (13), R  and   are related by the following equation 
 

TR H   , 
0
0

0 0
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/ 2

/ 2

h

s h
dz

  H K H  (15)
 

where H  and H  are in plane and out-of-plane linear elastic sub-matrices, which can be expressed 

in the Cartesian system as 
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where  E z  and  z  are the Young's modulus and the Poisson's ratio respectively. In Eq. (15), K  

is the shear correction matrix computed based on the work of Hajlaoui et al. (2015). 
The weak form of the equilibrium equation, Eq. 12, can be rewritten as a function of the nodal 
displacement vector nU  
 

    0T
n ext nA

W . dA W  U Σ R U  (17)
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Equation 17 defines the non-linear shell problem, which can be solved by the Newton iterative 
procedure. The consistent tangent operator for the Newton solution procedure can be constructed by 
the directional derivative of the weak form in the direction of the increment nU . The tangent 

operator is decomposed, in a straight practice, into material and geometric parts as follows 
 

 T
int n M G nW   U K K U  (18)

 

where MK  and GK  are the material and geometric stiffness matrices respectively. Indeed, the geo-

metric part results from the variation of the virtual strains while holding stress resultant constant. 
The material part of the tangent operator results from the variation in the stress resultants while 
holding virtual strains constant. For the configuration update, the exact procedure for the nodes 
displacement vectors is additively constructed. However, for the nodal director field an exact update 
scheme is used based on finite rotation using exponential matrix. 
 
3.3 Through-Thickness Integration and UMAT Interface 

Numerical integration through the thickness of shell elements is needed to compute Eqs (12) and (15). 
Two types of numerical integration can be used: Gauss and Simpson integration. The number of the 
through-thickness integration points (n), necessary for an accurate analysis of FGM structure using 
shell elements, must be well chosen. A small number of integration points can create an additional 
error of the numerical results. The different shells are modeled with the standard structural shell 
elements, S4. This type of element is quadrilateral 4-nodes elements with three rotational and three 
translational degrees of freedom per node. This element is based on FSDT. The shell formulation of 
this element is derived using finite-membrane strain. This element is widely used for industrial appli-
cations, as it is suitable for thin to moderately thick shell structures. Results, based on the FSDT of 
shell elements are obtained including an automatic calculation of the shear correction factors as in 
Hajlaoui et al. (2015). 

In ABAQUS the integration points through the thickness of the shell are numbered consecutively, 
starting with point (1) to point (n). If Simpson’s rule is used, point 1 is exactly on the bottom surface 
of the shell, Fig. 3. If Gauss quadrature is used, it is the point that is near to the bottom surface, 
ABAQUS (2013). 
 

Figure 3: Through-thickness integration, Simpson’s rule. 
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For each integration point through the thickness of the shell, number KSPT, ABAQUS make a 
call of UMAT subroutine, Table 1. More details can be found in ABAQUS (2013). 
 

Loop over thickness points integration 
         Call UMAT(….DDSDDE, STRESS, KSPT…)  

 Compute parametric coordinate  KSPT :  1 1KSPT    

 Compute reel coordinate  KSPTZ :         
2 2KSPT
h hZ
   

 Compute Stiffness matrix:                       DDSDDE  KSPTZ  

 Compute stress tensor:                           STRESS  KSPTZ  

End Loop 

Table 1: Through-thickness integration. 

 
4 NUMERICAL RESULTS 

The effectiveness of the developed geometric non-linear solution procedure is evaluated through sev-
eral non-trivial structure problems static responses which are compared with literature. Numerical 
study is conducted using the UMAT subroutine implemented into ABAQUS. For all numerical ex-
amples, the number of Simpson integration points through the thickness of the shell is equal to 25. 
 
4.1 Hinged Cylindrical Roof Subjected to a Concentrated Load 

In this section, the non-linear analysis of isotropic cylindrical shell subjected to a concentrated load 
is provided. The geometric properties of the panels are gathered in Fig.4, (Frikha and Dammak 2017; 
Sze et al. 2004; To and Wang 1998; Brank et al. 1995). 
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Figure 4: Hinged cylindrical roof subjected to central pinching force. 
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On one hand, this numerical example is considered with an isotropic material with the following 
material properties: Young’s modulus 3102 75E . , Poisson‘s ratio 0 3.  . Owing to symmetry, only 
one quarter of the physical domain is modeled. A convergence study indicates that the use 16x16 
nodes is appropriate. This problem is solved numerically using Riks solution method adopted in 
ABAQUS, ie, we adopt the cylindrical arc-length procedure to obtain the numerical solutions. The 
total number of load increments (NINC) used in this test to obtain the plotted data is equal to 50. 
Figs. 5a and 5b illustrate the center deflection of the cylindrical roof as a function the applied load. 
The thickness was fixed to 12.7 and 6.35, respectively. For comparison purposes, solutions reported 
in literature are also plotted (Sze et al. 2004). A good correlation is depicted between the present 
results and those from literature. The thick panel exhibits standard limit points. However, in Fig. 5b 
one can notice complex equilibrium curves with snap-through and snap back behavior. This is a 
particular problem known as snapping behavior (Arciniega and Reddy 2007a; Payette and Reddy 
2014). One can deduce that the complexity of the equilibrium paths of the panel increases as the shell 
thickness h is reduced.  
 
 

(a) (b) 

Figure 5: Load- deflection curves of the hinged cylindrical roof: a) h=12.7 mm, b) h=6.35mm. 

 
On the other hand, in Fig. 6, we plot the non-linear mechanical response of FG metal-ceramic 

panels shallow hinged cylindrical roof. The FGM structure properties are the triplet  m cE , E , ; 

70mE GPa  and 168cE GPa  which denote the Young’s modulus of the metal and ceramic compo-

nents, respectively. The Poisson ratio for both metal and ceramic is assumed to be constant and equal 
to 0 3.  . 
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Figure 6: Load- deflection curves of functionally grated metal-ceramic panels  

shallow hinged cylindrical roof, h= 12.7 mm, FGM (a=1, b=0.5, c=2). 

 
According to Fig. 6, the pattern of the central deflection curves is similar to that of the isotropic 

and homogeneous shell, as expected. For instance, for the ceramic panel, the applied load increases 
until a deflection of 10 mm. Then it declines until a deflection of 20 mm. After that, the load increases 
monotonically with deflection. It is plausible that the applied load to ceramic panel is higher than 
that of metal due to the high stiffness of ceramic. Results shown in Fig 6 are visually in good agree-
ment with the solutions presented by Arciniega and Reddy (2007b) as well as deflection curves in 
Frikha and Dammak (2017), Payette and Reddy (2014). 
 
4.2 Case of Ring Plate 

The ring plate geometry, which is shown in Fig. 7 was analyzed in Frikha and Dammak (2017); Sze 
et al. (2004) and Buechter and Ramm (1992), among others. The inner and the outer radius are 
denoted by r=6 m and R=10 m, respectively.  

The ring is considered thin with a thickness h=0.03 m. The material is considered isotropic with 
the Young’s modulus 8 22 1 10mE . kN / m   and the Poisson’s coefficient equal to zero. The ring plate 

is loaded at its free edge, the other edge being fully clamped. The maximum applied load at the free 
edge is fixed to 6 kN/m. In this test, computation is performed with 60 load steps. The load factor, 
f , vs displacement diagram at points A, B and C (Fig. 8) shows the displacement components in the 
out-of-plane direction of the undeformed plate. Displacements agree very well with results reported 
in Frikha and Dammak (2017), Buechter and Ramm (1992) and Wriggers and Gruttmann (1993). 
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(a) (b) 

Figure 7: Initial and deformed configurations: the ring plate loaded with the line force qmax. a) Initial geometry. b)  

Deformed configuration of FGM plate, displacement U2 according to the loading direction (n=2), Fmax= 8 KN. 

 
 

 

Figure 8: Load deflection curve of the isotropic ring plate. 

 
In Figs. 9 and 10, we plot the non-linear mechanical response of FG metal-ceramic ring plate. 

The load force is fixed to 8kN. Herein, computation is performed with 80 load steps. The FGM 
structure properties are the triplet  m cE , E , ; 70mE GPa , 151cE GPa  and 0 3.  . Results of 

shear load vs displacement for various power law index at the two characteristic points A and B are 
well correlated with Arciniega and Reddy (2007a, 2007b). The deformed configuration of a FGM 
annular plate for n=2 is shown in Fig. 7b. A large displacement is depicted at load F=8kN. 
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Figure 9: Load-Displacement curve of the ring plate at point A. 

 

 

Figure 10: Load-Displacement curve of the ring plate at B. 

 
4.3 Hyperboloidal FG Shell 

A hyperboloidal FG shell under two inward and outward point loads (Fig. 11a) is considered to 
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and Arabi 2016; Balah and Al-Ghamedy 2002; Wagner and Gruttmann 1994; Basar et al. 1993; 
Dammak et al. 2005), among others. The material and geometry properties of the shell are given in 
Table 2. 
 

R1 R2 H h qmax 
7.5 15 20 0.04 600 kN 

FGM  
Ceramic E=151 GPa ν= 0.3  

Aluminum E=70 GPa ν= 0.3  

Table 2: The geometrical characteristics of the hyperboloidal FGM shell. 

 

 

 

(a) (b) 

Figure 11: Hyperboloidal FGM shell subjected to alternating radial forces: a): Geometry properties,  

b): Deformed configuration, radial displacement U3 of the hyperboloidal FG shell (n=1). 

 
The radius equation of the hyperboloid shell is given as: 

 

 
2

1
3: 1

20
zR z R

 
   
 

 (19)

 

Owing to symmetry, only one eighth of the shell is considered. The shell was analyzed using 10x20 
S4 elements. The incrementally increased load reached a maximum of Pmax = 600.  

Deformed configuration of the FGM hyperboloidal shell, n=1, is illustrated in Fig. 11b. Figs. 12 
and 13 show the numerical results of this investigation. The load-radial displacement curves for the 
hyperboloidal FG shell at points A, B, C and D are plotted, respectively. This test demonstrates the 
robustness of the present FEM using ABAQUS/UMAT and its applicability to arbitrary shell geom-
etries and geometric non-linearity. 
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(a) (b) 

Figure 12: Load-radial displacement curves of hyperboloid shell with FGM material at points A and D (NINC=50). 

 

 

(a) (b) 

Figure 13: Load-radial displacement curves of hyperboloid shell with FGM material at points B and C (NINC=50). 

 
4.4 Case of Pulled Cylinder  

In this section, the pulled cylinder problem is considered for non-linear shell analysis. It is concerned 
with the deformation of an open-ended cylinder FGM shell, under the action of two outward forces 
180° apart. Using symmetry, only one eighth needs to be modeled with 20x40, S4 elements. This test 
is non-trivial which was considered in Arciniega and Reddy (2007a), Sze et al. (2004, 2002a, 2002b), 
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Brank et al. (1995), Sansour et al. (2000), Gruttmann et al. (1989); Peng and Crisfield (1992) and 
Park et al. (1995). The initial and meshing configuration are shown in Fig. 14. 
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Figure 14: The open-end FGM cylinder shell subjected to radial pulling forces. 

 
The load against the radial deflections at points A, B and C of the shell, are plotted in Figs. 15–

17. Results are in good agreement with those of Arciniega and Reddy (2007a). The deformed config-
urations for a FGM shells under the maximum load is depicted in Fig. 18 for F=5 x106 and n=5. It 
is also noticed that the response of the cylinder shell has two different regions: the first is dominated 
by bending stiffness with large displacements; the second, at load level of F = 5x106, is characterized 
by a very stiff response of the shell. These results obtained by the present model are well correlated 
with findings of Arciniega and Reddy (2007a) and Sze et al. (2004).  
 

 

Figure 15: Radial displacement at point A (WA) vs. pulling force of a FGM cylinder with free edges (NINC=200). 
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Figure 16: Radial displacement at point B (-UB) vs. pulling force of a FGM cylinder with free edges (NINC=200). 

 

 

Figure 17: Radial displacement at point C (-UC) vs. pulling force of a FGM cylinder with free edges (NINC=200). 

 

 

Figure 18: Deformed mesh configurations of cylinder shell with FGM material  

for n=5, radial displacement U3 of the pulled cylinder. 
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4.5 Pinched Cylinder FGM Shell 

This example can be imagined as a pinched can of soda. The cylinder shell geometry is shown in Fig. 
19a. The maximum applied load at the free edge is fixed to Fmax= 2x106. The circumferential periph-
ery is fully clamped. The geometrical and material parameters are described in section 4.4. Owing to 
symmetry, one half of shell is modeled with a mesh size of 20x40 elements S4. 
 

 

(a) (b) 

Figure 19: Pinched cylindrical shell mounted on rigid diaphragms.  

a) Geometric properties, b) The deformed of the FGM shell. 

 

 

Figure 20: Load-deflection curves of the pinched FGM cylindrical shell at A, (Fmaxi =2x106) (NINC=200). 
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Figs. 20–22 show the load against the deflections at points A, B and C of the cylinder shell, 
respectively. The deformed geometry under the maximum load is described in Fig. 19b. It is noticed 
that the response of the cylinder shell, at load level of F = 2x106, is subjected to large displacements. 
Tables 3-5, given in appendix, lists the deflections at point A, B and C for different n. 
 

 

Figure 21: Load-deflection curves of the pinched FGM cylindrical shell at B, (Fmaxi =2x106) (NINC=200). 

 

 

Figure 22: Load-deflection curves of the pinched FGM cylindrical shell at C, (Fmaxi =2x106) (NINC=200). 
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4.6 Case of Semi-Cylindrical FG Shell Loaded with an End Pinching Force 

In this section, a semi-cylindrical FG shell subjected to an end pinching force is considered. The 
cylindrical shell geometry is show in Fig. 23a. The maximum applied load at the middle is taken to 
be Fmax= 1x 106. Using symmetry, only one quarter needs to be modeled with 28 x 28 S4 elements, 
Fig. 23b. The cylinder length is L = 3.048 and the radius R=1.016 with thickness h=0.03. The present 
problems have been considered in Refs. (Sze et al. 2004, 2002a, 2002b; Brank et al. 1995; Klinkel et 
al. 1999 and Fontes et al. 2003). 

The load–deflection curve at point A of isotropic material is shown in Fig. 24 and compared with 
the reference solution of Sze et al. (2004). Material properties are: 72 068 10E .  and 0 3.  . 
 

 

(a) (b) 

Figure 23: Semi-cylindrical FGM shell subjected to a pinching force. a) Geometry properties, b) The  

deformed 28x28 mesh of the pinched under maximum load for cylinder FGM shell (n=0.2). 

 

 

Figure 24: Load-deflection curves of the pinched isotropic cylindrical shell at A, (Fmaxi =2000), (NINC=100). 
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In Fig. 25, we plot the load–deflection curves for the loading point A of functionally grated metal-
ceramic panels. The FGM structure properties are the triplet  m cE , E , ; 90 7 10mE .   and 

91 51 10cE .  and 0 3.  . The curves are presented for different power-law index (n=0.2, 0.5, 2, 5 and 

10). It is plausible that the load–deflection curve of the pure ceramic shell exhibits the highest value 
that of metal.  
 
 

 

Figure 25: Load-deflection curves of the pinched FGM cylindrical shell at A, (Fmaxi =1x106) (NINC=100). 

 
 
4.7 Hemispherical FGM Shell with 18° Hole 

The pinched hemisphere problem is considered with an 18° hole at the top subjected to two inward 
and two outward forces at points A and B at 90° intervals. This example can be used to assess the 
performance of the finite element employed, regarding the shear locking behavior in doubled curved 
shells. From the geometrical symmetry of the sphere, only one quarter needs to be modeled. Fig. 26 
presents geometry and material properties of the shell. Symmetry conditions with 20x20 S4 meshes 
are used in this example. The problem has been considered in Refs. (Kim et al. 2008; Sze et al. 2004, 
2002a, 2002b; Buechter and Ramm 1992; Sansour and Kollmann 2000; Park et al. 1995; Saleeb et al. 
1990; Simo et al. 1990a, 1990b; Lee et al. 1984; Basar et al. 1992; Sansour and Bufler 1992; Betsch 
and Stein 1995; Hauptmann and Schweizerhof 1998; Providas and Kattis 1999; Hong et al. 2001 and 
Kim et al. 2003), among others. In one hand, we consider the case of isotropic material. The loads 
are increased by a factor of 490 comparing with results by Kim et al. (2008), as shown in Fig. 27. 
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Figure 26: Description of the hemispherical shell geometry. 

 

 

Figure 27: Load-deflection curves of the hemispherical shell subjected to radial forces at A and B.  

WA and UB: radial displacements according to the load direction, (NINC=100). 
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of shear load vs displacement for various power law index at the two characteristic points A and B 
are plotted, Fig. 28. The addition of a ceramic volume fraction increases the stiffness of the hemi-
spherical shell. The load–displacement curves are located between those of the metal and ceramic 
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shells. The deformed configurations for a FGM shells under the maximum load is portrayed in Fig. 
29 for n=0.2. 

 

Figure 28: Load-deflection curves of the pinched FGM hemispherical  

shell at A and B, (Fmaxi =8x105), (NINC=100). 

 

 
 

 

Figure 29: Initial and deformed mesh configurations, radial displacement U3 of the hemisphere (n=0.2). 

 
5 CONCLUSION 

In this research, a numerical approach to analyze the geometric non-linear static response of FG shells 
is presented. The material properties are introduced according to the integration points via the im-
plementation of the user-material UMAT subroutine into ABAQUS software. To the best knowledge 
of the authors, there are no further accessible documents in literature on ABAQUS implementation 
of static and geometrical non-linear response of FG shells. The main contribution of the present 
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research is to form a convenient basis, for subsequent comparison, to analyze the geometrically non-
linear FG structures. Seven popular nonlinear structure problems were studied, and compared with 
those reported in the literature. The accuracy of the developed nonlinear solution procedures is well 
assessed and the present results corroborate the existent reference data. A future track of work intro-
ducing plastic behavior of FG shell, will be the investigation of both geometrical and material non-
linear FG structure response. 
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APPENDIX 

F/Fmax ceramic n=0.2 n=0.5 n=1 n=2 n=5 metal 
0.1 0.213 0.271 0.331 0.393 0.449 0.507 0.653 
0.2 0.602 0.683 0.764 0.852 0.937 1.026 1.290 
0.3 0.903 1.015 1.134 1.267 1.400 1.557 2.672 
0.4 1.195 1.353 1.532 1.808 2.449 2.832 3.294 
0.5 1.514 1.817 2.560 2.923 3.127 3.289 3.572 
0.6 2.208 2.821 3.077 3.266 3.409 3.533 3.754 
0.7 2.908 3.154 3.327 3.474 3.593 3.700 3.890 
0.8 3.176 3.357 3.498 3.624 3.730 3.827 3.999 
0.9 3.353 3.504 3.628 3.741 3.838 3.929 4.090 
1 3.487 3.620 3.732 3.837 3.929 4.016 4.169 

Table 3: Radial deflection at point A (-WA) of the pinched cylindrical shell. 

 
F/Fmax ceramic n=0.2 n=0.5 n=1 n=2 n=5 metal 

0.1 0.100 -0.021 -0.025 -0.030 -0.037 -0.044 -0.052 
0.2 -0.064 -0.075 -0.087 -0.101 -0.115 -0.128 -0.153 
0.3 -0.110 -0.128 -0.144 -0.155 -0.151 -0.124 0.424 
0.4 -0.149 -0.155 -0.136 -0.056 0.277 0.533 0.882 
0.5 -0.135 -0.051 0.348 0.599 0.750 0.873 1.106 
0.6 0.137 0.527 0.714 0.858 0.969 1.066 1.260 
0.7 0.590 0.773 0.907 1.024 1.118 1.205 1.380 
0.8 0.790 0.931 1.044 1.147 1.234 1.314 1.480 
0.9 0.928 1.050 1.152 1.246 1.328 1.406 1.566 
1 1.035 1.146 1.240 1.330 1.410 1.485 1.642 

Table 4: Radial deflection at point A (UB) of the pinched cylindrical shell. 
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F/Fmax ceramic n=0.2 n=0.5 n=1 n=2 n=5 metal 
0,1 0,014 0,017 0,020 0,023 0,026 0,030 0,039 
0,2 0,036 0,040 0,043 0,046 0,047 0,045 0,030 
0,3 0,048 0,049 0,046 0,034 0,012 -0,024 0,068 
0,4 0,040 0,022 -0,012 -0,070 -0,040 0,184 0,742 
0,5 -0,010 -0,073 0,012 0,284 0,513 0,724 1,231 
0,6 -0,099 0,186 0,455 0,714 0,935 1,138 1,623 
0,7 0,259 0,549 0,809 1,061 1,278 1,478 1,956 
0,8 0,570 0,852 1,105 1,355 1,571 1,770 2,249 
0,9 0,835 1,111 1,362 1,611 1,828 2,029 2,513 
1 1,067 1,340 1,590 1,841 2,061 2,263 2,754 

Table 5: Normal deflection at point C (-VC x 10) of the pinched cylindrical shell. 


